脱矿牙本质基质作为rhBMP-2载体的研究进展
Research Progress of Demineralized Dentin Matrix as rhBMP-2 Carrier
DOI: 10.12677/ACM.2022.12101368, PDF, HTML, XML, 下载: 279  浏览: 350 
作者: 张 迪, 达尔亚·俄尼木拜:新疆医科大学第一附属医院(附属口腔医院)牙周病科,新疆 乌鲁木齐;古丽努尔·阿吾提*:新疆医科大学第一附属医院(附属口腔医院)牙周病科,新疆 乌鲁木齐;新疆维吾尔自治区口腔医学研究所,新疆 乌鲁木齐
关键词: 脱矿牙本质基质骨移植材料骨诱导骨传导重组人骨形态发生蛋白-2Demineralized Dentin Matrix Bone Graft Material Osteoinductive Osteoconductive Recombinant Human Bone Morphogentic Protein-2
摘要: 骨形态发生蛋白-2 (bone morphogentic protein-2, BMP-2)是转化生长因子-β家族的成员,可促进骨髓间充质干细胞分化为成骨细胞和软骨细胞。脱矿牙本质基质(demineralized dentin matrix, DDM)是由牙本质经过粉碎、脱矿、灭菌等处理后制得,具有良好的骨诱导性、骨传导性和生物相容性等特性,是一种颇有前景的骨移植材料。DDM不仅是一种骨移植材料,也可作为重组人骨形态发生蛋白-2 (recombinant human bone morphogentic protein-2, rhBMP-2)的合适载体。DDM与rhBMP-2有着较好的亲和力,并能够缓释rhBMP-2。此外,外源性的rhBMP-2和DDM中内源性BMP具有协同效应,可产生更多的新骨。DDM用作rhBMP-2载体时,rhBMP-2的浓度可降低为0.2 mg/mL。
Abstract: Bone morphogenetic protein-2 (BMP-2) is a transforming growth factor-β family member. It can promote bone marrow mesenchymal stem cells to differentiate into osteoblasts and chondrocytes. Demineralized dentin matrix (DDM) is prepared from dentin after grinding, demineralization, steri-lization, etc. It has good osteoinductive, osteoconductive, biocompatibility, and is a promising bone graft material. DDM is not only a bone graft material, but also a suitable carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2). DDM has good affinity with rhBMP-2 and can slowly release rhBMP-2. In addition, exogenous rhBMP-2 and endogenous BMP in DDM have syner-gistic effects, which can produce more new bones. When DDM is used as rhBMP-2 carrier, the con-centration of rhBMP-2 can be reduced to 0.2 mg/mL.
文章引用:张迪, 达尔亚·俄尼木拜, 古丽努尔·阿吾提. 脱矿牙本质基质作为rhBMP-2载体的研究进展[J]. 临床医学进展, 2022, 12(10): 9456-9460. https://doi.org/10.12677/ACM.2022.12101368

1. 引言

当今时代,牙周炎仍是一个重大的世界性的公共卫生问题,可造成牙槽骨的吸收 [1]。牙拔除后,由于失去了生理刺激,剩余牙槽嵴将不可避免地发生萎缩 [2]。缺失的牙齿通常使用口腔修复的方法进行治疗,近年来,口腔种植技术发展迅速,成为了口腔修复的首选方案 [3]。然而,骨量不足时会影响种植效果 [4]。目前对骨缺损修复的常规方法主要是植入骨移植材料。自体骨具有骨生成、骨诱导和骨传导能力,是一种理想的骨移植材料,但常需二次手术,收集的骨量有限,新骨还未来得及形成,自体骨已有较多的吸收。同种异体骨移植具有骨诱导能力,但面临病毒感染的风险。异种骨以及生物活性玻璃、羟基磷灰石等非骨移植材料仅具有骨传导性,缺乏骨诱导性 [5] [6]。

当使用缺乏骨诱导性的骨移植材料时,可以添加具有骨诱导作用的生长因子以增强成骨效果。骨形态发生蛋白(bone morphogenetic protein, BMPs)属于转化生长因子-β家族的成员,可促进骨髓间充质干细胞分化为成骨细胞和软骨细胞 [7]。1991年,成功地从人类牙本质基质中分离出BMP。尽管人类牙本质衍生BMP不同于人类骨衍生BMP,但两种类型的BMP在体内表现出相同的作用 [8]。迄今为止,已经鉴定出15种BMP,其中BMP-2、BMP-3、BMP-4、BMP-6和BMP-7可诱导骨形成 [9]。

由于BMP只能从人类或动物的骨骼或牙齿中提取,而骨骼或牙齿中BMP的含量较少,故难以满足临床需求。随着基因工程的发展,使得通过基因重组技术大规模生产重组人骨形态发生蛋白-2 (recombinant human bone morphogentic protein-2, rhBMP-2)成为可能 [7]。

2. rhBMP-2载体的性能要求

rhBMP-2由于是液体的原因,很难在局部位置保留足够的时间,而且高度可溶,难以充分发挥骨诱导能力,需要一种能够容纳并充分释放它们的载体。rhBMP-2载体应满足若干要求:能够保证缺损区域在足够长的时间里保持一定浓度的rhBMP-2,以允许新骨形成;rhBMP-2与其载体之间具有良好的亲和力,使rhBMP-2缓慢持续释放;易于灭菌、良好的机械稳定性、生物相容性、生物降解性,无免疫原性;具有足够的孔隙率,允许细胞和血管进入;保持rhBMP-2的生物活性 [7] [8]。

已研究了一些可能合适的rhBMP-2的载体。例如,脱蛋白牛骨、磷酸钙,但它们只能部分满足rhBMP-2载体所需的性能要求 [10]。脱钙骨基质是通过对同种异体骨的脱矿处理而获得,其含有胶原蛋白和包括BMP在内的生长因子,但存在免疫原性和疾病传播风险,也并非合适的载体材料。对于颌面部商用rhBMP-2,唯一批准的载体是可吸收胶原海绵(absorbable collagen sponge, ACS)。2007年,美国食品和药物管理局批准了ACS作为浓度为1.5 mg/mL的rhBMP-2的载体。然而,ACS不具有骨传导性,机械性能差,有限的控释能力,在植入后的第二天便释放了大量的rhBMP-2,并且使用了超生理剂量的rhBMP-2,可导致面部水肿、异位骨形成等并发症 [8]。

3. 脱矿牙本质基质作为有效的rhBMP-2载体

脱矿牙本质基质(demineralized dentin matrix, DDM)是一种有效的rhBMP-2载体,其具有良好的机械稳定性、生物相容性、生物降解性、孔隙率,与rhBMP-2的亲和力,可灭菌,有着较高的释放率和较低的释放速度。已有多项研究证明了DDM用作rhBMP-2载体的安全性和有效性 [7] [8] [11] [12]。此外,DDM用作rhBMP-2载体时,rhBMP-2的浓度可降低为0.2 mg/mL,比ACS用作载体时,浓度降低了约7倍 [13]。

DDM是将牙根部的牙本质粉碎成颗粒,将牙本质颗粒进行脱水、脱脂、脱矿、冻干、灭菌等一系列处理后制得 [8]。一项动物研究表明,100~300 μm的牙本质颗粒与rhBMP-2结合的成骨效果优于1000~2000 μm的牙本质颗粒与rhBMP-2结合,小颗粒可提供更多的表面积,从而增强了骨诱导作用 [12]。

牙本质内无细胞、无血管,免疫原性极低。脱矿去除了牙本质的免疫原性。脱矿可使牙本质小管变宽,小管可容纳rhBMP-2溶液,小管内微孔结构的存在增加了表面接触面积,有利于rhBMP-2与DDM的结合及缓慢释放。脱矿去除了牙本质中大部分的无机物,剩余的无机物足以保持DDM的机械性能,大部分I型胶原蛋白和包含BMP在内的多种生长因子保留了下来 [8] [10] [11] [14]。DDM自身就具有骨传导性和骨诱导性,是一种性能良好的骨移植材料 [15] [16]。DDM已成功应用于位点保存术 [17] [18],即刻种植术 [19],牙槽嵴增宽术 [20] [21],上颌窦提升术 [22],较大囊肿导致的骨缺损的修复 [23],根分叉病变的植骨治疗 [24]。下颌第三磨牙拔除后下颌第二磨牙远中常会出现骨缺损、牙周袋等问题 [25] [26],在下颌第二磨牙远中植入DDM可有效预防牙周袋的形成 [27]。

4. rhBMP-2与DDM的协同作用

外源性的rhBMP-2和DDM中内源性BMP具有协同效应。rhBMP-2/DDM植入后的释放情况:第一阶段,释放吸附在DDM表面的rhBMP-2;第二阶段,释放包埋在DDM内部的rhBMP-2;第三阶段,rhBMP-2的释放促进了DDM的骨重塑,使DDM中内源性BMP的释放增强 [13] [28]。有动物实验表明,含有rhBMP-2的DDM是自体骨移植的可行替代方案 [7]。在一项随机对照试验中,评估了rhBMP-2结合DDM在位点保存术的疗效,并与单独使用DDM进行比较,结果显示rhBMP-2结合DDM组有更多的新骨形成 [10]。Um等 [29] 建立兔子颅骨缺损模型,评估比较了rhBMP-2结合DDM与单独使用DDM的成骨效果,分别在术后1周、2周、4周行组织学检测,结果显示DDM组新骨形成率分别为12.52%、16.59%和24.94%,DDM/rhBMP-2组分别为17.17%、21.77%和47.99%,在这三个时间点两组之间新骨形成率的差异均有统计学意义。

5. 展望

综上所述,DDM具有良好的骨诱导性、骨传导性、机械稳定性、生物相容性、生物降解性等特性,可容纳并缓释rhBMP-2,可作为rhBMP-2的合适载体,此外,rhBMP-2的添加也增强了DDM的成骨能力。但现有的研究样本量较少,随访期较短,需要更多高质量的随机对照试验。

参考文献

参考文献

[1] Chen, M.X., Zhong, Y.J., Dong, Q.Q., et al. (2021) Global, Regional, and National Burden of Severe Periodontitis, 1990-2019: An Analysis of the Global Burden of Disease Study 2019. Journal of Clinical Periodontology, 48, 1165-1188.
https://doi.org/10.1111/jcpe.13506
[2] 刘欢, 王宁, 仲维剑, 等. 部分脱矿自体牙本质颗粒联合PRF在拔牙位点保存中的应用1例[J]. 口腔医学研究, 2022, 38(1): 90-91.
[3] Wu, D., Zhou, L., Lin, J., et al. (2019) Immediate Implant Placement in Anterior Teeth with Grafting Material of Autogenous Tooth Bone vs Xenogenic Bone. BMC Oral Health, 19, Article No. 266.
https://doi.org/10.1186/s12903-019-0970-7
[4] Jo, S.H., Kim, Y.K. and Choi, Y.H. (2018) Histological Evalua-tion of the Healing Process of Various Bone Graft Materials after Engraftment into the Human Body. Materials (Basel), 11, Article No. 714.
https://doi.org/10.3390/ma11050714
[5] Korsch, M. and Peichl, M. (2021) Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique. International Journal of Environmental Research and Public Health, 18, Article No. 3174.
https://doi.org/10.3390/ijerph18063174
[6] Zhang, S., Li, X., Qi, Y., et al. (2021) Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Engineering and Regenerative Medicine, 18, 327-341.
https://doi.org/10.1007/s13770-021-00333-4
[7] Kim, S.Y., Kim, Y.K., Park, Y.H., et al. (2017) Evaluation of the Healing Potential of Demineralized Dentin Matrix Fixed with Recombinant Human Bone Morphogenetic Protein-2 in Bone Grafts. Materials (Basel), 10, Article No. 1049.
https://doi.org/10.3390/ma10091049
[8] Um, I.W. (2018) Demineralized Dentin Matrix (DDM) as a Carrier for Recombinant Human Bone Morphogenetic Proteins (rhBMP-2). Advances in Experimental Medicine and Biology, 1077, 487-499.
https://doi.org/10.1007/978-981-13-0947-2_26
[9] Kim, B.J., Kim, S.K. and Lee, J.H. (2021) Bone Regeneration of Demineralized Dentin Matrix with Platelet-Rich Fibrin and Recombinant Human Bone Morphogenetic Protein-2 on the Bone Defects in Rabbit Calvaria. Maxillofacial Plastic and Reconstructive Surgery, 43, Article No. 34.
https://doi.org/10.1186/s40902-021-00320-8
[10] Jung, G.-U., Jeon, T.-H., Kang, M.-H., et al. (2018) Volumetric, Radiographic, and Histologic Analyses of Demineralized Dentin Matrix Combined with Recombinant Human Bone Morphogenetic Protein-2 for Ridge Preservation: A Prospective Randomized Controlled Trial in Comparison with Xeno-graft. Applied Sciences, 8, Article No. 1288.
https://doi.org/10.3390/app8081288
[11] Um, I.-W., Jun, S.-H., Yun, P.-Y., et al. (2017) Histological Comparison of Autogenous and Allogenic Demineralized Dentin Matrix Loaded with Recombinant Human Bone Morphogenetic Protein-2 for Alveolar Bone Repair: A Preliminary Report. Journal of Hard Tissue Biology, 26, 417-424.
https://doi.org/10.2485/jhtb.26.417
[12] Wadhwa, P., Lee, J.H., Zhao, B.C., et al. (2021) Microcomputed Tomog-raphy and Histological Study of Bone Regeneration Using Tooth Biomaterial with BMP-2 in Rabbit Calvarial Defects. Scanning, 2021, Article ID: 6690221.
https://doi.org/10.1155/2021/6690221
[13] Um, I.W., Kim, Y.K., Park, J.C., et al. (2019) Clinical Application of Autogenous Demineralized Dentin Matrix Loaded with Recombinant Human Bone Morphogenetic-2 for Socket Preser-vation: A Case Series. Clinical Implant Dentistry and Related Research, 21, 4-10.
https://doi.org/10.1111/cid.12710
[14] Um, I.W., Ku, J.K., Kim, Y.K., et al. (2020) Histological Review of Demin-eralized Dentin Matrix as a Carrier of rhBMP-2. Tissue Engineering Part B: Reviews, 26, 284-293.
https://doi.org/10.1089/ten.teb.2019.0291
[15] Um, I.W., Lee, J.K., Kim, J.Y., et al. (2021) Allogeneic Dentin Graft: A Review on Its Osteoinductivity and Antigenicity. Materials (Basel), 14, Article No. 1713.
https://doi.org/10.3390/ma14071713
[16] Li, Y., Zhou, W., Li, P., et al. (2022) Comparison of the Osteogenic Ef-fectiveness of an Autogenous Demineralised Dentin Matrix and Bio-Oss® in Bone Augmentation: A Systematic Review and Meta-Analysis. British Journal of Oral and Maxillofacial Surgery, 60, 868-876.
https://doi.org/10.1016/j.bjoms.2022.03.009
[17] Yüceer-Çetiner, E., Özkan, N. and Önger, M.E. (2021) Effect of Autogenous Dentin Graft on New Bone Formation. Journal of Craniofacial Surgery, 32, 1354-1360.
https://doi.org/10.1097/SCS.0000000000007403
[18] Elfana, A., El-Kholy, S., Saleh, H.A., et al. (2021) Alveolar Ridge Preservation Using Autogenous Whole-Tooth versus Demineralized Dentin Grafts: A Randomized Controlled Clinical Trial. Clinical Oral Implants Research, 32, 539-548.
https://doi.org/10.1111/clr.13722
[19] Li, P., Zhu, H. and Huang, D. (2018) Autogenous DDM versus Bio-Oss Granules in GBR for Immediate Implantation in Periodontal Postextraction Sites: A Prospective Clinical Study. Clinical Implant Dentistry and Related Research, 20, 923-928.
https://doi.org/10.1111/cid.12667
[20] Pang, K.M., Um, I.W., Kim, Y.K., et al. (2017) Autogenous Demineralized Dentin Matrix from Extracted Tooth for the Augmentation of Alveolar Bone Defect: A Prospective Randomized Clinical Trial in Comparison with Anorganic Bovine Bone. Clinical Oral Implants Research, 28, 809-815.
https://doi.org/10.1111/clr.12885
[21] Wang, W., Jiang, Y., Wang, D., et al. (2022) Clinical Efficacy of Autoge-nous Dentin Grafts with Guided Bone Regeneration for Horizontal Ridge Augmentation: A Prospective Observational Study. International Journal of Oral and Maxillofacial Surgery, 51, 837-843.
https://doi.org/10.1016/j.ijom.2021.06.012
[22] Umebayashi, M., Ohba, S., Kurogi, T., et al. (2020) Full Regenera-tion of Maxillary Alveolar Bone Using Autogenous Partially Demineralized Dentin Matrix and Particulate Cancellous Bone and Marrow for Implant-Supported Full Arch Rehabilitation. Journal of Oral Implantology, 46, 122-127.
https://doi.org/10.1563/aaid-joi-D-19-00315
[23] Vares, Y., Binderman, I. and Galyant, K. (2022) Traumatic Man-dibular Cyst Defect Grafted with Autologous Dentin and Platelet-Rich Fibrin Composite: A Case Report. The Interna-tional Journal of Periodontics & Restorative Dentistry, 42, 253-259.
https://doi.org/10.11607/prd.5215
[24] 吴峥嵘, 左园林, 李朝晖. 自体牙本质颗粒结合富血小板纤维蛋白膜治疗93例下颌第一磨牙根分叉病变效果评价[J]. 上海口腔医学, 2020, 29(2): 213-216.
[25] Li, Z.B., Qu, H.L., Zhou, L.N., et al. (2017) Nonimpacted Third Molars Affect the Periodontal Status of Adjacent Teeth: A Cross-Sectional Study. Journal of Oral and Maxillofacial Surgery, 75, 1344-1350.
https://doi.org/10.1016/j.joms.2017.02.005
[26] Sun, L.J., Qu, H.L., Tian, Y., et al. (2020) Impacts of Non-Impacted Third Molar Removal on the Periodontal Condition of Adjacent Second Molars. Oral Diseases, 26, 1010-1019.
https://doi.org/10.1111/odi.13314
[27] Mazzucchi, G., Lollobrigida, M., Lamazza, L., et al. (2022) Autologous Dentin Graft after Impacted Mandibular Third Molar Extraction to Prevent Periodontal Pocket Formation—A Split-Mouth Pilot Study. Materials (Basel), 15, Article No. 1431.
https://doi.org/10.3390/ma15041431
[28] Um, I.W., Ku, J.K., Lee, B.K., et al. (2019) Postulated Release Profile of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) from Demineralized Dentin Matrix. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 45, 123-128.
https://doi.org/10.5125/jkaoms.2019.45.3.123
[29] Um, I.-W., Kim, Y.-K., Jun, S.-H., et al. (2018) Demineralized Dentin Matrix as a Carrier of Recombinant Human Bone Morphogenetic Proteins: In Vivo Study. Journal of Hard Tissue Biology, 27, 219-226.
https://doi.org/10.2485/jhtb.27.219