血管内皮生长因子家族在冠心病发生发展中的作用及研究现状
The Role of Vascular Endothelial Growth Factor Family in the Development of Coronary Heart Disease
DOI: 10.12677/ACM.2022.1281102, PDF, HTML, XML, 下载: 303  浏览: 7,439 
作者: 薛晋荣, 张梦奇, 巩杨超:西安医学院,陕西 西安;祝 领, 姜 馨*:陕西省人民医院心血管内科,陕西 西安
关键词: 血管内皮生长因子冠心病细胞因子Vascular Endothelial Growth Factor Coronary Heart Disease Cytokines
摘要: 血管内皮生长因子(Vascular endothelial growth factor, VEGF)是一类发现较早且作用广泛的细胞因子,作为一种促血管内皮细胞生长的细胞因子,VEGF (Vascular endothelial growth factor, VEGF)可增加血管通透性,促进血管内皮细胞增生及血管形成,是血管和淋巴管的调节因子。过去有关VEGF (Vascular endothelial growth factor, VEGF)的研究主要集中在肿瘤和眼科领域。近年来,随着心血管领域研究的进一步深入,越来越多的研究发现,它参与了动脉粥样硬化和其他心血管疾病的发展,尤其是在冠状动脉粥样硬化性心脏病的发生发展过程中发挥着重要的作用。目前的研究发现,在人类中,VEGF家族(Vascular endothelial growth factor, VEGF)由5个独立的基因产物组成:调节血管生长的VEGF-A (Vascular endothelial growth factor A, VEGF-A)、VEGF-B (Vascular endothelial growth factor B, VEGF-B)、胎盘生长因子(placental growth factor, PlGF)以及调节淋巴管生成的VEGF-C (Vascular endothelial growth factor C, VEGF-C)和VEGF-D (Vascular endothelial growth factor D, VEGF-D)。它们在冠心病发生发展过程中展现出各自的抗炎及促炎作用。本文将对血管内皮生长因子家族在冠心病发生发展中的作用及研究现状进行综述,为以后的基础研究或者临床实践提供一些参考。
Abstract: Vascular endothelial growth factor (VEGF) is a kind of cytokines discovered earlier and widely used. As a cytokine that promotes the growth of vascular endothelial cells, VEGF can increase vascular permeability, promote vascular endothelial cell proliferation and angiogenesis, and is a regulator of blood vessels and lymphatic vessels. In the past, studies on VEGF mainly focused on the fields of tu-mor and ophthalmology. In recent years, with the further research in the field of cardiovascular, more and more studies have found that it is involved in the development of atherosclerosis and other cardiovascular diseases, especially in the occurrence and development of coronary athero-sclerotic heart disease plays an important role. Current studies have found that in humans, the VEGF family consists of five independent genetic products: VEGF-A, VEGF-B, placental growth factor regulating vascular growth, and VEGF-C and VEGF-D regulating lymphangiogenesis. They show their anti-inflammatory and pro-inflammatory effects in the development of coronary heart disease. This article will review the role and research status of vascular endothelial growth factor family in the development of coronary heart disease, and provide some reference for future basic research or clinical practice.
文章引用:薛晋荣, 张梦奇, 巩杨超, 祝领, 姜馨. 血管内皮生长因子家族在冠心病发生发展中的作用及研究现状[J]. 临床医学进展, 2022, 12(8): 7634-7640. https://doi.org/10.12677/ACM.2022.1281102

1. 引言

冠心病(coronary heart disease, CHD)是威胁人类安全的主要疾病之一,在一些西方国家,冠心病的发病率已超过10%。65岁以上的老年人更易患冠心病,全球高危人群中冠心病的中位发病率为19.34% [1]。中国冠心病患者已达1100万,且发病率仍在持续上升。冠心病的病理基础是动脉粥样硬化(atherosclerosis, AS),脂质代谢紊乱、血管内皮细胞(vascular endothelial cell, VEC)损伤、炎症和免疫功能障碍可促进AS的发生和发展,进而导致冠心病 [2]。炎症理论是AS的经典理论之一,因此,在临床实践过程中减轻炎症反应对冠心病的预防和控制起着至关重要的作用。研究证实,VEGF家族具有调节炎症反应、促进血管生成、抗氧化应激等功能,具有调节动脉硬化进展及防治冠心病的潜在作用,且近期有研究发现VEGF在心肌成纤维细胞中表达,提示其在心肌梗死后组织修复和重塑中可能也发挥着重要作用 [3]。本文将对VEGF家族参与冠心病发生发展的机制及研究现状进行综述,为以后的基础研究或者临床实践提供一些参考。

2. VEGF家族概述

目前研究已发现VEGF家族(Vascular endothelial growth factor, VEGF)由以下成员组成:VEGF-A、VEGF-B、VEGF-C、VEGF-D和胎盘生长因子(PlGF)。这些因子通过与相关受体结合发挥作用。VEGF受体(VEGFR)包括VEGFR-1、VEGFR-2和VEGFR-3。其中,VEGFR-1和VEGFR-2主要表达于血管内皮细胞(VECs),而VEGFR3主要表达于淋巴管内皮细胞(LECs) [4]。

3. VEGF家族各成员在冠心病发生发展过程中的作用机制及治疗现状

3.1. VEGF-A

VEGF-A是一种多肽蛋白,也是VEGF家族中目前研究最为成熟的因子。通过与VEGFR-1和VEGFR-2结合,VEGF-A可以介导血管生成、血管通透性和炎症,因此又称为血管通透性因子(VPF) [5]。研究发现人类VEGF-A由八个外显子和七个内含子组成,在选择性VEGF mRNA剪接后呈现不同长度的亚型,如VEGF165、VEGF121和VEGF206 [6]。VEGF-A在人体大多数系统中均有表达,尤其是在心血管系统中。其主要在周细胞、内皮细胞和成血管细胞上表达。研究发现在缺氧和炎症环境下,VEGF-A也可由血细胞产生,包括单核细胞、活化T细胞、中性粒细胞、树突状细胞和血小板 [4] 等。一项临床研究表明 [7] 在ST段抬高型心肌梗死(STEMI)患者中,VEGF-A水平与微血管闭塞(MVO)独立正相关,并与中期左室射血分数(LVEF)负相关。因此,VEGF-A可被视为STEMI患者MVO的生物标志物,并可用于预后分层。赵永超等 [8] 研究表明m7G甲基转移酶METTL1通过促进VEGFA mRNA翻译促进缺血后血管生成。唐汉清等 [9] 研究中MiR-448-5p/VEGFA轴通过调节FAS/FAS-L信号通路保护心肌细胞免受缺氧。邹江等 [10] VEGF-A通过增加活性氧生成和增强内质网应激介导的自噬来促进急性心肌梗死后的血管生成。刘婷婷等 [11] 研究发现莫罗尼苷可促进大鼠急性心肌梗死后的血管生成并改善心功能,莫罗尼苷的促血管生成作用可能由VEGFA/VEGF受体2信号通路介导。邹江等 [12] 研究发现羟基黄A(HSYA)治疗缺血性心血管疾病其发挥作用的机制为核素通过转录后调节VEGF-A和(基质金属蛋白,MMP-9)表达介导HSYA的促血管生成作用,这有助于HSYA对缺血性心功能不全的保护作用。王虹 [13] 等人研究证明,在心肌梗死(MI)模型中,粉防已碱治疗通过上调VEGF-A水平来提高新生血管,减小急性心肌梗死中梗死面积,从而改善心脏功能。吕颜霞 [14] 等人研究发现,迷走神经刺激(Vagus nerve stimulation, VNS)可以刺激冠状动脉平滑肌细胞(VSMCs)和内皮细胞中VEGF-A和VEGF-B的表达,迷走神经递质乙酰胆碱通过m/nACh-R/PI3K/Akt/Sp1通路刺激内皮细胞中VEGF-A/B的表达。在功能上,迷走神经刺激(Vagus nerve stimulation, VNS)通过释放乙酰胆碱改善了冠状动脉功能和左心室功。能。同时,通过拮抗剂AMG706阻断VEGF受体或通过短发夹RNA (short hairpin RNA, shRNA)敲除VEGF-A,显著降低了迷走神经刺激对心室性能的有益作用。

3.2. VEGF-B

VEGF-B是VEGF-A的同源物,与VEGF具有高度的序列同源性,VEGF-B主要表达于心肌、冠状动脉平滑肌细胞、内皮细胞和胰腺,以及肺、肾、胆囊和脂肪 [14]。VEGF-B只能通过与VEGFR-1结合发挥生物学功能。既往研究已经发现了多种物质可影响VEGF-B的表达。Zhong S等人研究发现 [14],迷走神经递质乙酰胆碱可通过m/nACh-R/PI3K/Akt/Sp1通路上调内皮细胞VEGF-B的表达。在与VEGF-A的协同作用下,VEGF-B诱导血管平滑肌细胞(vascular smooth muscle cell, VSMC)增殖和内皮细胞(endothelial cell, EC)迁移,最终促进血管生成、动脉生成以修复梗死的心肌组织 [14]。VEGF-B可用于促进缺血性心脏病患者的冠状动脉血管系统重建,改善心肌代谢,进而改善心功能 [15]。安娜·布里舍瓦等人 [16] 研究表明VEGF-B治疗组的心肌梗死面积明显小于生理盐水对照组。其机制可能是VEGF-B通过促进血管生成,减轻缺血和保护存活的心肌细胞免于死亡,从而发挥其传统上已知的心脏保护作用。他们还发现VEGF-B可进一步恢复受损心肌中的天然心肌细胞,显著改善心肌梗死后的恢复,在冠心病患者 [15] 中,VEGF-B的表达降低。那么我们是否可以心肌梗死部位的更新和再生提示pVEGF-B基因电转移是心肌梗死的潜在再生治疗。Henna Korpela等人 [17] 的研究发现,腺病毒(AD)VEGF-B186基因转移可显著促进心肌血管生成,增加缺血心脏的心肌灌注储备。AdVEGF-B186还能抑制心肌细胞凋亡,调节心肌代谢,成为治疗心肌缺血 [18] [19] 的潜在药物。

3.3. VEGF-C

VEGF-C是一种分泌性糖蛋白,在成人中,VEGF-C在许多部位表达,包括心脏、肺、脑、肾、肠和淋巴结 [20]。一项前瞻性研究发现,低水平的VEGF-C可以独立预测疑似或确诊的冠状动脉疾病(CAD) [21] 患者的全因死亡率,VEGF-C水平与全因死亡和心血管死亡呈显著负相关,而高水平的VEGF-C可降低心肌梗死后的炎症反应,有利于损伤心肌的修复。急性心肌梗死后,VEGF-C可诱导心脏淋巴管的增殖,并通过淋巴管内皮透明质酸受体-1 (LYVE-1)将免疫细胞运输到纵隔淋巴结(MLNs),从而促进急性炎症反应的清除和心脏修复。在心肌缺血再灌注(I/R)损伤模型中,用VEGF-C预处理心肌后心肌梗死面积较低,CK-MB、丙二醛、肌钙蛋白和凋亡蛋白Bax值较低。其机制在于VEGFC通过与VEGFR-2结合激活Akt信号通路,阻断Bax表达和线粒体膜易位,从而抑制心肌细胞在I/R损伤后凋亡,发挥心脏保护作用 [22]。研究表明 [23] 心肌梗死后心脏巨噬细胞产生的VEGFC直接有效抑制促炎巨噬细胞活化来减轻炎症反应,进一步减轻心肌梗死后心脏损伤。在大鼠心肌梗死模型中,心肌梗死移植细胞和VEGF-C加载自组装肽(SAP)水凝胶后4周,心脏淋巴管发生增加,心脏水肿和重塑减少,心脏功能得到显着改善。淋巴内皮祖细胞和VEGF-C与释放与自组装肽(SAP)的联合递送有效地促进了心脏淋巴管的发生和梗死心肌的修复。YUE Y等发现在心肌缺血大鼠模型中 [24],M2b巨噬细胞可以上调VEGFC表达,促进淋巴管生成,减少心肌纤维化,改善心脏功能,这表明M2b巨噬细胞可能用于心肌保护治疗。

3.4. VEGF-D

VEGF-D和VEGF-C一样,也是一种分泌性糖蛋白。它们彼此具有结构同源性,并通过与VEGFR-2和VEGFR-3结合促进淋巴管生成和血管生成。VEGF-D比VEGF-C具有更高的血管生成潜能。一项前瞻性研究得出结论,高水平的VEGF-D独立预测可疑或确诊冠心病患者的全因死亡率 [25]。血管生成是心肌梗死后心脏修复的核心。另有研究指出,心脏血管紧张素转换酶(ACE) 2产生血管紧张素(Ang) 1-7,进而刺激心脏中VEGFD和基质金属蛋白酶(MMP-9)的表达,促进血管生成,从而促进心脏恢复,改善心室功能 [26]。一项临床回顾性研究 [27] 显示腺病毒心肌内VEGF-DΔNΔC基因转移增加难治性心绞痛患者的心肌灌注储备。

3.5. PlGF

胎盘生长因子(placental growth factor, PlGF)也是血管内皮细胞生长因子家族的一员,PlGF最初在人胎盘中发现,在胎盘和内皮细胞中大量表达,并调节胎盘的发育、功能和血管生成。是fms样酪氨酸激酶-1 (fms-like tyrosine kinase-1, Flt-1)的特异性配体 [28]。既往研究表明,PlGF通过Flt-1信号通路 [29] 在包括动脉粥样硬化在内的炎症性疾病中发挥多种作用。张亚平等 [30] 研究中,他们将实验小鼠诱发了一个明显的梗死区域I/R。与I/R组的小鼠相比,接受PlGF治疗的小鼠的梗死面积明显更小。PlGF可降低I/R后心肌梗死,改善心功能。外源性PLGF通过改善心脏功能和刺激血管生成,在心肌梗死后愈合过程中发挥重要作用。用PlGF治疗的小鼠心脏在再灌注后显示炎症反应减轻。这可能是由于PlGF的心脏保护作用导致较轻的心肌缺血再灌注损伤。Takeda Y等 [31] 研究证实,重组胎盘生长因子(PlGF)治疗可增强血管生成和动脉生成,并提高心肌梗死后的生存率。其机制首先可能是PlGF是VEGF家族的一员,在体内不仅诱导血管生成,还诱导动脉生成 [32]。其次,PlGF能够动员内皮祖细胞(endothelial progenitor cells, EPCs)从骨髓外周循环 [33],最后,我们最近观察到PlGFmRNA表达显著上调在冠状动脉内皮细胞和梗死区间质细胞,表明PlGF参与AMI的病理 [34]。此外,血浆中PlGF或sFlt-1水平单独是确定冠状动脉疾病严重程度的良好标志物,PlGF与sFlt-1的比值被证明与疾病的严重程度呈正相关,也被认为是心脏预后 [35] 的良好标志物。另有报道称,在小鼠和猪模型中使用重组PlGF治疗减少了梗死面积,改善了左心室功能,增加了血管生成和动脉生成 [36]。

4. 总结与展望

综上所述,VEGF家族通过调节血管生成、淋巴管生成、炎症、细胞凋亡、氧化还原、纤维生成和脂质代谢,在治疗冠心病方面显示出其一定的潜力。其作为一类重要的炎症细胞因子,在冠心病中的作用受到了广泛的关注,部分家族成员的作用已得到临床研究的证实,但还有一些成员的作用机制及临床应用尚未达成共识。众所周知,抗VEGF靶向治疗已成功地应用于癌症治疗,大大地提高了肿瘤患者的无病生存期和总生存期,那么类似的治疗手段是否可以用于冠心病的治疗呢?假设,可以通过拮抗VEGF家族中其他促炎细胞因子的作用或通过人为途径增加血管内皮生长因子家族中抗炎细胞因子的水平降低冠心病的病死率及并发症,从而使冠心病患者获益,未来仍需进一步研究。

NOTES

*通讯作者E-mail: jiangxinwind@126.com

参考文献

[1] Zhu, K.F., Wang, Y.M., Zhu, J.Z., et al. (2016) National Prevalence of Coronary Heart Disease and Its Relationship with Human Development Index: A Systematic Review. European Journal of Preventive Cardiology, 23, 530-543.
https://doi.org/10.1177/2047487315587402
[2] Hansson, G.K. (2005) Inflammation, Atherosclerosis, and Coro-nary Artery Disease. New England Journal of Medicine, 352, 1685-1695.
https://doi.org/10.1056/NEJMra043430
[3] Carlevaro, M.F., Cermelli, S., Cancedda, R., et al. (2000) Vascular Endothelial Growth Factor (VEGF) in Cartilage Neovascularization and Chondrocyte Differentiation: Auto-Paracrine Role during Endochondral Bone Formation. Journal of Cell Science, 113, 59-69.
https://doi.org/10.1242/jcs.113.1.59
[4] Melincovici, C.S., Boşca, A.B., Şuşman, S., et al. (2018) Vascular Endo-thelial Growth Factor (VEGF)—Key Factor in Normal and Pathological Angiogenesis. Romanian Journal of Morpholo-gy and Embryology, 59, 455-467.
[5] Claesson-Welsh, L. and Welsh, M. (2013) VEGFA and Tumour Angiogenesis. Journal of Internal Medicine, 273, 114-127.
https://doi.org/10.1111/joim.12019
[6] Itatani, Y., Kawada, K., Yamamoto, T., et al. (2018) Resistance to Anti-Angiogenic Therapy in Cancer-Alterations to Anti-VEGF Pathway. In-ternational Journal of Molecular Sciences, 19, Article No. 1232.
https://doi.org/10.3390/ijms19041232
[7] Garcia, R., Bouleti, C., Sirol, M., et al. (2019) VEGF-A Plasma Levels Are Associated with Microvascular Obstruction in Patients with ST-Segment Elevation Myocardial Infarction. Interna-tional Journal of Cardiology, 291, 19-24.
https://doi.org/10.1016/j.ijcard.2019.02.067
[8] Zhao, Y., Kong, L., Pei, Z., et al. (2021) m7G Methyltransferase METTL1 Promotes Post-Ischemic Angiogenesis via Promoting VEGFA mRNA Translation. Frontiers in Cell and De-velopmental Biology, 9, Article ID: 642080.
https://doi.org/10.3389/fcell.2021.642080
[9] Tang, H., Zhang, S., Huang, C., et al. (2021) MiR-448-5p/VEGFA Axis Protects Cardiomyocytes from Hypoxia Through Regulating the FAS/FAS-L Signaling Pathway. International Heart Journal, 62, 647-657.
https://doi.org/10.1536/ihj.20-600
[10] Zou, J., Fei, Q., Xiao, H., et al. (2019) VEGF-A Promotes Angiogenesis after Acute Myocardial Infarction through Increasing ROS Production and Enhancing ER Stress-Mediated Autophagy. Journal of Cellular Physiology, 234, 17690- 17703.
https://doi.org/10.1002/jcp.28395
[11] Liu, T., Sun, F., Cui, J., et al. (2020) Morroniside Enhances Angiogenesis and Improves Cardiac Function Following Acute Myocardial Infarc-tion in Rats. European Journal of Pharmacology, 872, Article ID: 172954.
https://doi.org/10.1016/j.ejphar.2020.172954
[12] Zou, J., Wang, N., Liu, M., et al. (2018) Nucleolin Mediated Pro-Angiogenic Role of Hydroxysafflor Yellow A in Ischaemic Cardiac Dysfunction: Post-Transcriptional Regulation of VEGF-A and MMP-9. Journal of Cellular and Molecular Medicine, 22, 2692-2705.
https://doi.org/10.1111/jcmm.13552
[13] Wang, H., Chen, L., Wang, S., et al. (2021) Tetrandrine Promotes Angi-ogenesis via Transcriptional Regulation of VEGF-A. Vascular Pharmacology, 141, Article ID: 106920.
https://doi.org/10.1016/j.vph.2021.106920
[14] Lv, Y.X., Zhong, S., Tang, H., et al. (2018) VEGF-A and VEGF-B Coordinate the Arteriogenesis to Repair the Infarcted Heart with Vagus Nerve Stimulation. Cellular Physiology and Biochemistry, 48, 433-449.
https://doi.org/10.1159/000491775
[15] Kivelä, R., Bry, M., Robciuc, M.R., et al. (2014) VEGF-B-Induced Vas-cular Growth Leads to Metabolic Reprogramming and Ischemia Resistance in the Heart. EMBO Molecular Medicine, 6, 307-321.
https://doi.org/10.1002/emmm.201303147
[16] Bulysheva, A.A., Burcus, N., Lundberg, C.G., et al. (2018) VEGF-B Electrotransfer Mediated Gene Therapy Induces Cardiomyogenesis in a Rat Model of Cardiac Ischemia. Bioe-lectrochemistry, 124, 105-111.
https://doi.org/10.1016/j.bioelechem.2018.07.007
[17] Korpela, H., Hätinen, O.P., Nieminen, T., et al. (2021) Ad-enoviral VEGF-B186R127S Gene Transfer Induces Angiogenesis and Improves Perfusion in Ischemic Heart. iScience, 24, Article ID: 103533.
https://doi.org/10.1016/j.isci.2021.103533
[18] Lähteenvuo, J.E., Lähteenvuo, M.T., Kivelä, A., et al. (2009) Vas-cular Endothelial Growth Factor-B Induces Myocardium-Specific Angiogenesis and Arteriogenesis via Vascular Endo-thelial Growth Factor Receptor-1- and Neuropilin Receptor-1-Dependent Mechanisms. Circulation, 119, 845-856.
https://doi.org/10.1161/CIRCULATIONAHA.108.816454
[19] Nurro, J., Halonen, P.J., Kuivanen, A., et al. (2016) AdVEGF-B186 and AdVEGF-DΔNΔC Induce Angiogenesis and Increase Perfusion in Porcine Myocardium. Heart, 102, 1716-1720.
https://doi.org/10.1136/heartjnl-2016-309373
[20] Suh, S.H., Choe, K., Hong, S.P., et al. (2019) Gut Microbiota Regulates Lacteal Integrity by Inducing VEGF-C in Intestinal Villus Macrophages. EMBO Re-ports, 20, e46927.
https://doi.org/10.15252/embr.201846927
[21] Wada, H., Suzuki, M., Matsuda, M., et al. (2018) VEGF-C and Mortality in Patients with Suspected or Known Coronary Artery Disease. Journal of the American Heart Association, 7, e010355.
https://doi.org/10.1161/JAHA.118.010355
[22] Chen, X.G., Lv, Y.X., Zhao, D., et al. (2016) Vascular Endothelial Growth Factor-C Protects Heart from Ischemia/ Reperfusion Injury by Inhibiting Cardiomyocyte Apoptosis. Molecular and Cellular Biochemistry, 413, 9-23.
https://doi.org/10.1007/s11010-015-2622-9
[23] Zhang, H.F., Wang, Y.L., Tan, Y.Z., et al. (2019) Enhancement of Cardiac Lymphangiogenesis by Transplantation of CD34(+)VEGFR-3(+) Endothelial Progenitor Cells and Sustained Release of VEGF-C. Basic Research in Cardiology, 114, Article No. 43.
https://doi.org/10.1007/s00395-019-0752-z
[24] Yue, Y., Huang, S., Wang, L., et al. (2020) M2b Macrophages Regulate Cardiac Fibroblast Activation and Alleviate Cardiac Fibrosis after Reperfusion Injury. Circulation Journal, 84, 626-635.
https://doi.org/10.1253/circj.CJ-19-0959
[25] Fox, K.A.A., Metra, M., Morais, J., et al. (2020) The Myth of “Stable” Coronary Artery Disease. Nature Reviews Cardiology, 17, 9-21.
https://doi.org/10.1038/s41569-019-0233-y
[26] Zhao, W., Zhao, T., Chen, Y., et al. (2015) Angiotensin 1-7 Pro-motes Cardiac Angiogenesis Following Infarction. Current Vascular Pharmacology, 13, 37-42.
https://doi.org/10.2174/15701611113119990006
[27] (2018) Corrigendum to: Adenoviral Intramyocardial VEGF-DΔNΔC Gene Transfer Increases Myocardial Perfusion Reserve in Refractory Angina Patients: A Phase I/IIa Study with 1-Year Follow-Up. European Heart Journal, 39, Article No. 1652.
https://doi.org/10.1093/eurheartj/ehx576
[28] Saito, Y. (2021) The Role of the PlGF/Flt-1 Signaling Pathway in the Cardiorenal Connection. The Journal of Molecular and Cellular Cardiology, 151, 106-112.
https://doi.org/10.1016/j.yjmcc.2020.10.001
[29] Dewerchin, M. and Carmeliet, P. (2012) PlGF: A Multitasking Cytokine with Disease-Restricted Activity. Cold Spring Harbor Perspectives in Medicine, 2, a011056.
https://doi.org/10.1101/cshperspect.a011056
[30] Zhang, Y., Cao, C., Xin, J., et al. (2018) Treatment with Placental Growth Factor Attenuates Myocardial Ischemia/Reperfusion Injury. PLOS ONE, 13, e0202772.
https://doi.org/10.1371/journal.pone.0202772
[31] Takeda, Y., Uemura, S., Iwama, H., et al. (2009) Treatment with Recombinant Placental Growth Factor (PlGF) Enhances both Angiogenesis and Arteriogenesis and Improves Survival after Myocardial Infarction. Circulation Journal, 73, 1674-1682.
https://doi.org/10.1253/circj.CJ-08-1067
[32] Luttun, A., Tjwa, M., Moons, L., et al. (2002) Revascularization of Ischemic Tissues by PlGF Treatment, and Inhibition of Tumor Angiogenesis, Arthritis and Atherosclerosis by Anti-Flt1. Nature Medicine, 8, 831-840.
https://doi.org/10.1038/nm731
[33] Li, B., Sharpe, E.E., Maupin, A.B., et al. (2006) VEGF and PlGF Promote Adult Vasculogenesis by Enhancing EPC Recruitment and Vessel Formation at the Site of Tumor Neovascularization. The FASEB Journal, 20, 1495-1497.
https://doi.org/10.1096/fj.05-5137fje
[34] Iwama, H., Uemura, S., Naya, N., et al. (2006) Cardiac Expression of Placental Growth Factor Predicts the Improvement of Chronic Phase Left Ventricular Function in Patients with Acute Myocardial Infarction. Journal of the American College of Cardiology, 47, 1559-1567.
https://doi.org/10.1016/j.jacc.2005.11.064
[35] Matsumoto, T., Uemura, S., Takeda, Y., et al. (2013) An Elevated Ratio of Placental Growth Factor to Soluble FMS-Like Tyrosine Kinase-1 Predicts Adverse Outcomes in Patients with Stable Coronary Artery Disease. Internal Medicine, 52, 1019-1027.
https://doi.org/10.2169/internalmedicine.52.9073
[36] Iwasaki, H., Kawamoto, A., Tjwa, M., et al. (2011) PlGF Repairs Myocardial Ischemia through Mechanisms of Angiogenesis, Cardioprotection and Recruitment of Myo-Angiogenic Competent Marrow Progenitors. PLOS ONE, 6, e24872.
https://doi.org/10.1371/journal.pone.0024872