巨噬细胞极化调控炎症反应的研究进展
Research Progress in the Regulation of Inflammatory Response by Macrophage Polarization
DOI: 10.12677/ACM.2022.127980, PDF, HTML, XML, 下载: 383  浏览: 1,373 
作者: 彭毛东智:青海大学,青海 西宁
关键词: 巨噬细胞极化调控miRNAMacrophage Polarization Control miRNA
摘要: 巨噬细胞由单核吞噬细胞分化而来,在不同的组织部位可以分化成不同的表型、表现出不同的功能,在炎症发展早期,巨噬细胞通过经典途径分化成M1型,从而分泌各种促炎细胞因子,发挥创面抗感染的作用,炎症后期分化成M2型,分泌多种抗炎因子,控制局部炎症,从而影响创面愈合;因此,通过影响不同病理阶段巨噬细胞极化方向,从而控制炎症反应,达到治疗目的成为新的研究热点。
Abstract: Macrophages are derived from mononuclear phagocytes, can be divided into different phenotypesin in different tissue and show different functions. In the early development of inflammation, macro-phages through classic way to differentiate into M1, and secrete a variety of proinflammatory cyto-kines, play to the role of the resistance to infection, and in the later development of inflammation it differentiates into M2 type, secretes a variety of anti-inflammatory factor to control local inflamma-tion, thus affecting wound healing. Therefore, by influencing the polarization direction of macro-phages at different pathological stages, so as to control the inflammatory response and achieve the purpose of treatment has become a new research hotspot.
文章引用:彭毛东智. 巨噬细胞极化调控炎症反应的研究进展[J]. 临床医学进展, 2022, 12(7): 6796-6803. https://doi.org/10.12677/ACM.2022.127980

1. 引言

无论在人体内或体表的各种病理过程中,炎症反应过程是最为普遍的一种。无论是外界病原体的侵入导致局部组织、器官启动免疫系统引起炎症反应,或烧伤、电击、锐器等损伤导致急、慢性创面后细菌侵入。移植术后器官、异物的不耐受,无菌性的炎症反应等,均对局部愈合甚至全身正常生理状态造成不同的影响,尤其在严重烧伤后,过度活化的巨噬细胞大量释放炎性细胞因子,在炎症反应中起始动和调控作用,同时激活中性粒细胞,造成组织损伤和感染易感性增加,这与感染并发症和脏器功能衰竭有密切联系。因此,通过调节巨噬细胞极化可以有效的控制、减轻炎症反应,从而促进正常生理状态及组织微环境的恢复、减轻局部排异反应,加速创面愈合,最终帮助患者早日恢复健康。

2. 巨噬细胞的来源

对于炎症部位巨噬细胞的来源一直存在争议,部分学者认为是血液中的单核细胞在炎症区域外渗,有些则认为是通过局部增殖。组织定居巨噬细胞(Tissue-resident macrophages, TRM)是人体内固有免疫细胞的重要成分,巨噬细胞在出生前就定居于各器官和组织,如肝脏中的库普弗细胞,神经组织中的小胶质细胞等,其主要通过局部增殖来进行自我更新和稳态维持 [1] [2] [3] [4]。最新研究发现,组织中的巨噬细胞龛在没有受到病原体刺激时呈充盈状态,单核细胞不会向TRM分化,巨噬细胞依靠增殖完成自我更新。而发生炎症或者巨噬细胞被消耗的情况下,骨髓来源的单核细胞会被募集至各组织器官形成TRM [5]。因此,当组织出现炎症或巨噬细胞缺如的情况下,以上2种来源的TRM共同存在于受损组织中 [6]。

3. 巨噬细胞的功能

1) 巨噬细胞是机体固有免疫的重要组成部分,它能够吞噬、杀灭和清除外源性病原微生物、体内损伤、衰老以及凋亡的细胞 [7]。2) 作为抗原呈递细胞并分泌各种细胞因子如肿瘤坏死因子α (tumor necrosis factor-α, TNF-α)、白细胞介素(interleukin, IL)、γ干扰素(interferon-γ, IFN-γ)、氧自由基和一氧化氮(NO)等参与免疫调节,介导特异性免疫应答。3) 参与创面愈合,当皮肤组织受到损伤时通过特异或非特异性免疫反应发挥抗感染、促进组织修复的作用。M1型巨噬细胞与M2型巨噬细胞比例失衡可以当作是肥胖、动脉粥样硬化,糖尿病足等许多疾病的病理标志,且巨噬细胞的分化类型与肿瘤疾病的预测、转移、预后也有一定联系 [8]。

4. 巨噬细胞的极化

巨噬细胞极化是指成熟巨噬细胞在特殊因素诱导下出现表型和功能分化。主要分为M1型即经典激活的巨噬细胞(classicaly activated macrophage)和M2型即选择性激活的巨噬细胞(alternatively activated macrophage) [8] [9]。M1型巨噬细胞细菌脂多糖(lipopolysaccharides, LPS)或1型辅助T (T helper type 1, Th1)细胞因子IFN-γ及TNF-α识别诱导产生 [10]。M2型巨噬细胞由Th2细胞因子白介素-4/10/13等诱导产生 [11]。

4.1. M1型巨噬细胞功能

血液中的单核细胞通过微出血渗入创面 [12],之后分化为巨噬细胞。初期绝大多数巨噬细胞被激活为M1型,释放IL-1、IL-6、IL-12、TNF-α等促炎性细胞因子,趋化中性粒细胞、巨噬细胞、自然杀伤细胞(natuarl killer cell)等免疫细胞至创面,调节细胞免疫应答促进创面愈合 [13]。然而,伤后巨噬细胞释放大量TNF是发生全身性炎症反应的重要原因,IL-1虽然可以增强免疫应答的功能,但也能引起急性期反应和组织损伤。M1型巨噬细胞释放活性氧(reactive oxygen species, ROS)促进一氧化氮(nitric oxide, NO)的合成,加重组织损伤 [14] [15] [16] [17] [18]。因此,炎症早期,M1型巨噬细胞发挥清除坏死组织、凋亡细胞以及抗原提呈、抗感染等作用保护机体,但炎症后期,这种促炎作用也是影响创面愈合的关键因素。

4.2. M2型巨噬细胞功能

炎症反应后期,M1型巨噬细胞诱导为M2型。M2型巨噬细胞通过分泌IL-4、IL-10和转化生长因子β (Transforming growth factor, TGF-β)等抗炎介质抵抗炎症反应,促进组织修复。白介素受体拮抗剂(IL-1ra)可抑制白介素-1的促炎作用;TGF-β可以通过诱导调节性T细胞(Regulatory cells, Treg)的分化发挥抑制炎性反应的作用;IL-10可以直接阻碍抗原提呈细胞的抗原信息传递,还能通过抑制合成白介素-12/23影响Th1和Th17细胞的分化 [19]。巨噬细胞由促炎向抗炎转变的极化现象是创面愈合由炎症期向增殖期转换的标志 [20]。因此,M2型巨噬细胞可以减轻局部炎症反应,改善局部组织微环境,促进创面修复。

M2型巨噬分类

M2型巨噬细胞可分M2a、M2b、M2c、M2d等亚型,M2a由IL-4和IL-13诱导极化 [21],参与炎症反应、过敏反应、杀灭寄生虫等。M2b由免疫球蛋白复合物结合Toll样受体(Toll-like receptors, TLR)激动剂诱导,参与免疫调控 [22],M2c由IL-10、TGF-β以及糖皮质激素诱导,分泌抗炎细胞因子,参与组织修复和重建 [21] [22]。M2d由TLR与腺苷A2a受体激动剂协同诱导,可分泌血管内皮生长因子A (Vascular Endothelial Growth Factor A, VEGF-A)和TGF-β参与组织重建和发挥免疫抑制作用 [21],由此可见,如果在炎症反应后期,人为干预巨噬细胞分化成M2型巨噬细胞,则可以对抑制局部炎症反应,减少机能损耗和促进创面愈合有积极作用。

5. 巨噬细胞极化的调控通路

巨噬细胞极化的相关通路包括:非受体型酪氨酸蛋白激酶/信号转导及转录激活因子(janus kinase/signal transducer and activator of transcription JAK/STAT)、干扰素调节因(interferon regulatory factor, IRF)、Notch、磷脂酰肌醇-3-激酶(phosphatidylinositol-3-kinase, PI3K)/蛋白激酶B (protein kinase B, Akt)及JNK信号通路等(如图1所示)。

5.1. JAK/STAT信号通路

LPS诱导的TLR4通路激活JAK2/STAT1是巨噬细胞M1极化的重要途径 [23]。TLRs是I型跨膜受体,作用于核转录因子κB (nuclear transcription factor-κB, NF-κB),调节巨噬细胞的激活。TLRs种类不同,识别的信号分子也不一样。LPS与巨噬细胞表面的TLR4结合,通过作用于NF-κB和干扰素调节因子3 (IRF3),促进M1型巨噬细胞极化 [24]。NF-κB上有p65和p50两种亚基,TLR2驱动p65亚基激活,促进M1型极化。当p50亚基以同型二聚体形式激活时,促进巨噬细胞发生M2型极化 [25]。IFN-γ与相应受体结合后,JAK1和JAK2被激活,进而导致STAT1活化,使巨噬细胞向M1型发生极化 [26]。

Figure 1. Related signaling pathways of macrophage polarization

图1. 巨噬细胞极化相关信号通路图

STAT3和STAT6激活巨噬细胞向M2表型极化,与免疫抑制和肿瘤进展相关。IFN-α/β抑制STAT1的磷酸化,抑制巨噬细胞的M1型极化 [27]。STAT6下游的Krueppel样因子4通过抑制NF-κB/缺氧诱导因子-1α参与巨噬细胞M2极化 [28]。IL-10通过诱导NF-κB上的P-50亚基二聚体促进M2极化 [29]。IL-4与细胞表面的受体IL-4受体结合后,通过JAK1和JAK2激活STAT6,巨噬细胞发生M2型极化 [30]。因此,STAT1和STAT3 或STAT6之间的平衡对巨噬细胞的极化有重要的调节作用。

5.2. IRF信号通路

细菌脂多糖或γ干扰素可以促进M1型巨噬细胞的极化,如敲除小鼠IRF1/2基因则可以抑制这种作用。IRF5在既可以促进M1型巨噬细胞的极化也同时可以抑制M2型巨噬细胞的活化,在小鼠体内,IRF6通过抑制PPAR-γ参与M2型巨噬细胞极化的负向调控。IRF4调节IL-4诱导的小鼠M2型巨噬细胞活化 [31]。

5.3. Notch信号通路

信号调节蛋白α (signal regulatory proteinα, SIRPα)可以促进巨噬细胞M2型极化,而Notch激活抑制SIRPα的表达促进巨噬细胞M1极化 [32],miR-148a-3p介导Notch信号促进炎症细胞因子和ROS的产生进而促进巨噬细胞向M1表型极化 [33]。

5.4. PI3K/Akt信号通路

蛋白激酶B(Akt)是PI3K最主要的效应蛋白。TLR4激活PI3K/Akt途径,激活的PI3KⅠ型磷酸化磷脂酰肌醇4,5-二磷酸(PIP2)在质膜上生成磷脂酰肌醇3,4,5-三磷酸(PIP3),PIP3激活Akt和雷帕霉素复合物(mechanistic target of rapamycin complex, mTORC) 2的机制靶点,促进mTORC2激活Akt [28]。PI3K或Akt激酶的激活可使LPS对巨噬细胞的刺激降低,而TLR激活细胞中PI3K信号的非特异性化学抑制,增强了NF-κB的激活和诱导型一氧化氮合酶(inducible nitric oxide synthase, iNOS)表达,促进M1型巨噬细胞的反应 [34]。研究证明,Akt1激酶是通过诱导miR-155和抑制转录因子C/EBP蛋白(M2分化的主要调节因子)在小鼠巨噬细胞中发挥调控作用的 [35]。说明PI3K/Akt通路是巨噬细胞中TLR和NF-κB信号的负调节因子。

5.5. JNK信号通路

c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)是促分裂原活化蛋白激酶家族成员之一,能够使转录因子c-Jun发生磷酸化激活。活性氧、微生物抗原和炎性细胞因子、药物、内质网应激、游离脂肪酸和代谢的改变等都可激活JNK通路 [36]。IL-4能够激活巨噬细胞内JNK信号通路,增加下游转录因子c-Myc表达,而抑制JNK可抑制巨噬细胞M2型的转换,这说明JNK途径促进M2表型极化和抗炎细胞因子的分泌来调节免疫应答。

6. 调控巨噬细胞极化的方法

6.1. 通过相关通路的诱导分子影响巨噬细胞极化

通过影响LPS、TLRs、NF-κB等细胞因子参与M1型巨噬细胞极化过程。糖尿病与动脉粥样硬化有着密切联系,炎性巨噬细胞通过参与局部炎症反应、泡沫细胞生成、血栓形成以及斑块破裂等过程,促进动脉粥样硬化(atherosclerosis, AS)的发展 [37]。汤 [38] 等实验证明,Toll样受体4及糖基化产物(advanced glycation end products, AGEs)受体抑制剂TAK-242及FPS-ZM1对TLR4和晚期糖基化终末产物(Receptor for Advanced Glycation End, RAGE)的特异性阻断会抑制巨噬细胞内STAT1的磷酸化及核转位,最终抑制AGEs诱导的巨噬细胞M1型极化。在慢性肾病(Chronic Kidney Disease, CKD)中,巨噬细胞可诱导产生活性氧,加速一氧化氮(NO)合成和炎症因子的释放,破坏肾小球足细胞以及基底膜,引起肾炎和间质纤维化 [39],影响肾脏功能。BTK抑制剂GDC-0853能够抑制LPS与IFNγ诱导的RAW264.7 M0型巨噬细胞向M1表型极化,其作用机制可能是通过抑制TLR4/NF-κB信号通路的激活来阻止巨噬细胞向M1表型极化 [40]。

6.2. 通过相关基因表达影响巨噬细胞极化

人类基因组中不能翻译出蛋白质RNA统称为非编码RNA(Non-coding RNA, ncRNA)。micRNA属于短链非编码RNA,miRNA-125、miRNA-146、miR-27a、miRNA-let-7a/f和miRNA-378M1等与M1巨噬细胞极化相关。miRNA-let-7c/e、miR-NA-9、miRNA-21、miR-181b、miRNA-146、miRNA-147、miRNA-187等与M2极化相关 [41]。M1型巨噬细胞引起胰岛素抵抗及慢性炎症反应,是引起II型糖尿病的重要基础,肥胖的人体内高表达M1型特异基因 [42]。过表达miR-27a可抑制PPARγ基因表达促进巨噬细胞向M1型极化,降低葡萄糖耐量和胰岛素耐受性,这为治疗肥胖症的炎症和胰岛素抵抗患者提供新的治疗思路。在心血管类疾病中,miR-181b可靶向抑制Notch1基因表达,促进M2型巨噬细胞极化,减轻动脉粥样硬化斑块易损性 [43]。Ghorbani等 [44] 发现,多发性硬化患者的脑白质和自身免疫性脑脊髓炎小鼠脊髓中过表达miR-181a和miR-181b后其靶基因Smad7被抑制,抑制巨噬细胞向M1型极化,减少炎性细胞因子的释放,这证明了miR-181a、miR-181b在炎症中的抗炎作用。

6.3. 使用新型复合材料调节巨噬细胞极化

当前,各种新型生物材料、生物制剂,如纳米粒子、抗菌肽、生物敷料在慢性皮肤创面愈合中的应用越来越广泛。姜黄素通过激活巨噬细胞内过氧化物酶体增殖物激活受体γ诱导M2极化发生 [45]。李等 [46] 制备介孔硅纳米粒(mesoporous silica nanoparticles, MSN)的姜黄素与siRNA/miRNA的共递送系统,可高效诱导巨噬细胞M2向极化,促进移植物周围巨噬细胞的M2型极化,为骨结合提供了更加高效的治疗方式。引导骨再生术后,持续的慢性炎症是阻碍骨组织再生的主要原因,应用模板法合成并表征MCM-41型介孔二氧化硅纳米颗粒(MSN)负载了IL-4可以升高Raw 264.7细胞M2型相关基因转化生长因子-β,白细胞介素1受体拮抗剂(IL-1ra)的表达,降低白细胞介素6 (IL-6)的表达 [47];从而促进M2型巨噬细胞的转化,产生有利于组织再生的免疫微环境。YAMANE等 [48] 研究表明,新型水细胞泡沫敷料(hydrocellular foam dressings, HCFs)对创面有一定的保护作用,降低大鼠创面周围皮肤和肉芽组织中炎症因子并促进局部的再上皮化。AMIN等 [49] 利用冷冻融化的方法将蜂毒加入聚乙烯醇(PVA)/壳聚糖(CS)基水凝胶中。证明蜂毒PVA/CS 水凝胶提高了羟脯氨酸和谷胱甘肽的基因表达水平,降低了IL-6水平,其抗炎作用与双氯芬酸水凝胶相差无几。

由此可见,无论是通过影响miRNA、lncRNA、circRNA等基因片段,LPS、TLRs、白介素等细胞因子,或者使用生物制剂、纳米粒子辅料、猪皮或者牦牛胶原等新型生物材料都能有效、可靠的调控巨噬细胞的极化方向。如此,我们可以期待发现新的影响巨噬细胞极化的特定基因、靶细胞因子、调控通路以及更多的治疗方法,从而为患者提供更加经济有效的治疗方法。

7. 展望

巨噬细胞作为机体固有免疫的重要组成部分,参与体内各种病例过程,包括急、慢性创面的愈合,局部组织的免疫反应,甚至肿瘤细胞的迁移发展,因此,通过上述过程调控巨噬细胞的极化过程,如炎症早期,促进M1型巨噬细胞的极化从而加强局部的抗炎作用、清除坏死细胞及组织,当发展至创面愈合期时,则促进M2型巨噬细胞的极化,达到抗炎、促进修复、创面愈合的目的。深度烧伤的急、慢性创面,糖尿病足、痛风、压疮患者等出现皮肤破溃,长期愈合缓慢,最终演变为慢性创面,这类患者都因早期严重的炎症反应和后期局部组织免疫微环境的紊乱导致创面愈合难度的增加,病程的迁延及预后的下降,如果使上述创面的巨噬细胞极化达到平衡,从而减轻炎症反应对组织的损害,改善局部免疫微环境,为组织生长培养一个适宜的环境,则可以极大的提高此类患者的治疗效果。甚至在一些肿瘤疾病中,也可以影响肿瘤细胞的增值、迁移,延缓肿瘤的发展。据此,为临床医生在上述疾病的治疗过程中提供了更多的治疗方式,从而达到精准治疗的目的。

参考文献

[1] Davies, L.C., Jenkins, S.J., Allen, J.E., et al. (2013) Tissue-Resident Macrophages. Nature Immunology, 14, 986-995.
https://doi.org/10.1038/ni.2705
[2] Ginhoux, F. and Guilliams, M. (2016) Tissue-Resident Macrophages Ontog-eny and Homeostasis. Immunity, 44, 439-449.
https://doi.org/10.1016/j.immuni.2016.02.024
[3] Hoeffel, G. and Ginhoux, F. (2015) Ontogeny of Tis-sue-Resident Macro-Phages. Frontiers in Immunology, 6, Article No. 486.
https://doi.org/10.3389/fimmu.2015.00486
[4] Hashimoto, D., Chow, A., Noizat, C., et al. (2013) Tis-sue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. Immunity, 38, 792-804.
https://doi.org/10.1016/j.immuni.2013.04.004
[5] Guilliams, M. and Scott, C.L. (2017) Does Niche Competition Determine the Origin of Tissue-Resident Macrophages? Nature Reviews Immunology, 17, 451-460.
https://doi.org/10.1038/nri.2017.42
[6] Misharin, A.V., Morales-Nebred, L., Reyfman, P.A., et al. (2017) Mono-cyte-Derived Alveolar Macrophages Drivel Lung Fibrosis and Persist in the Lung over the Life Span. Journal of Exper-imental Medicine, 214, 2387-2404.
https://doi.org/10.1084/jem.20162152
[7] Koh, T.J. and Dipietro, L.A. (2011) Inflammation and Wound Healing: The Role of the Macrophage. Expert Reviews in Molecular Medicine, 13, e23.
https://doi.org/10.1017/S1462399411001943
[8] 王齐, 曹晓赞, 朱冠娅, 等. 外源性阻断RAGE效应对糖尿病小鼠创面中巨噬细胞浸润的影响[J]. 上海交通大学学报(医学版), 2017, 37(12): 1588-1593.
[9] Recalcati, S., Gammella, E., Buratti, P., et al. (2019) Macrophage Ferroportin Essential for Stromal Cell Prolife Ration in Wound Healing. Haematologica, 104, 47-58.
https://doi.org/10.3324/haematol.2018.197517
[10] Yang, J.M., Zhu, Y., Duan, D.Y., et al. (2018) Enhanced Activity of Macro-Phage M1/M2 Phenotypes in Periodontitis. Archives of Oral Bi-ology, 96, 234-242.
https://doi.org/10.1016/j.archoralbio.2017.03.006
[11] Moghaddam, A.S., Mohammadian, S., Vazini, H., et al. (2018) Macrophage Plasticity, Polarization and Function in Health and Disease. Journal of Cellular Physiology, 223, 6425-6440.
https://doi.org/10.1002/jcp.26429
[12] Rodero, M.P., Licata, F., Poupel, L., et al. (2014) In Vivo Imaging Reveals a Pioneer Wave of Monocyte Recruitment into Mouse Skin Wounds. PLOS ONE, 9, e108212.
https://doi.org/10.1371/journal.pone.0108212
[13] Sica, A. and Mantovani, A. (2012) Macrophage Plas-ticity and Polarization: in Vivo Veritas. Journal of Clinical Investigation, 122, 787-795.
https://doi.org/10.1172/JCI59643
[14] 高弘斐, 张潜, 陈龙, 等. 间充质干细胞与巨噬细胞共培养体系的细胞因子表达模式研究[J]. 免疫学杂志, 2017, 33(11): 930-936.
[15] Sawa-Wejksza, K. and Kandefer-Szerszeń, M. (2018) Tumor-Associated Macrophages as Target for Antitumor Therapy. Archivum Immunologiae et Therapiae Ex-perimentalis, 66, 97-111.
https://doi.org/10.1007/s00005-017-0480-8
[16] Italiani, P. and Boraschi, D. (2014) From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Frontiers in Immunology, 5, 514-536.
https://doi.org/10.3389/fimmu.2014.00514
[17] Billiau, A. and Matthys, P. (2009) Interferon-Gamma: A Historical Perspective. Cytokine & Growth Factor Reviews, 20, 97-113.
https://doi.org/10.1016/j.cytogfr.2009.02.004
[18] Wang, N., Liang, H. and Zen, K. (2014) Molecular Mechanisms That Influence the Macrophage m1-m2 Polarization Balance. Frontiers in Immunology, 5, Article No. 614.
https://doi.org/10.3389/fimmu.2014.00614
[19] 吴燕, 张定然, 王新慧, 许宏扬, 刘沛尧, 齐智利. 巨噬细胞极化及其对炎性疾病作用的研究进展[J/OL]. 中国畜牧杂志, 2021, 57(7): 22-26.
[20] Boniakowski, A.E., Kimball, A.S., Jacobs, B.N., et al. (2017) Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing. The Journal of Immunology, 199, 17-24.
https://doi.org/10.4049/jimmunol.1700223
[21] Kong, X. and Gao, J. (2017) Macrophage Polarization: A Key Event in the Secondary Phase of Acute Spinal Cord Injury. Journal of Cellular and Molecular Medicine, 21, 941-954.
https://doi.org/10.1111/jcmm.13034
[22] Byrne, A.J., Mathie, S.A., Gregory, L.G., et al. (2015) Pulmonary Macrophages: Key Players in the Innate Defence of the Airways. Thorax, 70, 1189-1196.
https://doi.org/10.1136/thoraxjnl-2015-207020
[23] Oh, H., Park, S.H., Kang, M.K., et al. (2019) Asaronic Acid Attenuates Macrophage Activation toward M1 Phenotype through Inhibition of NF-κB Pathway and JAK-STAT Sig-naling in Glucose-Loaded Murine Macrophages. Journal of Agricultural and Food Chemistry, 67, 10069-10078.
https://doi.org/10.1021/acs.jafc.9b03926
[24] Fitzgerald, K.A., Rowe, D.C., Barnes, B.J., et al. (2003) LPS-TLR4 Signaling to IRF-3/7 and NF-κB Involves the Toll Adapters TRAM and TRIF. Journal of Experimental Medicine, 198, 1043-1055.
https://doi.org/10.1084/jem.20031023
[25] Porta, C., Rimoldi, M., Raes, G., et al. (2009) Tolerance and M2 (Alternative) Macrophage Polarization Are Related Processes Orchestrated by p50 Nuclear Factor κB. Proceed-ings of the National Academy of Sciences of the United States of America, 106, 14978-14983.
https://doi.org/10.1073/pnas.0809784106
[26] Hu, X., Herrero, C., Li, W.P., et al. (2002) Sensitization of IFN-γ Jak-STAT Signaling during Macrophage Activation. Nature Immunology, 3, 859-866.
https://doi.org/10.1038/ni828
[27] Lawrence, T. and Natoli, G. (2011) Transcriptional Regulation of Macrophage Polarization: Enabling Diversity with Identity. Nature Reviews Immunology, 11, 750-761.
https://doi.org/10.1038/nri3088
[28] 周琦, 孙慧娟, 于栋华, 刘树民. 巨噬细胞M1/M2型极化在不同疾病中的作用机制[J]. 中国药理学通报, 2020, 36(11): 1502-1506.
[29] Ni, Y., Zhuge, F., Nagashimada, M. and Ota, T. (2016) Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeo-stasis. Nutrients, 8, 391.
https://doi.org/10.3390/nu8070391
[30] Porta, C., Riboldi, E., Ippolito, A., et al. (2015) Molecular and Epigenetic Basis of Macrophage Polarized Activation. Seminars in Immunology, 27, 237-248.
https://doi.org/10.1016/j.smim.2015.10.003
[31] Li, C., Xu, M.M., Wang, K., et al. (2018) Macrophage Polariza-tion and Meta-Inflammation. Translational Research, 191, 29-44.
https://doi.org/10.1016/j.trsl.2017.10.004
[32] Lin, Y., Zhao, J.L., Zheng, Q.J., et al. (2018) Notch Signaling Mod-ulates Macrophage Polarization and Phagocytosis through Direct Suppression of Signal Regulatory Protein α Expression. Frontiers in Immunology, 9, Article No. 1744.
https://doi.org/10.3389/fimmu.2018.01744
[33] Huang, F., Zhao, J.L., Wang, L., et al. (2017) miR-148a-3p Medi-ates Notch Signaling to Promote the Differentiation and M1 Activation of Macrophages. Frontiers in Immunology, 8, Article No. 1327.
https://doi.org/10.3389/fimmu.2017.01327
[34] Vergadi, E., Ieronymaki, E., Lyroni, K., et al. (2017) Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. The Journal of Immunology, 198, 1006-1014.
https://doi.org/10.4049/jimmunol.1601515
[35] Arranz, A., Doxaki, C., Vergadi, E., et al. (2012) Akt1 and Akt2 Protein Kinases Differentially Contribute to Macrophage Polarization. Proceedings of the National Academy of Sciences of the United States of America, 109, 9517-9522.
https://doi.org/10.1073/pnas.1119038109
[36] Tafesh-Edwards, G. and Eleftherianos, I. (2020) JNK Signaling in Drosophila Immunity and Homeostasis. Immunology Letters, 226, 7-11.
https://doi.org/10.1016/j.imlet.2020.06.017
[37] Tabas, I. and Bornfeldt, K.E. (2016) Macrophage Notype and Function in Different Stages of Atheroscl Erosis. Circulation Research, 118, 653-667.
https://doi.org/10.1161/CIRCRESAHA.115.306256
[38] 汤祥瑞, 张勇, 祝领, 崔倩卫, 刘仲伟, 石爽. 晚期糖基化产物通过RAGE/TLR4/STAT1信号通路诱导巨噬细胞M1型极化[J/OL]. 安徽医科大学学报, 2021(5): 751-756.
[39] Alam, S., Liu, Q., Liu, S., et al. (2019) Up-Regulated Cathepsin C Induces Macrophage M1 Polarization through FAK-Triggered p38 MAPK/NF-κB Pathway. Experimental Cell Research, 382, Article ID: 111472.
https://doi.org/10.1016/j.yexcr.2019.06.017
[40] 杨帆, 童婧涵, 李会, 陈洁, 代丽明. BTK抑制剂GDC-0853通过TLR4/NF-κB通路抑制M1巨噬细胞极化并改善UUO肾损伤[J]. 免疫学杂志, 2021, 37(2): 107-114.
[41] Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., et al. (2018) Macrophage Plasticity, Polariza-tion, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440.
https://doi.org/10.1002/jcp.26429
[42] Chylikova, J., Dvorackova, J., Tauber, Z. and Kamarad, V. (2018) M1/M2 Macrophage Polarization in Human Obese Adipose Tissue. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic, 162, 79-82.
https://doi.org/10.5507/bp.2018.015
[43] An, T.H., He, Q.W., Xia, Y.P., et al. (2017) MiR-181b Antagonizes Atherosclerotic Plaque Vulnerability through Modulating Macrophage Polari-zation by Directly Targeting Notch1. Molecular Neurobiology, 54, 6329-6341.
https://doi.org/10.1007/s12035-016-0163-1
[44] Ghorbani, S., Talebi, F., Chan, W.F., et al. (2017) Mi-croRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation. Frontiers in Im-munology, 8, Article No. 758.
https://doi.org/10.3389/fimmu.2017.00758
[45] Li, H.Y., Yang, M., Li, Z., et al. (2017) Curcumin Inhibits Angio-tensin II-Induced Inflammation and Proliferation of Rat Vascular Smooth Muscle Cells by Elevating PPAR-γ Activity and Reducing Oxidative Stress. International Journal of Molecular Medicine, 39, 1307-1316.
https://doi.org/10.3892/ijmm.2017.2924
[46] 李沛汉, 郎凯, 宋文. 基于介孔硅的姜黄素-siRNA共递送系统构建及其对巨噬细胞M2型极化的影响[J]. 口腔疾病防治, 2021, 29(5): 306-313.
[47] 彭培轩, 张一迪, 孙晓琳, 周延民. MCM-41-IL-4对Raw264.7巨噬细胞的免疫调节作用的研究[J]. 海南医学院学报, 2021, 27(19): 1472-1480.
[48] Yamane, T., Nakagami, G., Yoshino, S., et al. (2015) Hydrocellular Foam Dressings Promote Wound Healing Associated with Decrease in Inflammation in Rat Periwound Skin and Granulation Tissue, Compared with Hy-drocolloid Dressing. Bioscience, Biotechnology, and Biochemistry, 79, 185-189.
https://doi.org/10.1080/09168451.2014.968088
[49] Amin, M.A. and Abdel-Raheem, I.T. (2014) Accelerated Wound Healing and Anti-Inflammatory Effects of Physically Cross Linked Polyvinyl Alcohol-Chitosan Hydrogel Con-taining Honey Bee Venom in Diabetic Rats. Archives of Pharmacal Research, 37, 1016-1031.
https://doi.org/10.1007/s12272-013-0308-y