糖尿病肾病中细胞焦亡致病途径的研究进展
Advances in the Pathogenesis of Pyroptosis in Diabetic Nephropathy
DOI: 10.12677/ACM.2022.127962, PDF, HTML, XML, 下载: 294  浏览: 460 
作者: 李佳武, 巴应贵:青海大学附属医院,青海 西宁
关键词: 糖尿病肾病炎症细胞焦亡细胞焦亡途径Diabetic Nephropathy Inflammation Pyroptosis Pyroptosis Pathway
摘要: 糖尿病肾病是影响糖尿病患者预后最主要的微血管并发症之一,同时是发达国家透析患者的首要原发病,我国透析患者的第二大原发病。细胞焦亡作为一种细胞程序性死亡,由炎症小体所介导,通过激活炎症反应来应对病理损伤,然而过度的焦亡会引起过强的炎症反应会导致各种疾病。已有大量研究证实了细胞焦亡在糖尿病肾病发生发展中起到了关键性作用,本文就细胞焦亡不同途径对糖尿病肾病发生发展起到的作用展开综述。
Abstract: Diabetic nephropathy is one of the most important microvascular complications affecting the prog-nosis of diabetic patients, and is the primary disease of dialysis patients in developed countries, and the second major primary disease of dialysis patients in China. Pyroptosis, as a programmed cell death, is mediated by inflammosomes and can respond to pathological injury by activating inflam-matory response. However, excessive pyroptosis can cause excessive inflammatory response and lead to various diseases. A large number of studies have confirmed that cell pyroptosis plays a key role in the occurrence and development of diabetic nephropathy. This paper reviews the roles of different pathways of cell pyroptosis in the occurrence and development of diabetic nephropathy.
文章引用:李佳武, 巴应贵. 糖尿病肾病中细胞焦亡致病途径的研究进展[J]. 临床医学进展, 2022, 12(7): 6671-6676. https://doi.org/10.12677/ACM.2022.127962

1. 细胞焦亡与糖尿病肾病

根据国际糖尿病联盟第9版的糖尿病地图数据显示,2020年全世界约有十亿人罹患糖尿病,并且这个数量将于2030年时提高25%,于2045年时提高51% [1],而其各种各样急慢性的并发症严重影响着患者的生活质量,已经成为各个国家医疗系统的沉重负担。糖尿病肾病作为糖尿病最常见的微血管并发症,以肾小球肥大、肾脏基底膜增厚、K-W结节形成、肾小球纤维化及肾小球高滤过等特征为主要病理变化,临床主要表现为持续性的微量蛋白尿、水肿及高血压 [2]。既往的研究认为其发病机制主要是在遗传因素的背景下,血流动力学的改变、糖脂代谢异常、氧化应激与微炎症等共同作用导致肾脏损害。近年的研究表明细胞内某些特殊的模式识别受体(pattern recognitiong receptors, PRRS)可以识别如脂肪酸、高糖以及一些其它的损伤相关分子,从而使细胞发生焦亡(pyroptosis),进而导致肾脏功能的减退甚至衰竭 [3]。

细胞主动死亡包括凋亡(apoptosis)、焦亡、坏死性凋亡(necroptosis)三种主要形式。2001年由Cookson等人首次在巨噬细胞中描述了这种依赖含半胱氨酸的天冬氨酸水解酶-1 (caspase-1)的细胞死亡形式,并将其命名为“细胞焦亡” [4]。其由相应上游信号发生自剪切作用而激活caspase进而切割Gasdermins (GSDMs)效应蛋白,使得Gasdermins效应蛋白暴露其具有在膜上打孔作用的N端结构域,最终导致细胞膜上孔隙形成、细胞逐渐溶解破裂、细胞内容物及大量炎症因子释放 [5]。目前的研究根据不同的介导因子将细胞焦亡的发生分为三种途径:经典炎性小体途径、非经典炎性小体途径、caspase-3介导的炎性小体途径。已经在人类糖尿病肾病的肾小球内皮细胞、肾脏足细胞、肾小管上皮细胞中观察到了细胞焦亡的发生。该综述意在通过介绍三种焦亡发生途径来揭示糖尿病肾病发展过程中与焦亡相关的病理生理机制,并为开发更多治疗糖尿病肾病的靶向药物提供新的发展思路。

2. 细胞焦亡三大途径在糖尿病肾病中的作用机制

2.1. 经典炎性小体途径

经典炎性小体途径是由上游信号活化的caspase-1切割GasderminD (GSDMD),从而导致细胞发生焦亡,招募并活化caspase-1的上游信号复合体为炎性小体(inflammasomes),常常由炎性小体受体分子(sensor molecule)、接头蛋白ASC (the adaptor protein)和caspase-1前体(pro-caspaae1)组成。常见的炎性小体受体分子有NLRP3、NLRP1b、NLRP6、NLPC4、AIM2以及Pyrin,它们可以识别各种各样的刺激信号 [6]。NLRP3是NLR家族中与细胞焦亡发生关系最密切的炎性小体识别受体,目前的研究已经证实了由NLPR3介导的细胞焦亡在糖尿病肾病疾病进展中的关键作用,糖尿病肾病早期便发生了NLRP3/capase-1/IL-1β信号轴激活所介导的细胞焦亡,在NLRP3基因被敲除的糖尿病肾病小鼠模型中,caspase-1以及IL-1β的分泌受到了显著抑制并且肾脏功能得到了明显的保护 [7]。

糖尿病病理条件下的肾脏往往伴随着氧化应激的加重,并在高糖状态下导致糖基化终产物(advanced glycation end product, AGE)和蛋白激酶C的过量产生以及线粒体的损伤,这些因素通过上调硫氧还原蛋白互作蛋白(thioredoxin-interactingprotein, TXNIP)、p38MAPK信号通路和核因子-Κb (nuclear factor kappa-B, NF-κB)信号通路促进线粒体活性氧(ROS)的产生,ROS的产生激活了NLRP3炎性小体,从而导致了糖尿病肾病细胞焦亡的发生 [8] [9]。安石榴甙(punicalagin)作为一种抗氧化剂改善了糖尿病肾病造模大鼠的肾功能,并降低了NLRP3、caspase-1、GSDMD的表达 [10]。N-乙酰-D-甘露糖胺(ManNAc)是人体正常代谢过程中唾液酸合成的前体物质,在最新的一项研究中发现补充ManNAc可以通过抑制DN小鼠的线粒体损伤及ROS/NLRP3信号通路进而减轻足细胞焦亡 [11]。

某些长链非编码RNA (lncRNA)和微型RNA (miRNA)同样可以在糖尿病肾病中作为上游信号干预NLRP3的激活进而参与焦亡的调控,如生长抑制特异性基因5 (GAS5)、KCNQ1OT1基因、转移相关肺腺癌转录物1基因(MALAT1)、miR-23等 [12]。KCNQ1OT1基因属于长链非编码RNA的一种,既往的一项体内研究发现沉默KCNQ1OT1可以缓解细胞焦亡从而改善C57BL/6小鼠的心脏功能和纤维化,体外实验同样证明将其沉默可以减少糖尿病心肌细胞中caspase-1的表达从而抑制糖尿病心肌病的发生 [13],C5b-9作为补体激活后形成的末端通路产物与血浆中的S蛋白结合形成sC5b-9可以激活NLRP3从而导致足细胞发生焦亡 [14],最新的一项体外研究发现sC5b-9正是通过上调KCNQ1OT1的表达从而导致足细胞发生焦亡,沉默KCNQ1OT1的表达可以抵消sC5b-9所介导的足细胞焦亡 [15]。国内一项研究发现阿托伐他汀钙可以通过MALAT1/miR-200c/NRF2调控轴缓解高糖环境下的大鼠足细胞焦亡,从而产生肾脏保护作用 [16]。

综上,目前的研究认为NLRP3/capase-1/IL-1β信号轴在糖尿病肾病发生发展的过程中通过介导各种上游损伤信号使焦亡发生,进而使肾脏功能减退。在链脲佐菌素造模的糖尿病大鼠实验中发现降尿酸药物(如别嘌呤醇及槲皮素)可以通过阻止NLRP3的激活来起到肾脏保护作用 [17],而在目前临床应用于降血糖的钠–葡萄糖共转运蛋白2抑制剂(SGLT-2i)和二肽激肽酶-4抑制剂(DPP-4i)同样可以通过上述方式来起到肾脏保护作用 [18]。肌肽是由β-丙氨酸和L-组氨酸组成的二肽,在体内及体外实验中被证明可以靶向作用于caspase-1来缓解糖肾所引起的足细胞损伤 [19]。

2.2. 非经典炎性小体途径

非经典途径是2011年kayagaki等人首次发现并提出的一种不同于经典途径的焦亡方式 [20],caspase-4/5 (人类)和capase-11 (鼠类)可以直接识别细胞质中的革兰染色阴性细胞壁的主要成分脂多糖(Lipopolysaccharide, LPS)并受到激其活,之后直接切割GSDMD使得N端暴露从而导致细胞焦亡发生 [21]。由caspase-11所激活的GSDMD同样可以逆向的促进NLRP3所介导的caspase-1成熟,以及IL-1β的分泌 [22]。值得注意的是,caspase-11同样可以切割泛连接蛋白-1 (pannexin-11)导致细胞内钾离子外流以及ATP的释放,钾离子外流可以调节NLRP3的激活从而导致细胞发生焦亡,ATP释放可以导致ATP依赖门控通道P2X7受体的激活进而下游的NLRP3从而使细胞发生焦亡 [23]。因此NLRP3在非经典途径的细胞焦亡方面同样起到了一定作用。有实验表明糖尿病小鼠中的caspase-11以及GSDMD的表达均有上升,该实验同样观察到在高糖刺激下体外培养的人和小鼠足细胞中均发现了caspase-4/11和GSDMD表达的增加,而抑制GSDMD和caspase-11的表达可以显著的改善糖尿病小鼠的肾功能恶化以及肾脏足细胞形态变化,该研究证实了非经典炎性小体途径同样在糖尿病肾病的足细胞丢失中起到了作用,但具体机制仍需要进一步的研究与探索 [24]。Toll样受体4 (Toll-like receptors4, TLR4)在激活机体免疫应答中起到了重要作用,其可以通过下游的MyD88进一步激活NF-κB从而导致细胞因子及ROS释放 [25],有研究表明TLR4可以导致caspase-1的激活以及caspase-11的表达的增加,进而导致细胞焦亡发生 [26]。有研究表明糖尿病肾病患者肾小管的损伤与TLR4和GSDMD的表达相关,在体内以及体外实验中高糖可以诱导TLR4的表达增加、GSDMD的切割以及IL-1β和IL-18的释放,而使用TLR4抑制剂(如TAK-242)和NF-κB抑制剂(如小白菊内酯)可以拮抗这些效应 [27]。因此TLR4和NF-κB抑制剂同样可以作为未来糖尿病肾病治疗的研究靶点。

2.3. caspase-3介导的炎性小体途径

既往的研究认为capase-3与细胞凋亡的发生关系密切,然而最近有研究表明在有GSDME表达的正常人细胞中capase-3通过GSDME使细胞发生焦亡而非凋亡,同时在没有GSDME表达的细胞中只会发生细胞凋亡 [28]。2017年首次有研究表明某些化疗药物(如依托泊苷、顺铂等)可以特异性切割GSDME暴露其N端结构域,使细胞膜孔隙形成并最终发生细胞焦亡 [29]。一项关于顺铂导致GSDME介导的细胞焦亡在小鼠急性肾损伤发病机制中的作用研究表明:GSDME-/-的小鼠肾损伤及炎症较轻,在体外人肾小管上皮细胞(renal tubularepithelial cells, TECs)中同样观察到GSDME促进了细胞焦亡发生,而抑制caspase-3同样可以阻断GSDME的激活,从而改善顺铂诱导的细胞焦亡以及肾功能减退 [30]。在与糖尿病肾病相关方面,Wen等人发现Z-DEVD-FMK可以通抑制GSDME来缓解高糖环境下的肾小管上皮细胞的继发性死亡来降低糖尿病小鼠的蛋白尿水平、减轻肾小管间质纤维化,从而起到改善肾功能的作用 [31]。因此针对caspase-3/GSDME引起的细胞焦亡可能是未来治疗糖尿病肾病的一个新的研究方向(如前述的Z-DEVD-FMK),由GSDME衍生的caspase-3抑制剂Ac-DMPD/DMLD-CMK可以显著抑制caspase-3激活并降低GSDME的表达水平,目前的研究认为该抑制剂可以通过阻断肝细胞和巨噬细胞中的细胞凋亡和焦亡来预防急性肝功能衰竭 [32],而其是否能在糖尿病肾病中同样通过该抑制效应起到保护肾脏细胞的作用需要进一步的研究。

3. 展望

糖尿病肾病的发生及发展机制多种多样,目前关于哪种机制起到决定性作用尚无定论,细胞焦亡作为一种细胞程序性死亡,通过活化不同的caspase而切割Gasdermins使细胞膜成孔并释放细胞内容物及不同的炎症介质,从而加重机体组织的损伤,既往的研究认为焦亡在痛风、阿尔兹海默症、HIV以及一些免疫系统疾病中发挥了重要作用,本文介绍了三种细胞焦亡途径与糖尿病肾病联系的研究进展,以及一些目前临床应用或有应用前景的抗焦亡药物,然而目前焦亡在糖尿病肾病进展中的机制仍不完善,因此进一步揭示糖尿病肾病发病过程中焦亡所起的作用对完善糖尿病肾病发病机制及拓展更多治疗药物至关重要。

参考文献

[1] Saeedi, P., Petersohn, I., Salpea, P., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Pro-jections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Re-search and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[2] Yang, Z., Feng, L., Huang, Y. and Xia, N. (2019) A Differential Diagnosis Model for Diabetic Nephropathy and Non-Diabetic Renal Disease in Patients with Type 2 Diabetes Complicated with Chronic Kidney Disease. Diabetes, Metabolic Syn-drome and Obesity: Targets and Therapy, 12, 1963-1972.
https://doi.org/10.2147/DMSO.S223144
[3] Hutton, H.L., Ooi, J.D., Holdsworth, S.R., et al. (2016) The NLRP3 Inflammasome in Kidney Disease and Autoimmunity. Nephrology, 21, 736-744.
https://doi.org/10.1111/nep.12785
[4] Cookson, B.T. and Brennan, M.A. (2001) Pro-Inflammatory Programmed Cell Death. Trends in Microbiology, 9, 113-114.
https://doi.org/10.1016/S0966-842X(00)01936-3
[5] Wang, K., Sun, Q., Zhong, X., et al. (2020) Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell, 180, 941-955.E20.
https://doi.org/10.1016/j.cell.2020.02.002
[6] Komada, T. and Muruve, D.A. (2019) The Role of Inflammasomes in Kidney Disease. Nature Reviews Nephrology, 15, 501-520.
https://doi.org/10.1038/s41581-019-0158-z
[7] Wu, M., Han, W., Song, S., et al. (2018) NLRP3 Deficiency Ameliorates Renal Inflammation and Fibrosis in Diabetic Mice. Molecular and Cellular Endocrinology, 478, 115-125.
https://doi.org/10.1016/j.mce.2018.08.002
[8] Gu, C.M., Liu, S.M., Wang, H.Y. and Dou, H.C. (2019) Role of the Thioredoxin Interacting Protein in Diabetic Nephropathy and the Mechanism of Regulating NOD-Like Receptor Protein 3 Inflammatory Corpuscle. International Journal of Molecular Medicine, 43, 2440-2450.
[9] Li, W., Wu, Z., Ma, Q., et al. (2014) Hyperglycemia Regulates TXNIP/TRX/ROS Axis via p38 MAPK and ERK Pathways in Pancreatic Cancer. Current Cancer Drug Targets, 14, 348-356.
https://doi.org/10.2174/1568009614666140331231658
[10] An, X., Zhang, Y., Cao, Y., et al. (2020) Punicalagin Protects Diabetic Nephropathy by Inhibiting Pyroptosis Based on TXNIP/NLRP3 Pathway. Nutrients, 12, Article No. 1516.
https://doi.org/10.3390/nu12051516
[11] Gao, Y., Ma, Y., Xie, D. and Jiang, H. (2022) ManNAc Protects against Podocyte Pyroptosis via Inhibiting Mitochondrial Damage and ROS/NLRP3 Signaling Pathway in Diabetic Kid-ney Injury Model. International Immunopharmacology, 107, Article ID: 108711.
https://doi.org/10.1016/j.intimp.2022.108711
[12] Zuo, Y., Chen, L., Gu, H., He, X., Ye, Z., Wang, Z., Shao, Q. and Xue, C. (2021) GSDMD-Mediated Pyroptosis: A Critical Mechanism of Diabetic Nephropathy. Expert Reviews in Molecular Medicine, 23, E23.
https://doi.org/10.1017/erm.2021.27
[13] Yang, F., Qin, Y., Lv, J., et al. (2018) Silencing Long Non-Coding RNA Kcnq1ot1 Alleviates Pyroptosis and Fibrosis in Diabetic Cardiomyopathy. Cell Death & Disease, 9, Article No. 1000.
https://doi.org/10.1038/s41419-018-1029-4
[14] Zheng, J., Zhang, S., Chen, H., et al. (2020) Pro-tosappanin-A and Oleanolic Acid Protect Injured Podocytes from Apoptosis through Inhibition of AKT-mTOR Signaling. Cell Biology International, 44, 189-199.
https://doi.org/10.1002/cbin.11218
[15] Zhang, C., Gong, Y., Li, N., et al. (2020) Long Non-Coding RNA Kcnq1ot1 Promotes sC5b-9-Induced Podocyte Pyroptosis by Inhibiting miR-486a-3p and Upregulating NLRP3. Ameri-can Journal of Physiology-Cell Physiology, 320, C355-C364.
https://doi.org/10.1152/ajpcell.00403.2020
[16] Zuo, Y., Chen, L., He, X., et al. (2021) Atorvastatin Regulates MALAT1/miR-200c/NRF2 Activity to Protect against Podo-cyte Pyroptosis Induced by High Glucose. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 1631-1645.
https://doi.org/10.2147/DMSO.S298950
[17] Wang, C., Pan, Y., Zhang, Q.Y., et al. (2012) Quercetin and Allopurinol Ameliorate Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activa-tion and Lipid Accumulation. PLOS ONE, 7, e38285.
https://doi.org/10.1371/journal.pone.0038285
[18] Birnbaum, Y., Bajaj, M., Yang, H.C. and Ye, Y. (2018) Com-bined SGLT2 and DPP4 Inhibition Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Devel-opment of Diabetic Nephropathy in Mice with Type 2 Diabetes. Cardiovascular Drugs and Therapy, 32, 135-145.
https://doi.org/10.1007/s10557-018-6778-x
[19] Zhu, W., Li, Y.Y., Zeng, H.X., Liu, X.Q., Sun, Y.T., Jiang, L., Xia, L.L. and Wu, Y.G. (2021) Carnosine Alleviates Podocyte Injury in Diabeticnephropathy by Targeting Caspa-se-1-Mediated Pyroptosis. International Immunopharmacology, 101, Article ID: 108236.
https://doi.org/10.1016/j.intimp.2021.108236
[20] Bergsbaken, T., Fink, S.L. and Cookson, B.T. (2009) Pyropto-sis: Host Cell Death and Inflammation. Nature Reviews Microbiology, 7, 99-109.
https://doi.org/10.1038/nrmicro2070
[21] Shi, J., Zhao, Y., Wang, Y., et al. (2014) Inflammatory Caspases Are Innate Immune Receptors for Intracellular LPS. Nature, 514, 187-192.
https://doi.org/10.1038/nature13683
[22] Kayagaki, N., Stowe, I.B., Lee, B.L., O’Rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., Phung, Q.T., Liu, P.S., Lill, J.R., Li, H., Wu, J., Kummerfeld, S., Zhang, J., Lee, W.P., Snipas, S.J., Salvesen, G.S., Morris, L.X., Fitzgerald, L., Zhang, Y., Bertram, E.M., Goodnow, C.C. and Dixit, V.M. (2015) Caspase-11 Cleaves Gasdermin D for Non-Canonical Inflammasome Signalling. Nature, 526, 666-671.
https://doi.org/10.1038/nature15541
[23] Yang, D., He, Y., MuOz-Planillo, R., et al. (2015) Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock. Immunity, 43, 923-932.
https://doi.org/10.1016/j.immuni.2015.10.009
[24] Cheng, Q., Pan, J., Zhou, Z.L., et al. (2021) Caspase-11/4 and Gasdermin D-Mediated Pyroptosis Contributes to Podocyte Injury in Mouse Diabetic Nephropathy. Acta Pharmacolog-ica Sinica, 42, 954-963.
https://doi.org/10.1038/s41401-020-00525-z
[25] Xie, C., Wu, W., Tang, A., Luo, N. and Tan, Y. (2019) lncRNA GAS5/miR-452-5p Reduces Oxidative Stress and Pyroptosis of High-Glucose-Stimulated Renal Tubular Cells. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 2609-2617.
https://doi.org/10.2147/DMSO.S228654
[26] Napier, B.A., Brubaker, S.W., Sweeney, T.E., et al. (2016) Com-plement Pathway Amplifies Caspase-11-Dependent Cell Death and Endotoxin-Induced Sepsis Severity. Journal of Ex-perimental Medicine, 213, 2365-2382.
https://doi.org/10.1084/jem.20160027
[27] Ma, J., Chadban, S.J., Zhao, C.Y., et al. (2014) TLR4 Activation Pro-motes Podocyte Injury and Interstitial Fibrosis in Diabetic Nephropathy. PLOS ONE, 9, e97985.
https://doi.org/10.1371/journal.pone.0097985
[28] Wang, Y., Gao, W., Shi, X., et al. (2017) Chemotherapy Drugs Induce Pyroptosis through Caspase-3 Cleavage of a Gasdermin. Nature, 547, 99-103.
https://doi.org/10.1038/nature22393
[29] Rogers, C., Fernandes-Alnemri, T., Mayes, L., et al. (2017) Cleavage of DFNA5 by Caspase-3 during Apoptosis Mediates Progression to Secondary Necrotic/Pyroptotic Cell Death. Nature Communications, 8, Article No. 14128.
https://doi.org/10.1038/ncomms14128
[30] Xia, W., Li, Y., Wu, M., et al. (2021) Gasdermin E Deficiency Atten-uates Acute Kidney Injury by Inhibiting Pyroptosis and Inflammation. Cell Death & Disease, 12, Article No. 139.
https://doi.org/10.1038/s41419-021-03431-2
[31] Wen, S., Wang, Z.H., Zhang, C.X., et al. (2020) Caspase-3 Promotes Diabetic Kidney Disease through Gasdermin E- Mediated Progression to Secondary Necrosis during Apopto-sis. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 313-323.
https://doi.org/10.2147/DMSO.S242136
[32] Xu, W.F., Zhang, Q., Ding, C.J., et al. (2021) Gasdermin E-Derived Caspase-3 Inhibitors Effectively Protect Mice from Acute Hepatic Failure. Acta Pharmacologica Sinica, 42, 68-76.
https://doi.org/10.1038/s41401-020-0434-2