长链非编码RNA在慢性肾脏疾病中的研究进展
Research Progress of Long Non-Coding RNA in Chronic Kidney Disease
DOI: 10.12677/ACM.2022.126792, PDF, HTML, XML, 下载: 229  浏览: 334  科研立项经费支持
作者: 谢丹丹:济宁医学院临床医学院,山东 济宁;刘 雷*:济宁医学院附属医院全科医学科,山东 济宁
关键词: 长链非编码RNA慢性肾脏疾病发病机制Long Non-Coding RNA Chronic Kidney Disease Pathogenesis
摘要: 慢性肾脏病(Chronic Kidney Disease, CKD)是全球性公共卫生问题,患病率在11%至13%之间。其主要病因有膜性肾病、糖尿病肾病、以及各种炎症、免疫所介导的肾小球疾病。长链非编码RNA (long non-coding RNA, lncRNA)是由大于200个核苷酸组成,lncRNA是无蛋白质编码功能的RNA分子,近年来越来越多的研究发现,lncRNA可能是调节细胞多种生物学过程的关键调节剂。已有许多的研究证据表明,lncRNA与肾脏疾病的发生发展有着密切的联系,进一步深入地研究lncRNA,也许其可成为肾脏疾病新的生物标志物和新的治疗靶点,为该疾病的诊断和预测其发生发展提供新的思路。本综述总结了近年lncRNA在慢性肾脏疾病方面的研究进展。
Abstract: Chronic kidney disease (CKD) is a global public health problem. The global prevalence of CKD is very high, and the prevalence of CKD is between 11% and 13%. The main causes are membranous nephropathy, diabetic nephropathy and glomerular diseases mediated by various inflammatory and immune diseases. Long non-coding RNA (lncRNA) is composed of more than 200 nucleotides, and lncRNA is an RNA molecule with no protein-coding function. In recent years, more and more studies have found that lncRNA may be a key regulator of many biological processes in cells. Many studies have shown that lncRNA is closely related to the occurrence and development of kidney diseases. Further studies on lncRNA may become a new biomarker and a new therapeutic target for kidney diseases, providing new ideas for the diagnosis and prediction of the occurrence and devel-opment of this disease. This review summarizes the research progress of lncRNA in chronic kidney diseases in recent years.
文章引用:谢丹丹, 刘雷. 长链非编码RNA在慢性肾脏疾病中的研究进展[J]. 临床医学进展, 2022, 12(6): 5477-5484. https://doi.org/10.12677/ACM.2022.126792

1. 引言

长链非编码RNA (long non-coding RNA, lncRNA)是长度大于200个核苷酸且无蛋白质编码功能的RNA分子,近年来越来越多的研究发现,lncRNA可能是细胞中多种生物学过程的关键调节剂 [1]。目前慢性肾脏病(Chronic Kidney Disease, CKD)的患病率很高,相关文献报道全球CKD患病率在11%至13%之间 [2]。北京大学第一医院曾在全国13个省份进行横断面调查,得出肾小球滤过率(Estimated Glomerular Filtration Rate, eGFR) < 60 mL/min/1.73m2或有蛋白尿的人群约为1.195亿人 [3]。了解lncRNA在肾脏疾病中的作用,有助于了解治疗慢性肾脏疾病的分子机制,并为治疗干预提供策略和靶点。本文就lncRNA在慢性肾脏疾病中研究进展作一综述。

2. LncRNA的概述

2.1. LncRNA的定义

LncRNA是长度超过200个核苷酸且没有编码蛋白质功能的RNA分子。具有mRNA结构特征:由聚腺苷酸、5’-帽结构和启动子结构组成,由于没有开放阅读框,因而不具备蛋白质编码的能力 [4]。起初lncRNA被认为是转录中的“噪音”,认为其具有很少的功能,甚至可能不具备功能 [5]。而随着对lncRNA不断深入的研究,lncRNA的定义也不断被丰富。研究发现蛋白编码基因仅占人类基因的3%,其余则为非编码序列。大量非编码RNAs参与了转录调控过程,这其中就包括lncRNA [6]。非编码RNA中数量庞大的一部分就是lncRNA,此外还包括一些转运RNA (tRNA)、核糖体RNA (rRNA)、microRNA等 [7]。LncRNA与信使RNA (mRNA)在某些方面相似,例如两者均是由RNA聚合酶II转录产生 [8],但在很多方面,与mRNA相比又存在很多不同,如lncRNA转录数量较低,通常存在于细胞核中,种间序列保守性较差 [9]。

2.2. LncRNA的功能

LncRNA曾被认为是基因组转录的“噪音”,认为其具有很少的功能,甚至可能不具备功能。但随着研究的不断深入,科学家发现这些缺乏显著蛋白质编码能力的mRNA样分子,通过多种多样的分子机制参与了细胞中多种生物学过程。其功能主要包括调节染色体重塑与组蛋白修饰 [10]、调节其他基因的表达 [7]、作为小RNA前体发挥作用 [11]、影响其他RNA生成 [12]、作为竞争性内源RNA发挥作用 [13]。

2.3. LncRNA的作用方式

到目前为止,lncRNA参与了许多生物学过程,如调控基因表达、X染色体失活(Xi)和基因组印迹、核区室化、核细胞质运输、染色质修饰复合物的引导、RNA剪接和翻译控制 [14] [15] [16] [17]。LncRNA是如何发挥作用的呢?新的证据表明,染色质修饰复合物和其他核蛋白可被lncRNA引导到特定的基因组位点从而发挥它们的功能 [17] [18] [19]。本质上,一些lncRNA可能作为GPS设备,将其他细胞成分定位到它们的作用位点。通过对结构lncRNA的突变分析,可以识别出对其作为分子支架的功能至关重要的lncRNA结构域。综上所述,lncRNA似乎在细胞核内提供了广泛的基础结构,这使得不同的蛋白质共同定位并协调其功能以完成特定的生物学功能成为可能 [18]。LncRNA调控不同的转录程序:一些lncRNA已被证明在对特定刺激做出反应时被激活,随即特定的转录程序也被激活,这些刺激使细胞对其做出反应。例如,lncRNAs,如linc-P21,PANDA,Tug1等。通过肿瘤抑制蛋白p53与其启动子的直接结合,在DNA损伤时被转录激活 [20] [21] [22] [23]。随后,这些lncRNA通过不同的途径调控基因表达。lncRNATug1发挥作用的机制则是和染色质修饰复合物PRC2两者相互作用 [20]。lncRNAGas 5 (Growth Arrest Specific 5)与糖皮质激素受体(Glucocorticoid Receptors, GRs)的DNA结合域相互作用,阻止它们与DNA响应元件结合,从而起到分子诱饵的作用 [24]。有证据表明,一些哺乳动物的lncRNA也可能通过与miRNA结合来调控转录后的基因表达。

3. LncRNA与肾脏疾病的关系

LncRNA在肾脏疾病中的研究,不及在肿瘤和免疫疾病中研究的那么深入,相关疾病方面的报道也较少。大部分lncRNA的功能和机制都没有阐述清楚,近年来随着人类全基因组研究技术的不断发展和研究投入的不断增加,有关lncRNA与各种肾脏疾病之间关系也逐渐明了。

3.1. LncRNA与糖尿病肾病

糖尿病肾脏疾病(Diabetic kidney disease, DKD)是指由1型和2型糖尿病所致的慢性肾脏疾病,是糖尿病主要的微血管并发症,其特征是肾间质细胞外基质(Extracellular Matrix, ECM)蛋白质的过度积累,最终导致慢性肾衰竭 [2]。随着研究的深入人们发现lncRNA的异常表达在分子水平调控了DKD的病理发展过程。经研究发现lncRNA浆细胞瘤变体异位1 (Plasmacytoma Variant Translocation1, PVT1)与糖尿病肾病(Diabetic Nephropathy, DN)的发生相关 [25]。LncRNA浆细胞瘤变体异位1 (Plasmacytoma Variant Translocation 1, PVT1)是也因此成为第一个与肾脏疾病相关的lncRNA。发展至终末期肾衰竭(End-Stagerenal Disease, ESRD)的糖尿病患者极有可能与PVT1的变异相关 [26]。DN早期重要的病理标志则是足细胞的丢失 [27]。实验证据表明,将足细胞在高浓度葡萄糖环境下培养,可发现PVT1明显上调,此实验提示PVT1可能与DN的发生和发展有关 [26]。若敲减了PVT1后可发现miR-455的表达被上调,从而抑制了高浓度葡萄糖环境下培养的足细胞的损伤和凋亡 [28]。此外Zhong等 [29] 研究发现,PVT1基因敲除可通过调节miR-23b-3p/WT1/NF-κB通路改善高糖诱导的系膜细胞的增殖和纤维化。靶向PVT1可能是治疗DN的一种潜在的治疗策略。

LncRNA牛磺酸上调基因1 (Taurine Upregulated Gene1, TUG1)在糖尿病大鼠系膜细胞中表达明显下调。研究表明,过度表达TUG1可减轻肾脏纤维化,其机制可能是抑制了PI3K/Akt信号通路,从而减少ECM积累和系膜细胞增殖。以及为了抑制高糖条件下ECM积累,过表达的TUG1可减轻miR-377对其靶基因过氧化物酶体增殖物激活受体γ的下调作用,起到保护肾脏的作用 [30] [31]。临床研究表明lncRNA TUG1在DN患者体内高表达,与HbA1c、TG、eGFR、Scr、BUN、UAER均呈正相关。暗示lncRNA TUG1可能通过某种机制调控机体肾脏代谢相关物质 [32],引起肾脏功能障碍,对DN具有一定诊断价值,可能作为潜在的诊断标志物。在DN发生和发展的过程中炎症反应也扮演着重要角色。实验发现,lncRNA Blnc1水平无论是在糖尿病肾病模型大鼠中还是在DN患者血清中均升高,若抑制lncRNA Blnc1的表达水平,其可介导Nrf2/HO-1和NF-κB信号通路,从而减轻肾脏的氧化应激、炎症反应、纤维化起到一定的肾脏保护作用 [33]。除了以上这些著名的lncRNA外,还有很多lncRNA都在糖尿病肾病的发生发展中起到重要的生物学功能。未来,应继续对lncRNA及其生物学功能进行更加深入的研究,有助于了解治疗糖尿病肾脏疾病的分子机制,并为DN的治疗干预提供新的策略和靶点。

3.2. LncRNA与膜性肾病

目前,lncRNA在膜性肾病(Membranous Nephropathy, MN)中的研究较少,在MN中发现lncRNA XIST表达异常。XIST是X-失活中心(Xic)基因位点转录的一种与X染色体失活有关的lncRNA。实验表明 [34] 在MN小鼠中发现了失调的LncRNA XIST和核旁斑组装转录本1 (Nuclear Paraspeckle Assembly Transcript1, NEAT1)。MN小鼠的肾小球细胞和肾小管上皮细胞中lncRNA XIST和NEAT1的表达均显著上调。小鼠肾脏足细胞在用脂多糖(lipopolysides, LPS)诱导损伤后,XIST水平在损伤的足细胞中稳定升高,NEAT1水平未见明显升高。进一步检测发现肾小球肾炎患者(包括膜性肾病)和膜性肾病小鼠尿液中的Xist表达显著升高。并与疾病严重程度有一定的相关性。随着研究的深入人们发现,翻译后修饰可能控制着XIST的调控。MN小鼠肾脏中组蛋白27氨基酸三甲基化(H3K27me3)的水平显著下降,染色质免疫沉淀实验也显示H3K27me3在XIST启动子区的水平下降。结果表明,XIST启动子区域的H3K27me3水平下降促使尿中XIST水平升高。

膜性肾病常以肾小球足细胞损伤为特征。因此Jin [35] 等发现,MN足细胞凋亡是由于血管紧张素II (AngII)可通过上调TLR4表达造成的。与此同时检测MN肾组织中XIST表达明显上调,而AngII诱导的足细胞凋亡则可通过下调XIST逆转。进一步研究发现miRNA-217与足细胞中TLR4XIST存在负性调节关系,且下调XIST的水平可激活miRNA-217/TLR4通路改善足细胞凋亡。因此Xist有望成为MN的诊断标志物与治疗靶点。综上所诉,在疾病发生发展的过程中lncRNA的表观遗传失调所导致的基因表达的改变已被认为是疾病发生发展的重要因素。

3.3. LncRNA与多囊肾

多囊肾病(Polycystic Kidney Disease, PKD)是常见的单基因遗传性肾脏病,其中最常见类型是常染色体显性遗传型多囊肾(Autosomal Dominant Polycystic Kidney Disease, ADPKD)。ADPKD以双肾出现大量大小不等的液性囊泡并进行性增大为主要特征,破坏肾脏结构和功能,最终导致终末期肾衰竭。需要长期透析或肾移植。ADPKD是由于基因突变导致PKD1、PKD2异常而发病。Guo等 [36] 通过Ar-raystar LncRNA芯片分析,在多囊肾患者外周血中找到多个差异表达lncRNA。有资料表明这些差异表达的lncRNA参与了细胞中多种生物学过程 [37] [38] [39] [40]。并且与PKD1或PKD2等位基因突变或失活可能存在一定关系。Aboudehen等 [38] 在Pkd1和Pkd2突变小鼠的囊性肾脏中发现了一种被称为Hoxb3os的肾脏特异性、进化保守的lncRNA。在正常肾上皮细胞中进化保守并大量表达;在囊性和前囊性肾脏中表达失调;囊肿内壁表达缺失;其人类同源基因HOXB-AS1在ADPKD患者肾脏中的表达减少。进一步研究发现Hoxb3os的下调可能是通过激活mTOR和线粒体的代谢来促进ADPKD的囊肿生长。肾脏特异性lncRNA作为遗传性肾脏疾病的治疗靶点和生物标志物值得进一步地深入研究。

3.4. LncRNA与狼疮肾炎

狼疮性肾炎(lupus nephritis, LN)是我国最常见的继发性肾小球疾病,是机体产生内源性抗体所诱导的免疫复合物疾病。LN是系统性红斑狼疮最常见且严重的并发症之一,虽然经过前期有效的药物治疗,仍有很多LN患者发展为CKD或ESRD。

某些lncRNA的表达上调或下调与LN的疾病活性相关。Huang等 [41] 研究发现,SOX2-OT在LN患者外周血单个核细胞中的表达明显降低,且与疾病活动度呈负相关,与C3、C4呈正相关,提示SOX2-OT可能作为诊断LN的潜在非侵入性生物标志物,且与疾病活动度密切相关(见图1)。研究发现 [42],与正常对照组相比lnc-DC在系统性红斑狼疮患者血浆中表达水平显著下降,LN患者的lnc-DC表达水平显著高于无肾炎的系统性红斑狼疮患者,结果提示lnc-DC可作为系统性红斑狼疮有无肾脏损害的生物标志物。其他与LN有关的lncRNA,还包括lncRNA RP11-2B6.2、linc0949和lncRNA TUG1等;然而lncRNA在LN中的作用尚不清楚。随着进一步深入研究,Zhang等发现 [43] NEAT1可以控制miR-146b介导的人肾系膜细胞(Human renal mesangial cells, HRMC)中TRAF6表达的调节。NEAT1通过靶向miR-146b促进肿瘤坏死因子(tumor necrosis factor, TNF)受体相关因子6 (TNF receptor-associated factor 6, TRAF6)的表达,以加速LPS介导的肾系膜细胞损伤。此外,TRAF6激活了HRMC中的NF-κB信号。NEAT1通过直接靶向miR-146b,促进TRAF6表达,激活狼疮性肾炎中的NF-κB信号,加速肾系膜细胞损伤。

Figure 1. Correlations between SOX2-OT expression levels in PBMCs and C3, C4 in LN patients

图1. LN患者PBMCs中SOX2-OT表达水平与C3、C4的相关性

既往的研究资料证实,补体C3、C4与狼疮性肾炎的活动性相关。活动期狼疮性肾炎与低补体血症存在一定相关性,补体水平倾向于正常或正常,肾功能越倾向于稳定,而长期低补体血症会导致肾功能损害 [41]。一些研究学者研究发现传统自身抗体在LN患者发病中起重要作用。特别是抗dsDNA抗体与靶抗原结合形成免疫复合物沉积于肾组织中,导致补体系统激活并介导肾组织损伤。许多实验已证实抗dsDNA抗体与LN有直接的联系。在自身免疫鼠模型中,有学者认为dsDNA抗体能够诱导肾小球免疫复合物的沉积并导致肾炎的发生。同时有观点认为dsDNA表达的增高与LN的活动性有关,是LN独立的危险因素 [44]。综上所诉,抗双链DNA抗体和补体成分C3、C4是传统的评价LN活动的生物标志物,但是目前仍然没有一种高特异性和高敏感性的生物标志物。此外,肾活检仍是SLE患者肾脏受累的金标准。因此,需要新的非侵袭性生物标志物来早期确诊LN。LncRNAs是最有希望的候选基因之一。

4. 结语

近年来,lncRNA在人类疾病发生发展中的主要作用及机制的研究已成为科研热点。LncRNA通过DNA甲基化、组蛋白修饰、miRNA竞争抑制、活化信号通路等分子机制参与肾脏细胞的多种病理生理过程,从而介导慢性肾脏疾病中肾脏细胞的损伤,在慢性肾脏疾病进展的过程中扮演重要角色。LncRNA作为慢性肾脏疾病发病机制、诊断标志物及治疗靶点研究的新领域,为慢性肾脏疾病的诊治提供新的思路。虽然目前研究者已部分了解lncRNA的调控机制以及它们与肾脏疾病之间的联系,但是lncRNA所介导的基因表达调控网络及其作用机制还有待进一步探索;随着全基因组测序技术和干扰技术的进步,将会发现有更多与慢性肾脏疾病相关的lncRNA,并展开更深一步、更多有意义的研究。

利益冲突

所有作者均声明不存在利益冲突。

基金项目

济宁医学院附属医院博士科研基金(编号:2020-BS-014)。

NOTES

*通讯作者。

参考文献

[1] Li, Y.H., Yang, J. and Li, C.-Y. (2021) Research Progress on the Role of Long Non-Coding RNA in Cervical Cancer. Chinese Journal of Cancer Biotherapy, 28, 398-404.
[2] Hill, N.R., Fatoba, S.T., Oke, J.L., et al. (2017) Global Prev-alence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0158765.
https://doi.org/10.1371/journal.pone.0158765
[3] Zhang, L.X., Wang, F., Wang, L., et al. (2012) Prevalence of Chronic Kidney Disease in China: A Cross-Sectional Survey. The Lancet, 379, 815-822.
https://doi.org/10.1016/S0140-6736(12)60033-6
[4] Rashid, F., Shah, A. and Shan, G. (2016) Long Non-Coding RNAs in the Cytoplasm. Genomics Proteomics Bioinformatics, 14, 73-80.
https://doi.org/10.1016/j.gpb.2016.03.005
[5] Kung, J.T.Y., Colognori, D. and Lee, J.T. (2013) Long Noncoding RNAs: Past, Present, and Future. Genetics, 193, 651-669.
https://doi.org/10.1534/genetics.112.146704
[6] Moran, V.A., Perera, R.J. and Khalil, A.M. (2012) Emerging Functional and Mechanistic Paradigms of Mammalian Long Non-Coding RNAs. Nucleic Acids Research, 40, 6391-6400.
https://doi.org/10.1093/nar/gks296
[7] Cheng, J., Kapranov, P., Drenkow, J., et al. (2005) Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution. Science, 308, 1149-1154.
https://doi.org/10.1126/science.1108625
[8] Brosnan, C.A. and Voinnet, O. (2009) The Long and the Short of Noncoding RNAs. Current Opinion in Cell Biology, 21, 416-425.
https://doi.org/10.1016/j.ceb.2009.04.001
[9] Kour, S. and Rath, P.C. (2016) Long Noncoding RNAs in Aging and Age-Related Diseases. Ageing Research Reviews, 26, 1-21.
https://doi.org/10.1016/j.arr.2015.12.001
[10] Xiao, T.F., Liu, L.H., Li, H.L., et al. (2015) Long Noncoding RNA ADINR Regulates Adipogenesis by Transcriptionally Ac-tivating C/EBPα. Stem Cell Reports, 5, 856-865.
https://doi.org/10.1016/j.stemcr.2015.09.007
[11] Ogawa, Y., Sun, B.K. and Lee, J.T. (2008) Intersection of the RNA Interference and X-Inactivation Pathways. Science, 320, 1336-1341.
https://doi.org/10.1126/science.1157676
[12] Pefanis, E., Wang, J.G., Rothschild, G., et al. (2015) RNA Exo-some-Regulated Long Non-Coding RNA Transcription Controls Super-Enhancer Activity. Cell, 161, 774-789.
https://doi.org/10.1016/j.cell.2015.04.034
[13] Paraskevopoulou, M.D., Georgakilas, G., Kostoulas, N., et al. (2013) DIANA-LncBase: Experimentally Verified and Computationally Predicted microRNA Targets on Long Non-Coding RNAs. Nucleic Acids Research, 41, D239-D245.
https://doi.org/10.1093/nar/gks1246
[14] Wang, K.C. and Chang, H.Y. (2011) Molecular Mechanisms of Long Noncoding RNAs. Molecular Cell, 43, 904-914.
https://doi.org/10.1016/j.molcel.2011.08.018
[15] Nagano, T. and Fraser, P. (2011) No-Nonsense Functions for Long Noncoding RNAs. Cell, 145, 178-181.
https://doi.org/10.1016/j.cell.2011.03.014
[16] Clark, M.B. and Mattick, J.S. (2011) Long Noncoding RNAs in Cell Biology. Seminars in Cell and Developmental Biology, 22, 366-376.
https://doi.org/10.1016/j.semcdb.2011.01.001
[17] Mattick, J.S., Amaral, P.P., Dinger, M.E., et al. (2009) RNA Regulation of Epigenetic Processes. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 31, 51-59.
https://doi.org/10.1002/bies.080099
[18] Khalil, A.M. and Rinn, J.L. (2011) RNA-Protein Interactions in Human Health and Disease. Seminars in Cell and Developmental Biology, 22, 359-365.
https://doi.org/10.1016/j.semcdb.2011.02.016
[19] Koziol, M.J. and Rinn, J.L. (2010) RNA Traffic Control of Chromatin Complexes. Current Opinion in Genetics & Development, 20, 142-148.
https://doi.org/10.1016/j.gde.2010.03.003
[20] Khalil, A.M., Guttman, M., Huarte, M., et al. (2009) Many Human Large Intergenic Noncoding RNAs Associate with Chromatin-Modifying Complexes and Affect Gene Expression. Pro-ceedings of the National Academy of Sciences of the United States of America, 106, 11667-11672.
https://doi.org/10.1073/pnas.0904715106
[21] Mitchell, G., Ido, A., Manuel, G., et al. (2009) Chromatin Signature Reveals over a Thousand Highly Conserved Large Non-Coding RNAs in Mammals. Nature, 458, 223-227.
https://doi.org/10.1038/nature07672
[22] Huarte, M., Guttman, M., Feldser, D., et al. (2010) A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response. Cell, 142, 409-419.
https://doi.org/10.1016/j.cell.2010.06.040
[23] Hung, T., Wang, Y.L., Lin, M.F., et al. (2011) Extensive and Coor-dinated Transcription of Noncoding RNAs within Cell-Cycle Promoters. Nature Genetics, 43, 621-629.
https://doi.org/10.1038/ng.848
[24] Kino, T., Hurt, D.E., Ichijo, T., et al. (2010) Noncoding RNA Gas5 Is a Growth Arrest- and Starvation-Associated Repressor of the Glucocorticoid Receptor. Science Signaling, 3, ra8.
https://doi.org/10.1126/scisignal.2000568
[25] Millis, M.P., Bowen, D., Kingsley, C., et al. (2007) Variants in the Plasmacytoma Variant Translocation Gene (PVT1) Are Associated with End-Stage Renal Disease Attributed to Type 1 Diabetes. Diabetes, 56, 3027-3032.
https://doi.org/10.2337/db07-0675
[26] Hanson, R.L., Craig, D.W., Millis, M.P., et al. (2007) Identification of PVT1 as a Candidate Gene for End-Stage Renal Disease in Type 2 Diabetes Using a Pooling-Based Genome-Wide Sin-gle Nucleotide Polymorphism Association Study. Diabetes, 56, 975-983.
https://doi.org/10.2337/db06-1072
[27] Maestroni, S. and Zerbini, G. (2018) Glomerular Endothelial Cells versus Podocytes as the Cellular Target in Diabetic Nephropathy. Acta Diabetologica, 55, 1105-1111.
https://doi.org/10.1007/s00592-018-1211-2
[28] Ye, F., Xiao, F. and Song, C.X. (2020) Long Non-Coding RNA PVT1 Regulates Podocyte Injury and Apoptosis in Diabetic Nephropathy. Chinese Journal of Integrated Traditional and Western Medicine Nephropathy, 21, 608-610.
[29] Zhong, W., Zeng, J.E., Xue, J.L., et al. (2020) Knockdown of lncRNA PVT1 Alleviates High Glucose-Induced Proliferation and Fibrosis in Human Mesangial Cells by miR-23b-3p/WT1 Axis. Diabetology & Metabolic Syndrome, 12, Article No. 33.
https://doi.org/10.1186/s13098-020-00539-x
[30] Zang, X.-J., Li, L., Du, X., Yang, B. and Mei, C.-L. (2019) LncRNA TUG1 Inhibits the Proliferation and Fibrosis of Mesangial Cells in Diabetic Nephropathy via Inhibiting the PI3K/AKT Pathway. European Review for Medical and Pharmacological Sciences, 23, 7519-7525.
[31] Duan, L.-J., Ding, M., Hou, L.-J., et al. (2017) Long Noncoding RNA TUG1 Alleviates Extracellular Matrix Accumulation via Me-diating microRNA-377 Targeting of PPARγ in Diabetic Nephropathy. Biochemical and Biophysical Research Commu-nications, 484, 598-604.
https://doi.org/10.1016/j.bbrc.2017.01.145
[32] Fan, X.B., Zhang, P.J., Wang, X.M., Wu, B., Wang, J. and Wu, Y.L. (2019) Expression and Clinical Significance of Serum LncRNA TUG1 in Patients with Early Diabetic Nephropathy. Chinese Journal of Integrated Traditional and Western Medicine Nephropathy, 22, 982-984.
[33] Feng, X.Z., Zhao, J., Ding, J.J., et al. (2019) LncRNA Blnc1 Expression and Its Effect on Renal Fibrosis in Diabetic Nephropathy. American Journal of Translational Research, 11, 5664-5672.
[34] Huang, Y.-S., Hsieh, H.-Y., Shih, H.-M., et al. (2014) Urinary Xist Is a Potential Biomarker for Membranous Nephropathy. Biochemical and Biophysical Research Communications, 452, 415-421.
https://doi.org/10.1016/j.bbrc.2014.08.077
[35] Jin, L.W., Pan, M., Ye, H.Y., et al. (2019) Down-Regulation of the Long Non-Coding RNA XIST Ameliorates Podocyte Apoptosis in Membranous Nephropathy via the miR-217-TLR4 Pathway. Experimental Physiology, 104, 220-230.
[36] Guo, S.W., Wei, S.C., Luo, J.W., et al. (2018) LncRNA Ex-pression in Peripheral Blood of Autosomal Dominant Polycystic Kidney Disease. Chinese Journal of Integrated Tradi-tional and Western Medicine Nephropathy, 19, 242-247+4.
[37] Iyer, M.K., Niknafs, Y.S., Malik, R., et al. (2015) The Landscape of Long Noncoding RNAs in the Human Transcriptome. Nature Genetics, 47, 199-208.
https://doi.org/10.1038/ng.3192
[38] Karam, A., Shayan, F., Mohammed, K., et al. (2018) Long Noncoding RNA Hoxb3os Is Dysregulated in Autosomal Dominant Polycystic Kidney Disease and Regulates mTOR Signaling. Journal of Biological Chemistry, 293, 9388-9398.
https://doi.org/10.1074/jbc.RA118.001723
[39] Li, Y.C. and Li, Y. (2020) Research Progress of Randall Plaque of Renal Calculus. Journal of Central South University, 45, 435-439.
[40] Hertz, J.M., Juncker, I., Persson, U., et al. (2001) Detection of Mutations in the COL4A5 Gene by SSCP in X-Linked Alport Syndrome. Human Mutation, 18, 141-148.
https://doi.org/10.1002/humu.1163
[41] Huang, D. (2020) Expression of Long Non-Coding RNA SOX2-OT in Peripheral Blood Mononuclear Cells of Patients with Lupus Nephritis and Its Significance. Youjiang Medical University For Nationalities, Baise.
[42] Wu, G.-C., Li, J., Leng, R.-X., et al. (2017) Identification of Long Non-Coding RNAs GAS5, linc0597 and lnc-DC in Plasma as Novel Bi-omarkers for Systemic Lupus Erythematosus. Oncotarget, 8, 23650-23663.
https://doi.org/10.18632/oncotarget.15569
[43] Zhang, L.H., Xiao, B., Zhong, M., et al. (2020) LncRNA NEAT1 Accelerates Renal Mesangial Cell Injury via Modulating the miR-146b/TRAF6/NF-κB Axis in Lupus Nephritis. Cell and Tissue Research, 382, 627-638.
https://doi.org/10.1007/s00441-020-03248-z
[44] Guo, H., Li, R.S. and Luo, J. (2009) Expression of An-ti-Nucleosome Antibody and Anti-Double-Stranded DNA in Serum of Lupus Nephritis and Its Clinical Significance. Clinical Medicine Practice, 18, 814-816.