#### 期刊菜单

35 kV电力电缆快插接头关键内部结构设计研究
Research on Key Internal Structure Design of 35 kV Power Cable Quick-Connect Joint
DOI: 10.12677/SG.2022.125017, PDF, HTML, XML, 下载: 73  浏览: 119  科研立项经费支持

Abstract: In the structural design of 35 kV power cable quick-plug joint, the internal electric field of the joint is mainly handled by the stress cone structure at both ends and the inner shielding layer structure in the middle to avoid local high electric field intensity inside the joint, resulting in high voltage breakdown of the joint. In this paper, the maxwell finite element analysis method is used to simulate the magnitude and distribution of the electric field inside the joint under different design parameters of the stress cone and the inner shielding layer, and find the optimal solution for the design of the stress cone and the inner shielding layer, which is the best solution for the future. Products offer design options.

1. 引言

2. 应力锥的设计方法

2.1. 应力锥设计的要素

2.2. 应力锥的仿真

Figure 1. Structure diagram of stress cone of quick-plug joint of 35 kV power cable

1) 取应力锥电阻率ρ和长度L为固定最小值保持不变，张开角度θ从5˚~30˚不断变化时，仿真电力电缆快插终端头应力锥处的电场大小：

a) ρ = 104 Ω·m，L =40 mm，θ = 5˚时，应力锥处的电场最大值Emax = 24.936 MV/m，见图2所示。

Figure 2. Electric field at the stress cone of 35 kV power cable push-in joint

b) ρ = 104 Ω·m，L =40 mm，θ = 10˚时，应力锥处的电场最大值Emax = 24.161 MV/m，见图3所示。

Figure 3. Electric field at the stress cone of the 35 kV power cable push-in connector

c) ρ = 104 Ω·m，L =40 mm，θ = 15˚时，应力锥处的电场最大值Emax = 24.928 MV/m，见图4所示。

Figure 4. Electric field at the stress cone of the 35 kV power cable push-in connector

d) ρ = 104 Ω·m，L =40 mm，θ = 20˚时，应力锥处的电场最大值Emax = 25.717 MV/m，见图5所示。

Figure 5. Electric field at stress cone of 35 kV power cable push-in joint

Figure 6. Influence of stress cone opening angle on the magnitude of electric field

2) 取应力锥电阻率ρ为固定最小值、张开角度θ为10˚不变，而应力锥轴向长度L不断变化时，仿真电力电缆快插接头应力锥处的电场大小：

a) ρ = 104 Ω·m，L = 60 mm，θ = 10˚时，应力锥处的电场最大值Emax = 24.126 MV/m，见图7所示。

Figure 7. Electric field at the stress cone of 35 kV power cable push-in connector

b) ρ = 104 Ω·m，L = 80 mm，θ = 10˚时，应力锥处的电场最大值Emax = 21.692 MV/m，见图8所示。

Figure 8. Electric field at the stress cone of the 35 kV power cable push-in connector

c) ρ = 104 Ω·m，L = 100 mm，θ = 10˚时，应力锥处的电场最大值Emax = 21.575 MV/m，见图9所示。

Figure 9. Electric field at the stress cone of the 35 kV power cable push-in connector

d) ρ = 104 Ω·m，L = 120 mm，θ = 10˚时，应力锥处的电场最大值Emax = 21.169 MV/m，见图10所示。

Figure 10. Electric field at the stress cone of the 35 kV power cable push-in connector

Figure 11. Influence of stress cone length on electric field magnitude

3) 取应力锥张开角度θ为10˚、应力锥轴向长度L为80 mm不变，而应力锥电阻率ρ不断变化时，仿真电力电缆快插接头应力锥处的电场大小：

a) ρ = 105 Ω·m，L = 80 mm，θ = 10˚时，应力锥处的电场最大值Emax = 21.107 MV/m，见图12所示。

Figure 12. Electric field at the stress cone of the 35 kV power cable push-in connector

b) ρ = 106 Ω·m，L = 80 mm，θ = 10˚时，应力锥处的电场最大值Emax = 21.077 MV/m，见图13所示。

Figure 13. Electric field at the stress cone of the 35 kV power cable push-in connector

c) ρ = 107 Ω·m，L = 80 mm，θ = 10˚时，应力锥处的电场最大值Emax = 26.664 MV/m，见图14所示。

Figure 14. Electric field at the stress cone of the 35 kV power cable push-in connector

d) ρ = 108 Ω·m，L = 80 mm，θ = 10˚时，应力锥处的电场最大值Emax = 28.753 MV/m，见图15所示。

Figure 15. Electric field at the stress cone of the 35 kV power cable push-in connector

Figure 16. Effect of stress cone resistivity on electric field magnitude

2.3. 应力锥的仿真小结

Table 1. Summary of electric field simulation at stress cone

3. 屏蔽层的设计方法

3.1. 屏蔽层设计的要素

3.2. 屏蔽层的仿真

35 kV电力电缆快插接头的内屏蔽层设计结构见图17所示，设置不同的内屏蔽层轴向长度和边缘倒角大小，根据仿真的电场分布变化，探索内屏蔽层处理电场最佳时的各项参数 [4] [5]。

Figure 17. Structural diagram of the inner shield of the 35 kV power cable quick-plug connector

1) 取内屏蔽层与导体的长度差值ΔL为0固定不变、倒角半径不断变化时，仿真电力电缆快插接头内屏蔽层处的电场大小：

a) ΔL = 0 mm，R = 0 mm、即不倒角时，内屏蔽层处的电场最大值Emax = 26.260 MV/m，见图18所示。

Figure 18. Electric field at the inner shield of 35 kV power cable quick-plug connector

b) ΔL = 0 mm，R = 0.5 mm，内屏蔽层处的电场最大值Emax = 25.693 MV/m，见图19所示。

Figure 19. Electric field at the inner shield of 35 kV power cable quick-plug connector

c) ΔL = 0 mm，R = 1 mm，内屏蔽层处的电场最大值Emax = 23.291 MV/m，见图20所示。

Figure 20. Electric field at the inner shield of 35 kV power cable quick-plug connector

d) ΔL = 0 mm，R = 1.5 mm，内屏蔽层处的电场最大值Emax = 22.705 MV/m，见图21所示。

Figure 21. Electric field at the inner shield of 35 kV power cable quick-plug connector

e) ΔL = 0 mm，R = 2 mm，内屏蔽层处的电场最大值Emax = 21.180 MV/m，见图22所示。

Figure 22. Electric field at the inner shield of 35 kV power cable quick-plug connector

f) ΔL = 0 mm，R = 3 mm，内屏蔽层处的电场最大值Emax = 21.127 MV/m，见图23所示。

Figure 23. Electric field at the inner shield of 35 kV power cable quick-plug connector

Figure 24. Influence of chamfering of inner shielding layer on the magnitude of electric field

2) 取内屏蔽层导体倒角半径R = 2 mm，ΔL不断变化时，仿真电力电缆快插接头内屏蔽层处的电场大小：

a) ΔL = −4 mm，R = 2 mm时，内屏蔽层处的电场最大值Emax = 25.318 MV/m，见图25所示。

Figure 25. Electric field at the inner shield of 35 kV power cable quick-plug connector

b) ΔL = −2 mm，R = 2 mm时，内屏蔽层处的电场最大值Emax = 24.423 MV/m，见图26所示。

Figure 26. Electric field at the inner shield of 35 kV power cable quick-plug connector

c) ΔL = 2 mm，R = 2 mm时，内屏蔽层处的电场最大值Emax = 20.674 MV/m，见图27所示。

Figure 27. Electric field at the inner shield of 35 kV power cable quick-plug connector

d) ΔL = 4 mm，R = 4 mm时，内屏蔽层处的电场最大值Emax = 18.992 MV/m，见图28所示。

Figure 28. Electric field at the inner shield of 35 kV power cable quick-plug connector

e) ΔL = 6 mm，R = 2 mm时，内屏蔽层处的电场最大值Emax = 18.990 MV/m，见图29所示。

Figure 29. Electric field at the inner shield of 35 kV power cable quick-plug connector

Figure 30. Influence of the difference between the inner shielding layer and the conductor length on the magnitude of the electric field

3.3. 屏蔽层的仿真小结

Table 2. Summary of electric field simulation at inner shielding layer

4. 设计试验验证

Figure 31. 35 kV Electric power cable express the connect point

Table 3. Type test results of 35 kV power cable push-in connector

5. 结论

35 kV电力电缆接头应力锥设计的张开角度θ = 10˚时，Emax最小；应力锥长度L越大，Emax越小，L > 80 mm，Emax值变化减少；

35 kV电力电缆接头的应力锥和内屏蔽层所用材料的电阻率ρ大于106 Ω·m后，Emax会明显下降；

35 kV电力电缆接头的内屏蔽层设计中屏蔽管边缘倒角半径R越大，Emax最小；在R大于1 mm后，处理电场能力明显增强，R超过2 mm后，Emax变化趋于稳定；内屏蔽层长度与导体长度差值ΔL越大，处理电场能力越强，当ΔL > 4 mm后，趋于稳定。

 [1] 李国倡, 梁箫剑, 魏艳慧, 苏国强, 雷清泉. 配电电缆附件复合绝缘界面缺陷类型和位置对电场分布的影响研究[J]. 电工技术学报, 2022, 37(11): 2707-2715. [2] 刘英, 苏宇, 李文沛. 10kV XLPE电缆接头的电场模拟方法研究[J]. 高压电器, 2016, 52(4): 30-35. [3] 蒋晓娟, 梁惟钢, 夏俊峰, 孙建生. 35 kV电力电缆冷缩式中间接头典型缺陷电场计算及故障分析[J]. 绝缘材料, 2015(11): 59-63+68. [4] 孔德武, 周明阳, 徐玮, 赵毅. 电缆附件的电场数值计算和优化设计[J]. 电线电缆, 1997(3): 7-10. [5] 余海涛, 邵可玉, 罗俊华. 用有限元法优化高压电缆参数[J]. 高电压技术, 2004, 30(3): 3-4+8.