基于水解识别机制的可视化ClO-和ONOO-荧光探针的合成及性质研究
Synthesis and Characterization of Visualized ClO- and ONOO- Fluorescent Probes Based on Hydrolytic Recognition Mechanism
DOI: 10.12677/HJCET.2022.123029, PDF, HTML, XML, 下载: 83  浏览: 113  科研立项经费支持
作者: 来素涵, 陈佳敏, 曾 竟*, 李佳佳:新疆师范大学化学化工学院,新疆 乌鲁木齐
关键词: 四苯乙烯罗丹明B可视化识别ClO-和ONOO-荧光探针Tetraphenylethyene Rhodamine B Colorimetric Recognition ClO- and ONOO- Fluorescence Probes
摘要: 次氯酸(ClO)和过氧化亚硝酸盐(ONOO)作为生命体中的重要活性氧,参与老化、免疫等生理过程,因此构建合成方法简单、灵敏度高、选择性好、且同时精准识别不同ROS/RNS的分析方法具有重要的意义。本文通过酰胺键连接四苯基乙烯和罗丹明荧光母体合成荧光探针TPE-RhB,当探针TPE-RhB与ClO作用时,5秒后在490 nm处产生98.6%的荧光猝灭,而在582 nm处荧光强度增强,同时引起探针溶液由无色变为粉红色,实现了对ClO的可视化荧光识别,检出限可至8.2 × 10−6 M。但当加入ONOO后,30秒内仅在490 nm处实现了97.5%荧光猝灭效应,检测限为1.4 × 10−5 M。光谱结果表明探针TPE-RhB具有稳定性强、灵敏度高等优点。此外,通过TPE-RhB-ClO和TPE-RhB-ONOO混合物的ESI-MS分析,初步确定了探针TPE-RhB识别ROS/RNS的反应机理,即在ClO存在下,探针TPE-RhB结构中罗丹明荧光母体侧的酰胺键更易氧化水解开环,引起探针溶液颜色及荧光强度同时变化,而在ONOO存在下,探针TPE-RhB结构中四苯基乙烯荧光母体侧的酰胺键更易水解,仅引起490 nm处荧光猝灭。
Abstract: Hypochlorous acid (ClO) and peroxynitrite (ONOO) as important reactive oxygen species in living organisms, are involved in physiological processes such as ageing and immunity, so it is important to construct analytical methods that are simple to synthesize, sensitive, selective, and accurate in identifying different ROS/RNS at the same time. In this paper, the fluorescent probe TPE-RhB was synthesized by linking tetraphenylethylene and rhodamine fluorophore through amide bonding. When the probe TPE-RhB interacted with ClO, 98.6% fluorescence burst was generated at 490 nm after 5 s, while the fluorescence intensity was enhanced at 582 nm, causing the probe solution to change from colourless to pink at the same time, achieving visual fluorescence recognition of ClO with detection limits. However, when ONOO was added, only 97.5% of the fluorescence burst was achieved at 490 nm within 30 s, with a detection limit of 1.4 × 10−5 M. The spectral results indicate that the probe TPE-RhB has the advantage of high stability and sensitivity. In addition, the ESI-MS analysis of TPE-RhB-ClO and TPE-RhB-ONOO mixtures tentatively determined the reaction mechanism of ROS/RNS recognition by the probe TPE-RhB, in the presence of ClO, the amide bond on the rhodamine fluorescent parent side of the probe TPE-RhB structure was more prone to oxidative hydrolysis and ring opening, causing a change in colour and fluorescence intensity of the probe solution, while in the presence of ONOO, the amide bond on the rhodamine fluorescent parent side of the probe TPE-RhB structure was more prone to oxidative hydrolysis and ring opening. In the presence of ONOO, the amide bond on the fluorescent parent side of tetraphenylethylene in the TPE-RhB structure was more readily hydrolysed, causing a fluorescence burst at 490 nm.
文章引用:来素涵, 陈佳敏, 曾竟, 李佳佳. 基于水解识别机制的可视化ClO-和ONOO-荧光探针的合成及性质研究[J]. 化学工程与技术, 2022, 12(3): 209-225. https://doi.org/10.12677/HJCET.2022.123029

1. 引言

次氯酸(ClO)和过氧化亚硝酸盐(ONOO)作为生命体中的重要活性氧 [1] [2] [3] [4] [5],具有较强氧化性和亲核性 [6] [7],在维持体内氧化还原平衡中发挥了重要作用,但过量活性氧也会引起疾病 [8] [9],因此开发准确识别活性氧的有效方法具有重要的意义。与其他检测方法相比,荧光检测法具有灵敏度高、选择性好、实时检测等优点 [10] [11] [12] [13]。人们已经开发出形式多样的识别活性氧/氮的荧光探针。到目前为止,基于酰胺/酯的氧化裂解 [14] [15] [16],双键的氧化裂解(C=C、C=N、C=S和N=N) [17] [18] [19],硫醚化合物/硒化合物的氧化 [20] 等作用原理开发设计了许多ClO荧光探针;同时基于硼酸盐/硼酸氧化裂解 [21] [22] [23] 成苯酚,与反应酮生成二环氧乙烷 [24] [25],有机硒/有机碲化合物的氧化 [26] [27] [28],芳香族化合物的硝化 [29],苯酚的氧化 [30],亚硝胺 [31] 的生成及其水解的作用机制设计合成了ONOO的荧光探针,上述探针均对ClO和ONOO的识别表现出较高的灵敏度和选择性,但在探针合成上也存在识别基构建困难,不易合成等缺点,而酰胺键易于合成,往往通过羧酸衍生物氨解既可以快速合成,因此利用酰胺键水解前后的荧光信号改变设计次氯酸或过氧化亚硝酸盐荧光探针具备可行性和必要性。

罗丹明荧光母体螺内酰胺闭环时溶液为无色、荧光强度较弱,而开环结构具有光稳定性好、刚性共轭结构大、发射波长长、水溶性好的优势,往往用于可视化荧光探针的设计与合成。而四苯基乙烯荧光母体作为聚集诱导发光(AIE)物质的典型代表,具有结构易修饰等优势,鉴于上述荧光母体优势,本文利用2,6-吡啶二甲酰氯通过酰胺键连接四苯基乙烯和罗丹明结构,合成得到探针TPE-RhB,探针充分发挥罗丹明的可视化优势和四苯基乙烯的聚集诱导发光特性,利用ClO和ONOO氧化和亲核能力的差异,通过对探针TPE-RhB中酰胺键识别机制的不同,同时实现了对ClO和ONOO的可视化选择性识别。这项研究可以扩大检测活性氧ClO和ONOO荧光探针的设计思路,为众多的研究者设计合成荧光探针提供依据。

2. 实验部分

2.1. 仪器与试剂

通过美国Varian公司Varian 400-MR测定核磁共振数据;由日立U-3310紫外可见分光光度计测定紫外吸收光谱数据;利用Bruker TENSOR27红外光谱仪测定红外光谱数据;借助Varian Cary Eclipse荧光分光光度计测定荧光光谱数据;由TRACE MS质谱仪测定质谱数据。

无水乙醇,四氢呋喃,2,6-吡啶二甲酰氯等均为市售分析纯或化学纯试剂。

2.2. 化合物TPE-RhB的合成

参照图式1合成探针TPE-RhB:称量0.306 g (1.5 mmol) 2,6-吡啶二甲酰氯置于100 mL干燥圆底烧瓶中,并用15.0 mL二氯甲烷溶解,启动搅拌,将体系冰浴降温到0℃左右后,缓慢滴入0.375 g (1 mmol) 1,1-二(4-甲基苯基)-2-(4-氨基苯基)-2-苯基乙烯(CH3-TPE-NH2)的二氯甲烷溶液。待CH3-TPE-NH2基本消失后滴入0.91 g (2 mmol)罗丹明酰肼(RhB-NH2)的二氯甲烷溶液,全部滴加完毕后,加入0.5 mL三乙胺,缓慢回至室温,30 min停止反应,加入20 mL蒸馏水猝灭反应,二氯甲烷萃取(3 × 30 mL)有机相,并用无水硫酸镁干燥2 h,过滤、洗涤、旋蒸溶剂得到紫红色粗品,粗品用石油醚/乙酸乙酯(v/v = 3:1)柱层析分离得白色粉末固体TPE-RhB 0.5 g,产率:58%,m.p. 249℃~251℃;表征数据如图S4~S6,1H NMR (CDCl3,400 MHz) δ:1.05 (t, J = 7.2 Hz, J = 7 Hz, 12H),2.24 (s, 6H),3.11~3.24 (m, 8H),6.22 (t, J = 8.4 Hz, 2H),6.23 (s, 2H),6.61 (d, J = 8.8 Hz, 2H),6.85~7.14 (m, 16H),7.33~7.5 (m, 5H),7.66 (s, 2H),7.78 (d, J = 6.8 Hz,1H),8.23 (d, J = 7.2 Hz, 1H),9.68 (s, 1H);13C NMR (CDCl3, 100 MHz) δ:12.5,21.1,021.2,44.2,97.8,107.9,119.61,123.8,124.0,126.0,127.5,128.2,128.4,129.1,131.1,131.2,131.4,131.6,133.0,135.8,136.0,138.3,139.4,139.8,140.6,140.8,141.0,144.46,147.1,148.8,149.0,151.6,153.8,160.6,160.8,166.2. IR (v, KBr):2970,1633,1518,1402,1221,1119,699 cm−1;ESI-MS m/z (%):964.9 (M + H 100)。

Scheme 1. Synthetic routes of probe TPE-RhB

图式1. 探针TPE-RhB的合成路线

2.3. 溶液配制方法

称量48.15 mg探针TPE-RhB置于干燥的小烧杯中,用无水乙醇溶解,并转移至100毫升容量瓶中,定容得浓度为5.0 × 10−4 mol/L储备液。识别ClO和ONOO的光谱研究均在EtOH/H2O (50 μmol/L, v/v, 1/1,PBS, pH 7.4)溶液中进行,激发波长为λEx = 364 nm,激发和发射狭缝宽度均为5 nm。

活性氧/氮的配制参照文献方法 [32] [33]:NaClO,H2O2,叔丁基过氧化氢(TBHP),NO均用超纯水进行稀释得到;·OH通过Fe2+和H2O2发生芬顿反应得到;TBO·通过Fe2+和TBHP发生芬顿反应得到;1O2通过钼酸钠和H2O2发生反应得到;ONOO通过以下方法获得:冰浴条件下,HCl水溶液(0.6 M, 5 mL)和H2O2溶液(0.7 M, 5 mL)混合,搅拌20 min后,加入NaOH溶液(1.5 M, 5 mL)和NaNO2溶液(0.6 M, 5 mL)的混合溶液继续反应1 min,得到微黄溶液,即为ONOO储备液,储备液在−20℃下保存,其浓度通过紫外–可见吸收光谱由302 nm处的吸光度计算,ε = 1670 M−1 cml

3. 结果与讨论

3.1. 聚集诱导荧光性质研究

众所周知,四苯基乙烯衍生物是典型的AIE物质,当连接上罗丹明荧光母体后是否保留该特性,对能否利用聚集诱导发光原理设计探针具有重要意义。

结果如图1所示,化合物TPE-RhB的荧光强度随含水量的增加呈现上升趋势,当水体积分数为80%时,荧光强度达到最大为757,比纯乙醇溶液时增强了37倍,结果表明当四苯乙烯与罗丹明连接后探针TPE-RhB仍具有典型的AIE特征。

Figure 1. Emission spectra of probe TPE-RhB (50 μmol/L) in EtOH-H2O mixtures with different water fraction (λEm = 490 nm)

图1. 探针TPE-RhB (50 μmol/L)在不同水体积分数的乙醇/水溶液中的聚集诱导荧光图(λEm = 490 nm)

3.2. 探针TPE-RhB的选择性识别研究

为考察TPE-RhB对活性氧的响应情况,测定了探针TPE-RhB与活性氧反应前后的紫外光谱和荧光光谱,结果如图2和图S1~S3所示。

Figure 2. Uv-visible absorption spectrum (a) and fluorescence spectra (b) of probe TPE-RhB solution after adding 8 equiv. ClO and ONOO (the inner pictures were taken under visible light and 365 nm uv lamps before and after adding ClO and ONOO into the probe solution)

图2. 探针TPE-RhB的乙醇/水溶液中加入8 equiv. ClO和ONOO后的紫外–可见吸收光谱图(a)和荧光光谱图(b) (内图为探针溶液中加入ClO、ONOO前后在可见光和365 nm紫外灯下照片)

从上述结果中可知,探针TPE-RhB的乙醇/水溶液在325 nm和360 nm处有明显的紫外吸收峰,在加入ClO后,该位置的紫外吸收略微减弱,同时582 nm处产生新的吸收峰。但与ONOO反应后,探针在325 nm和360 nm的紫外吸收峰明显增强,说明探针与ONOO、ClO发生了化学反应(图2(a))。探针在加入ClO后,在5秒内引起探针溶液颜色由无色变为粉红色,同时490 nm处发生猝灭比为98.6%的荧光猝灭效应,而582 nm处实现了荧光增强,I582/I490增大了218倍,实现对ClO的可视化荧光识别。当加入ONOO后,30秒内仅观察到490 nm处荧光强度急剧下降,猝灭比为97.5% (图2(b))。而在其他活性氧或金属离子存在下则无上述现象,表明探针对ONOO、ClO表现出可视化识别能力。

3.3. 探针TPE-RhB识别ClO的光谱性质研究

3.3.1. 探针TPE-RhB识别ClO前后在不同pH条件下荧光性质研究

研究了pH值对该探针的荧光响应影响,结果如图3所示。

Figure 3. The pH value influence on the fluorescence intensity of probe TPE- RhB in the absence and presence of ClO (a: λEm = 490 nm, b: λEm = 586 nm)

图3. 在不同pH值条件下,探针TPE-RhB与ClO作用前后的荧光强度变化图(a: λEm = 490 nm, b: λEm = 586 nm)

在无HClO/ClO存在下,探针溶液在pH 4.7~10.2范围内表现出较为稳定的荧光响应,且始终处于无色状态。在HClO/ClO存在下,探针溶液在pH 3.5~10.2范围内,490 nm荧光强度表现出猝灭,586 nm出现新的发射峰且溶液变为粉红色,由于生命体系大部分为中性,在后续光谱性质测试中以PBS溶液为缓冲溶液,pH值选为7.4。

3.3.2. 探针TPE-RhB与ClO反应动力学实验

在探针TPE-RhB的乙醇/水加入8 equiv. ClO,观察并测定探针溶液颜色以及荧光强度变化,结果如图4所示。

Figure 4. Time-dependent fluorescence changes of probe TPE-RhB in the absence and presence of ClO (a: λEm = 490 nm, b: λEm = 586 nm)

图4. 在不同反应时间条件下,探针TPE-RhB与ClO作用前后的荧光强度变化图(a: λEm = 490 nm, b: λEm = 586 nm)

当探针TPE-RhB的乙醇/水溶液加入8 equiv. ClO后,探针溶液5秒内迅速变红,同时490 nm处荧光强度迅速降低,而586 nm处的荧光强度迅速增加,在180 s左右,F586荧光强度保持稳定,结果表明探针与ClO反应非常迅速,后续荧光测试选择180秒后测定。

3.3.3. 探针TPE-RhB在不同浓度ClO存在下的荧光滴定实验

利用荧光光谱法测定了在不同浓度ClO存在下的荧光发射强度,结果如图5所示。

在探针TPE-RhB的乙醇/水溶液中,490 nm处荧光强度逐渐减弱,其荧光强度与ClO浓度在30~250 μM范围符合线性方程y = −1.91 × 106x + 566.90,线性系数为0.9919 (图5(b)),通过公式D = 3Sd/ρ (其中ρ是荧光强度与ClO的斜率,Sd是空白标准偏差),得出检测限为8.2 × 10−6 M,586 nm发射波长下荧光强度与ClO浓度在300~500 μM范围内符合线性方程y = 1.50 × 106x − 375.14,线性系数为0.9812 (图5(c)),并通过公式D = 3Sd/ρ (其中ρ是荧光强度与ClO的斜率,Sd是空白标准偏差),得出检出限为6.1 × 10−6 M。该法已应用于自来水中ClO的加标回收定量检测,回收率均在97%~102% (表S1和表S2,研究结果表明了该法的有效性)。

Figure 5. Fluorescence emission spectra (a) and linear relationship of probe TPE-RhB in the presence of different ClO concentrations (b: λEm = 490 nm, c: λEm = 586 nm)

图5. 在不同浓度ClO存在下探针TPE-RhB溶液的荧光发射光谱图(a)及线性关系图(b: λEm = 490 nm, c: λEm = 586 nm)

3.3.4. 探针TPE-RhB与ClO识别机理初探

为了解TPE-RhB与ClO的作用机制,对TPE-RhB-ClO混合物进行了ESI-MS分析,结果如图6所示,初步将m/z = 443.7和m/z = 527.76处的峰分别归因于3和6,因此提出了图7中描述的识别机制。即探针TPE-RhB经NaClO氧化诱导罗丹明结构开环得到罗丹明N-Cl化合物1,并继续脱氯化氢获得偶氮化合物2,2经水解获得罗丹明B 3和中间体4,4进一步水解脱氮得化合物6。在这识别过程中,化合物3的产生将会导致586 nm处的荧光强度迅速增加,并伴随探针溶液颜色变红,而化合物6在溶液中溶解性更好,则会引起490 nm荧光猝灭。

Figure 6. ESI-MS diagram of TPE-RhB-ClO mixture

图6. TPE-RhB-ClO混合物的ESI-MS图

Figure 7. The possible mechanism of probe TPE-RhB identifies ClO

图7. 探针TPE-RhB识别ClO的可能机理

3.4. 探针TPE-RhB识别ONOO的光谱性质研究

3.4.1. 探针TPE-RhB识别ONOO前后在不同pH条件下荧光性质研究

研究了不同pH值条件下该探针对ONOO的荧光响应,结果如图8所示。显然,在无ONOO存在下,探针溶液在pH 3.5~10.2范围内荧光强度较为稳定;在ONOO存在下,pH 3.5~10.2范围内的,490 nm荧光强度表现出猝灭,探针溶液由无色聚集状态变为无色透明状态。由于生命体系大部分为中性,在后续光谱性质测试中以PBS溶液为缓冲溶液,pH值选为7.4。

Figure 8. The pH value influence on the fluorescence intensity of probe TPE-RhB in the absence and presence of ONOOEm = 586 nm)

图8. 在不同pH值条件下,探针TPE-RhB与ONOO作用前后的荧光强度变化图(λEm = 586 nm)

Figure 9. Time-dependent fluorescence changes of probe TPE-RhB in the absence and presence of ONOOEm = 490 nm)

图9. 在不同反应时间条件下,探针TPE-RhB与ONOO作用前后的荧光强度变化图(λEm = 490 nm)

3.4.2. 探针TPE-RhB与ONOO反应动力学测试

为了获得最佳的灵敏度,对响应时间也进行了优化,在加入ONOO后,结果如图9表明,在30秒内观察到荧光强度急剧下降,这表明探针与ONOO反应非常迅速。这种快速反应的探针分子可作为实时检测ONOO的有效探针,并优于许多其他探针。

3.4.3. 探针TPE-RhB在不同浓度ONOO存在下的荧光滴定实验

在不用浓度ONOO存在下,探针TPE-RhB溶液仅在490 nm处荧光强度逐渐减弱,结果如图10所示。

Figure 10. Fluorescence emission spectra (a) and linear relationship (b: λEm = 490 nm) of probe TPE-RhB in the presence of different ONOO concentrations

图10. 探针TPE-RhB的乙醇/水溶液中逐渐加入不同浓度的ONOO后的荧光光谱图(a)及线性关系曲线(b: λEm = 490 nm)

从上图可知,荧光强度与ONOO浓度在30~375 μM范围内符合线性方程y = −1.15 × 106x + 557.35,线性系数为0.9991,并通过公式D = 3Sd/ρ得出检出限为1.43 × 10−5 M,说明该探针可应用于ONOO的定量检测。

3.4.4. 探针TPE-RhB与ONOO反应识别机理初探

为了解TPE-RhB与ONOO之间的作用机制,对TPE-RhB-ONOO混合物进行了ESI-MS分析,结果如图11所示,初步将m/z = 363.9和m/z = 302.1处的峰归因于探针水解产物CH3-TPE-NH2脱甲基和脱4-甲苯基后产生的碎片离子峰。因此提出了图12中描述的信号机制,即在ONOO作用下,增强水分子的亲核性,引起TPE-RhB结构中四苯基乙烯侧的酰胺键优先水解,获得水解产物TPE-NH2,诱导荧光猝灭,但罗丹明荧光母体在此过程中未产生诱导开环,因此探针溶液颜色和586 nm处荧光强度均未发生变化。

Figure 11. ESI-MS diagram of TPE-RhB-ONOO mixture

图11. TPE-RhB-ONOO混合物的ESI-MS图

Figure 12. The possible mechanism of probe TPE-RhB identifies ONOO

图12. 探针TPE-RhB识别ONOO的可能机理

4. 结论

本文利用2,6-吡啶二甲酰氯合成得到基于四苯乙烯–罗丹明的双酰胺化合物TPE-RhB,通过光谱性能研究表明,探针TPE-RhB在5秒内实现可视化比率荧光识别ClO,探针溶液由无色变为粉色,490 nm处荧光产生98.6%的猝灭,在582 nm处实现了荧光增强。而在ONOO存在时,30秒内仅观察到490 nm处荧光强度下降,猝灭比为97.5%,对其它活性氧/氮及金属离子则无明显变化。通过TPE-RhB-ClO和TPE-RhB-ONOO混合物的ESI-MS分析,初步证明在ClO作用下,TPE-RhB结构中罗丹明侧的酰胺键优先氧化水解,引起探针溶液荧光和颜色多重信号变化,但ONOO存在时,则优先引起四苯乙烯侧的酰胺键水解,仅实现490 nm处的荧光变化。

基金项目

新疆维吾尔自治区高校科研计划自然科学基金项目(XJEDU2019Y028)和新疆师范大学优秀青年教师科研启动基金项目(XJNU202013)资助。

附件支持信息

Figure S1. Photos of the probe TPE-RhB in ethanol/water (50 μmol/L, v/v, 1/1, PBS, pH 7.4) after adding different ROS/RON and metal ions (8 equiv.) under natural light

图S1. 探针TPE-RhB的乙醇/水(50 μmol/L, v/v, 1/1, PBS, pH 7.4)中加入不同ROS/RON及金属离子(8 equiv.)后的在日光灯下照片

Figure S2. Photos of probe TPE-RhB under 365 nm UV lamp after adding ROS/RON and metal ions (8 equiv.) to ethanol/water (50 μmol/L, v/v, 1/1, PBS, pH 7.4)

图S2. 探针TPE-RhB的乙醇/水(50 μmol/L, v/v, 1/1, PBS, pH 7.4)中加入不同ROS/RON及金属离子(8 equiv.)后的在365 nm紫外灯下照片

Figure S3. Fluorescence spectra (Ex = 364 nm) of probe TPE-RhB after adding different ROS/RON and metal ions (8 equiv.) to ethanol/water (50 μmol/L, v/v, 1/1, PBS, pH 7.4)

图S3. 探针TPE-RhB的乙醇/水(50 μmol/L, v/v, 1/1, PBS, pH 7.4)中加入不同ROS/RON及金属离子(8 equiv.)后的荧光光谱图(Ex = 364 nm)

Figure S4. 1HNMR diagram of compound TPE-RhB

图S4. 化合物TPE-RhB的1HNMR图

Figure S5. 13CNMR diagram of compound TPE-RhB

图S5. 化合物TPE-RhB的13CNMR图

Figure S6. ESI-MS diagram of compound TPE-RhB

图S6. 化合物TPE-RhB的ESI-MS图

Table S1. Recovery of ClO− in water samples measured by probe at 490 nm

表S1. 490 nm处探针测定水样中ClO的回收率研究

Table S2. Recovery of ClO− in water samples measured by probe at 586 nm

表S2. 586 nm处探针测定水样中ClO的回收率研究

NOTES

*通讯作者。

参考文献

[1] Ma, H., Song, B., Wang, Y., et al. (2017) Dual-Emissive Nanoarchitecture of Lanthanide-Complex-Modified Silica Particles for in Vivo Ratiometric Time-Gated Luminescence Imaging of Hypochlorous Acid. Chemical Science, 8, 150-159.
https://doi.org/10.1039/C6SC02243J
[2] Liu, X., Tang, Z., Song, B., et al. (2017) A Mitochon-dria-Targeting Time-Gated Luminescence Probe for Hypochlorous Acid Based on a Europium Complex. Journal Materials Chemical B, 5, 2849-2855.
https://doi.org/10.1039/C6TB02991D
[3] Xu, K., Wang, L., Qiang, M., et al. (2011) A Selective Near-Infrared Fluorescent Probe for Singlet Oxygen in Living Cells. Chemical Communications, 47, 7386-7388.
https://doi.org/10.1039/c1cc12473k
[4] Chen, L.D., Ding, H.L., Wang, N., et al. (2019) Two Highly Selective and Sensitive Fluorescent Probes Design and Apply to Specific Detection of Hypochlorite. Dyes and Pigments, 161, 510-518.
https://doi.org/10.1016/j.dyepig.2018.09.071
[5] 赵云, 李艳芳, 李蓉晓, 等. 基于亲电氯代反应的次氯酸荧光探针构建及细胞成像研究[J]. 有机化学, 2021, 41(5): 1974-1981.
[6] Xiong, H., He, L., Zhang, Y., et al. (2019) A Ratiometric Fluorescent Probe for the Detection of Hypochlorous Acid in Living Cells and Zebra Fish with a Long Wavelength Emission. Chinese Chemical Letters, 30, 1075-1077.
https://doi.org/10.1016/j.cclet.2019.02.008
[7] Chen, X., Tian, X., Shin, I., et al. (2011) Fluorescent and Lumi-nescent Probes for Detection of Reactive Oxygen and Nitrogen Species. Chemical Society Reviews, 40, 4783-4804.
https://doi.org/10.1039/c1cs15037e
[8] Chen, X., Wang, F., Hyun, J.Y., et al. (2016) Recent Progress in the Development of Fluorescent, Luminescent and Colorimetric Probes for Detection of Reactive Oxygen and Nitrogen Species. Chemical Society Reviews, 45, 2976-3016.
https://doi.org/10.1039/C6CS00192K
[9] Jiao, X., Li, Y., Niu, J., et al. (2018) Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Analytical and Bioanalytical Chemistry, 90, 533-555.
https://doi.org/10.1021/acs.analchem.7b04234
[10] Ou, Z., Shi, L., Huang, W., et al. (2017) A Ratiometric Flu-orescent Probe for Selective Detection of Hypochlorite Anion. Bulletin of the Korean Chemical Society, 38, 1443-1446.
https://doi.org/10.1002/bkcs.11321
[11] Wang, W., Jin, L., Shen, Z., et al. (2019) A Fluorescent Probe with a Significant Selective Turn-On Response for HClO Detection and Bioimaging in Living Cells. ChemistrySelect, 4, 7425-7430.
https://doi.org/10.1002/slct.201901587
[12] Liu, R., Zhao, Y., Cui, X., et al. (2020) A Turn-On Fluorescent Probe Based on Quinoline and Coumarin for Rapid, Selective and Sensitive Detection of Hypochlorite in Water Sam-ples. Luminescence, 35, 1231-1237.
https://doi.org/10.1002/bio.3882
[13] Wang, C., Wang, Y., Wang, G., et al. (2020) A New Mitochon-dria-Targeting Fluorescent Probe for Ratiometric Detection of H2O2 in Live Cells. Analytica Chimica Acta, 1097, 230-237.
https://doi.org/10.1016/j.aca.2019.11.024
[14] Wang, H., He, Y., Li, Y., et al. (2019) Selective Rati-ometric Fluorescence Detection of Hypochlorite by Using Aggregation-Induced Emission Dots. Analytical and Bioana-lytical Chemistry, 411, 1979-1988.
https://doi.org/10.1007/s00216-019-01653-0
[15] Duan, Q., Zheng, G., Li, Z., et al. (2019) An Ultra-Sensitive Ratiometric Fluorescent Probe for Hypochlorous Acid Detection by the Synergistic Effect of AIE and TBET and Its Application of Detecting Exogenous/Endogenous HOCl in Living Cells. Journal Materials Chemical B, 7, 5125-5131.
https://doi.org/10.1039/C9TB01279F
[16] Zhang, W., Wang, H., Li, F., et al. (2020) A Ratiometric Fluorescent Probe Based on AIEgen for Detecting HClO in Living Cells. Chemical Communications, 56, 14613-14616.
https://doi.org/10.1039/D0CC06582J
[17] Han, X., Ma, Y., Chen, Y., et al. (2020) Enhancement of the Aggre-gation-Induced Emission by Hydrogen Bond for Visualizing Hypochlorous Acid in an Inflammation Model and a Hepatocellular Carcinoma Model. Analytical and Bioanalytical Chemistry, 92, 2830-2838.
https://doi.org/10.1021/acs.analchem.9b05347
[18] Huang, Y., Zhang, P., Gao, M., et al. (2016) Ratiometric Detection and Imaging of Endogenous Hypochlorite in Live Cells and in Vivo Achieved by Using an Aggregation In-duced Emission (AIE)-Based Nanoprobe. Chemical Communications, 52, 7288-7291.
https://doi.org/10.1039/C6CC03415B
[19] Shi, R., Chen, H., Qi, Y., et al. (2019) From Aggregation-Induced to Solution Emission: A New Strategy for Designing Ratiometric Fluorescent Probes and Its Application for in Vivo HClO Detection. Analyst, 144, 1696-1703.
https://doi.org/10.1039/C8AN01950A
[20] Wang, L., Hu, Y., Qu, Y., et al. (2016) Aggregated-Induced Emis-sion Phenothiazine Probe for Selective Ratiometric Response of Hypochlorite over Other Reactive Oxygen Species. Dyes and Pigments, 128, 54-59.
https://doi.org/10.1016/j.dyepig.2016.01.010
[21] Mulay, S.V., Kim, Y., Lee, K.J., et al. (2017) A Fluorogenic and Red-Shifted Diphenyl Phosphinate-Based Probe for Selective Peroxynitrite Detection as Demonstrated in Fixed Cells. New Journal of Chemistry, 41, 11934-11940.
https://doi.org/10.1039/C7NJ02530K
[22] Sk, M., Nandi, S., Singh, R.K., et al. (2018) Selective Sensing of Per-oxynitrite by Hf-Based UiO-66-B (OH) 2 Metal-Organic Framework: Applicability to Cell Imaging. Advances in Inor-ganic Chemistry, 57, 10128-10136.
https://doi.org/10.1021/acs.inorgchem.8b01310
[23] Dong, L., Fu, M., Liu, L., et al. (2020) Supramolecular As-sembly of TPE-Based Glycoclusters with Dicyanomethylene-4 H-pyran (DM) Fluorescent Probes Improve Their Properties for Peroxynitrite Sensing and Cell Imaging. Chemical European Journal, 26, 14445-14452.
https://doi.org/10.1002/chem.202002772
[24] Yang, D., Wang, H.L., Sun, Z.N., et al. (2006) A Highly Selective Fluorescent Probe for the Detection and Imaging of Peroxynitrite in Living Cells. Journal of the American Chemical Society, 128, 6004-6005.
https://doi.org/10.1021/ja0603756
[25] Cheng, P., Zhang, J., Huang, J., et al. (2018) Near-Infrared Fluores-cence Probes to Detect Reactive Oxygen Species for Keloid Diagnosis. Chemical Science, 9, 6340-6347.
https://doi.org/10.1039/C8SC01865K
[26] Xu, K., Chen, H., Tian, J., et al. (2011) A Near-Infrared Reversible Fluorescent Probe for Peroxynitrite and Imaging of Redox Cycles in Living Cells. Chemical Communications, 47, 9468-9470.
https://doi.org/10.1039/c1cc12994e
[27] Tian, J., Chen, H., Zhuo, L., et al. (2011) A Highly Selective, Cell-Permeable Fluorescent Nanoprobe for Ratiometric Detection and Imaging of Peroxynitrite in Living Cells. Chem-ical European Journal, 17, 6626-6634.
https://doi.org/10.1002/chem.201100148
[28] Yu, F., Peng, L., Li, G., et al. (2011) A Near-IR Reversible Fluo-rescent Probe Modulated by Selenium for Monitoring Peroxynitrite and Imaging in Living Cells. Journal of the Amer-ican Chemical Society, 133, 11030-11033.
https://doi.org/10.1021/ja202582x
[29] Miao, J., Huo, Y., Qian, L., et al. (2016) A New Class of Fast-Response and Highly Selective Fluorescent Probes for Visualizing Peroxynitrite in Live Cells, Subcellular Organelles, and Kidney Tissue of Diabetic Rats. Biomaterials, 107, 33-43.
https://doi.org/10.1016/j.biomaterials.2016.08.032
[30] Zhang, Q., Zhu, Z., Zheng, Y., et al. (2012) A Three-Channel Fluorescent Probe That Distinguishes Peroxynitrite from Hy-pochlorite. Journal of the American Chemical Society, 134, 18479-18482.
https://doi.org/10.1021/ja305046u
[31] Lin, K.K., Wu, S.C., Hsu, K.M., et al. (2013) A N-(2-Aminophenyl)-5-(Dimethylamino)-1-Naphthalenesulfonic Amide (Ds-DAB) Based Fluorescent Chemosensor for Peroxynitrite. Organic Letters, 15, 4242-4245.
https://doi.org/10.1021/ol401932p
[32] Yu, F., Song, P., Li, P., Wang, B., et al. (2012) A Fluorescent Probe Di-rectly Detect Peroxynitrite Based on Boronate Oxidation and Its Applications for Fluorescence Imaging in Living Cells. Analyst, 137, 3740-3749.
https://doi.org/10.1039/c2an35246j
[33] Uppu, R.M. (2006) Synthesis of Peroxynitrite Using Isoamyl Nitrite and Hydrogen Peroxide in a Homogeneous Solvent System. Analytical Biochemistry, 354, 165-168.
https://doi.org/10.1016/j.ab.2005.11.003