肠道菌群在代谢、免疫疾病中作用的研究进展
Research Progress of Gut Microbiota’s Function in Metabolic and Immunological Diseases
DOI: 10.12677/OJNS.2022.106107, PDF, HTML, XML, 下载: 263  浏览: 486  科研立项经费支持
作者: 孙 卓:西安医学院,西安市病原微生物与肿瘤免疫重点实验室,陕西 西安;西安医学院,基础医学研究所,陕西 西安
关键词: 肠道菌群代谢疾病免疫疾病Gut Microbiota Metabolic Diseases Immunological Diseases
摘要: 肠道菌群除了参与机体的消化和营养物质吸收外,还在代谢、免疫调节等过程中发挥重要生理功能。在多种相关疾病患者体内,肠道菌群组成和含量发生显著改变。肠道菌群可以影响宿主的代谢过程,并参与包括肥胖症、二型糖尿病在内的多种代谢疾病。肠道菌群可以通过其代谢产物影响宿主的免疫反应和炎症反应,并参与炎症性肠炎和系统性红斑狼疮等病的发病过程。粪菌移植为多种代谢、免疫疾病提供新的治疗方案,多项粪菌移植的临床试验显示出良好治疗效果,但尚存在争议,需要进一步验证和完善。
Abstract: Besides functions in digestion and nutrient absorption, microbiota also plays an important role in metabolism and immunological regulation. In many related diseases, there is significant alteration of microbiota in patients compared to healthy controls. Microbiota can affect host metabolism, tak-ing part in pathogenesis of many metabolic diseases including obesity and Type II diabetes. Microbiota can exert immunity and inflammation regulation functions through their metabolites, and participate in pathogenesis of inflammatory bowel disease and systemic lupus erythematosus. Research on Gut-Brain-Axis has discovered microbiota’s function in brain development and cognitive behaviors. Psychobiotics has shown positive effects on mental health. Fecal microbiota transplanta-tion has provided new treatment schemes for many metabolic, immunological and neurological disorders. Many clinical trials of fecal microbiota transplantation have shown promising results for disease management, but are still under debate and need more rigorous testing.
文章引用:孙卓. 肠道菌群在代谢、免疫疾病中作用的研究进展[J]. 自然科学, 2022, 10(6): 949-959. https://doi.org/10.12677/OJNS.2022.106107

1. 引言

人体中存在的基因超过99%来自于微生物 [1],而人体中微生物细胞的数量也远远超过机体细胞数 [2]。人类肠道菌群中除了数量最多也是被研究最多的细菌外,还包括酵母、单细胞真核生物、寄生虫、病毒等 [3]。人在降生时通过母亲的产道就获得了来自母体的菌群。在生命的早期,肠道菌群的构成可以被多种因素影响,比如是否早产、生产的方式(顺产或剖腹产)、喂养方式(母乳或奶粉喂养)、抗生素的使用等 [4]。而随着年龄的增长,肠道菌群主要由饮食影响 [5] [6]。人类肠道菌群主要由拟杆菌、变形杆菌、厚壁菌门、放线菌、广古菌门构成 [7] [8]。

近年来的研究表明,肠道菌群除了参与宿主营养物质消化和吸收外,还具有调控宿主代谢活动、免疫调节、影响神经系统发育等多种生理功能。而肠道菌群失调会造成多种相关疾病。目前的相关研究多为观察性病例对照研究,越来越多的研究开始关注肠道菌群参与疾病发生的相关机制,以及如何通过改变肠道菌群改善疾病的临床症状。本综述总结了代谢、免疫、神经和心理疾病患者肠道菌群的变化情况,肠道菌群参与疾病发生的相关机制研究,以及修饰肠道菌群的相关治疗方法的最新研究进展。此外,还讨论了肠道菌群与疾病发生研究目前尚存在的问题和未来的研究方向。

2. 肠道菌群与代谢疾病的关系

2.1. 肠道菌群在宿主代谢中的生理功能

肠道菌群组成可以影响宿主对于食物选择的偏好 [9]。缺乏必需氨基酸饲料喂养的果蝇会对于氨基酸含量丰富的食物有选择偏好,然而如果果蝇肠道中同时存在发霉醋杆菌(Acetobacter pomorum)和乳酸杆菌,这种偏好则会消失。

肠道菌群可以影响内分泌调节。肠道菌群可以通过一些肠道内的多肽影响宿主的进食行为。胃饥饿素在大鼠饥饿感和食欲产生过程中有重要作用 [10] [11],肠道激素类胰高血糖素多肽1 (Glucagon-like peptide 1, GLP-1) [12] 和多肽YY (Peptide YY, PYY) [13] 与人类宿主饱腹感和满足感以及停止进食的选择相关。对小鼠和人类的多项研究显示,肠道菌群产生的短链脂肪酸(SCFA)的增加可以刺激肠道内分泌细胞产生GLP-1 [14] 和PYY [15],并且降低胃饥饿素的分泌 [16]。肠道菌群产生的包括丁酸盐和丙酸盐在内的SCFAs还可以促进小鼠原代脂肪细胞中瘦素合成 [17] [18]。

2.2. 代谢疾病中肠道菌群的变化

研究发现,在许多代谢疾病中肠道菌群的种类和数量发生显著变化,如肥胖症、营养不良、二型糖尿病和代谢性肝病等。

2.2.1. 肥胖症

虽然导致肥胖症的因素众多,但肠道菌群和肥胖症之间的关联被普遍认同。2006年,Turnbaugh等发现将肥胖小鼠的粪菌移植至瘦小鼠肠道内后会引起瘦小鼠的体重增加 [19]。一系列流行病学研究显示肥胖症个体和瘦个体之间肠道菌群组成的差别。对同卵双生双胞胎人群的一项研究显示,产生SCFA的Eubacterium ventriosum和肠道罗氏菌(Roseburia intestinalis)和肥胖相关 [20],而产丁酸盐的颤螺菌属(Oscillospira) [21] 和史氏甲烷短杆菌(Methanobrevibacter smithii) [22] 和瘦型相关(见表1)。肠道菌群对于宿主代谢的影响可以通过粪菌移植从人类传递到小鼠 [23]。肠道菌群可以通过增加宿主能量吸收 [24],提高食欲 [25],提高脂肪储存 [26] 等方式导致肥胖症的发生。

Table 1. Alterations of gut microbiota in metabolic, immunological disorders

表1. 代谢、免疫疾病中肠道菌群的变化情况

2.2.2. 二型糖尿病

在未使用药物治疗的前驱糖尿病患者体内,产丁酸盐的菌种减少,嗜黏蛋白艾克曼菌(Akkermansia muciniphila)含量降低,促炎性菌种含量升高 [27] [28] (见表1)。值得指出的是,这些变化并不是二型糖尿病特有的,而是在一些其他伴随炎症反应的慢性非传染性疾病中也存在的。

肠道菌群通过代谢产物影响宿主的胰岛素敏感性。在不健康饮食的条件下,肠道菌群可以提高血浆BCAA浓度并造成胰岛素耐受性 [29]。变异链球菌(Streptococcus mutans)和缓慢爱格士氏菌(Eggerthella lenta)产生的咪唑丙酸对胰岛素信号通路有抑制作用 [30]。

在以上肥胖症和二型糖尿病肠道菌群的研究中,药物的使用都是一个可能影响肠道菌群构成的因素。例如,降低胆固醇的他汀类药物经常在肥胖症患者中用于防止动脉硬化,它的使用和有益健康的菌群增加相关 [31]。二型糖尿病患者经常会使用的降血糖药物二甲双胍不仅对患者肠道菌群组成及含量有影响,还会增强肠道菌群糖异生的功能 [32] [33] [34]。

2.3. 粪菌移植治疗代谢疾病的进展

2.3.1. 粪菌移植FMT

粪菌移植(Fecal Microbiota Transplantation, FMT)是指将经过筛选的捐献者的粪便标本进行采集、处理后,经过结肠镜、内窥镜、鼻胃管或灌肠剂等方式植入患者体内的过程,目的是以健康的肠道菌群替换患者肠道内的致病菌群。FMT在公元4世纪中医书籍《肘后备急方》和《本草纲要》中就有服用肠道菌群悬液治疗食物中毒和严重腹泻的记载。美国食品药物管理局在2013年通过了使用FMT对复发性艰难梭菌(recurrent Clostridium difficile infection, rCDI)感染进行治疗。FMT在临床中治疗rCDI相比于使用万古霉素效果更加显著 [35],几项研究中显示FMT应用于rCDI治愈率在90%以上 [36]。FMT目前最常用于rCDI的治疗 [37]。由于肠道菌群在多种疾病中的病理作用,FMT的其他临床应用可能也正在探索之中,如肥胖症 [38],炎症性肠炎 [39]、自身免疫疾病及代谢疾病。然而目前的数据还不足以支持在临床中使用FMT治疗以上疾病。

由于医院资源和条件的限制,用于FMT的粪菌由粪菌库保存。自从2012年世界上首个非营利性粪菌库OpenBiome在美国建立起,全世界多个国家都建立了粪菌库。2015年,中华粪菌库由南京医科大学第二附属医院消化医学中心和第四军医大学西京消化病医院联合发起成立。

FMT捐献者需要经过严格的筛选 [40]。有的粪菌库筛选后合格的捐献者只占到潜在捐献者的3%。一般情况下,潜在捐献者需要依次经过筛查前问卷调查(筛除身体质量指数不佳、最近使用过抗生素等人群),临床评估和实验室检测。实验室检测的主要目的是判断捐献者是否具有对粪菌接受者具有潜在威胁的传染性疾病。约一半的潜在捐献者在实验室检测步骤由于粪便标本中含有脆弱双核阿米巴(Dientamoeba fragilis),人芽囊原虫(Blastocystis hominis),艰难梭菌或轮状病毒被筛除 [41]。筛选合格的捐献者可以在家或在粪菌库采集样品,捐献者需要在约一个月的时间段内连续取样,在取样开始和取样结束的日期一般都会进行实验室检测以便确保取样时间范围内的样品都是符合安全标准的。

用于一次FMT治疗的粪便使用量约为60 g,新鲜采集的粪便进行研磨后加入生理盐水混匀,随后经过一系列过滤去除未消化的食物残渣和颗粒状物质。经过离心浓缩后,加入甘油后即可冻存于−80℃ [42]。不同机构对于患者的不同临床情况会选择不同的移植方式。移植可以通过上消化道(鼻胃管、鼻空肠管等)、下消化道(结肠镜或保留灌肠) [43] 或口服胶囊 [44] 进行。下消化道移植法相比于上消化道移植法一般效果更好 [45]。对于结肠发炎的患者采取上消化道方式。通过结肠镜进行的FMT可以直接评估炎症轻重和在特定位置植入足量的粪菌 [46]。口服胶囊由于其非侵入性的特点比较容易被患者接受,然而价格较高,且胶囊体积较大 [47]。

FMT在临床中的推广存在一些限制和风险。首先,FMT治疗尚缺乏长期的安全性跟踪研究 [48]。在目前现有的短期复查研究中,FMT效果良好,很少出现不良反应。然而这不能排除FMT后长期存在的安全风险。其次,FMT移植过程中不仅转移了肠道菌群,还包括噬菌体和其他生物活性成分(如胆汁酸)。由于具体的治疗机制以及FMT中有效的活性成分还不明确,所以目前生产标准化的FMT产品还很困难。提供FMT治疗的机构之间对于样品的处理方式也各不相同 [49]。最后,FMT存在传播感染性疾病的风险。即使捐献者需要经过十分严苛的筛选过程,也有可能将具有潜在健康威胁的细菌转移到患者体内。例如在一项研究中,耐药性大肠埃希菌在FMT过程中被移植到患者体内 [50]。

2.3.2. FMT用于代谢疾病治疗的研究进展

FMT是肥胖和代谢综合征的一种新疗法。在几项小规模的临床试验中,低脂个体捐献者的粪便微生物群移植可以使具有代谢综合征的移植接受者有更好的胰岛素敏感性 [51] [52]。最新的研究显示,在24周内反复进行FMT可以有效改善肥胖的二型糖尿病患者肠道菌群,配合生活方式干预可以显著降低血脂 [53]。在减重期采样并在复胖过程中实施的自体FMT(粪菌样品捐献者和接受者是同一个人)在配合饮食调节的情况下,可减缓体重增长 [54]。FMT在一型糖尿病 [55] 和非酒精性脂肪肝 [56] 治疗中的应用潜力也正在探索中。

3. 肠道菌群与免疫疾病的关系

3.1. 肠道菌群在宿主炎症反应和免疫反应中的生理功能

3.1.1. 肠道菌群在宿主免疫反应和炎症反应中的作用

肠道菌群对于维持正常的免疫反应至关重要。研究显示,使用抗生素减少肠道菌群后,小鼠先天免疫和适应性免疫被削弱。肠道巨噬细胞的I型干扰素和II型干扰素反应受到抑制,限制病毒增殖的能力受损 [57]。肠道菌群可以作用于B细胞以维持肠道内环境的稳态。在关节炎模型小鼠中,肠道菌群可以促进白介素1β (interleukin-1β, IL-1β)和白介素6 (Interleukin-6, IL-6)的产生,从而促进脾脏和肠系膜淋巴结中的产白介素10 (interleukin-10, IL-10)的B细胞的发育和功能 [58]。

不同肠道菌群对于促炎细胞因子产生的影响不同。一些肠道细菌可以促进促炎细胞因子的产生,如嗜黏蛋白艾克曼菌(Akkermansia muciniphila)等肠道细菌可以消化肠道表面黏液层中的聚糖,导致肠道表面黏液层厚度降低,肠道屏障受损,形成肠漏症 [59],同时菌群产生的促炎产物增加,导致血液中脂多糖,促炎细胞因子(IL-1ꞵ, IL-6)增加 [60]。

另一些肠道细菌则对于促炎细胞因子的产生具有相反的作用,如双歧杆菌可以降低促炎细胞因子的含量。在高脂饲料中添加可以特异性增加双歧杆菌含量的益生元低聚果糖后,小鼠血浆和脂肪组织中的促炎细胞因子量降低,并且对于葡萄糖的耐受性增高 [61]。

拟杆菌门是革兰氏阴性菌中最大的门,对人类健康有益。其中拟杆菌属在肠道中最为普遍 [62]。脆弱拟杆菌(Bacteroides fragilis)可以激活产IL-10的B细胞,而这些B细胞可以抑制T细胞介导的炎症反应和结肠炎 [63] [64] [65]。脆弱拟杆菌细胞壁的成分多糖A可以刺激B细胞和T细胞合成IL-10,并且可以防止病毒性脑炎 [63]。而经过修饰的不能合成多糖A的脆弱拟杆菌失去促进IL-10产生的能力,变为促炎性 [66]。

3.1.2. 肠道菌群调节宿主免疫反应、炎症反应的机制

肠道菌群可以通过其产生的代谢产物(短链脂肪酸,脂质,维生素等)调节宿主的免疫反应 [67] [68]。短链脂肪酸(short chain fatty acid, SCFA)丁酸盐,醋酸盐,丙酸盐等是大肠中膳食纤维发酵的副产品。丁酸盐和丙酸盐可以促进胸腺外调节性T细胞的分化 [69] [70]。丁酸盐还可以降低脂多糖(Lipopolysaccharide, LPS)诱导的肠道巨噬细胞中促炎性细胞因子(一氧化氮,IL-6)的产生,证明丁酸盐是一种抗炎性代谢产物 [71]。肠道菌群将初级胆汁酸转化为次级胆汁酸(脱氧胆酸和石胆酸)。次级胆汁酸可以激活胆汁酸受体并引发抗炎反应,抗炎反应伴随Tgfb,Il10,Foxp3等基因表达以及抑制NF-kB介导的促炎细胞因子(Il6, Tnfa, Il1b和Ifng)表达 [72] [73]。许多肠道菌群的代谢产物(次级胆汁酸,脂肪酸等)以及次级代谢产物都可以在肠道内调节炎性白细胞和调节性T细胞并调控肠道屏障 [74]。

3.2. 菌群失调在免疫疾病中的病理作用

越来越多的数据证明肠道菌群失调或改变可以造成自身免疫疾病,特定种类的细菌可以促进或降低免疫反应,各种细菌共同作用会造成宿主不同的炎症反应状态。然而肠道菌群直接或间接地作用于免疫系统的具体机制尚不明确。

3.2.1. 炎症性肠炎(Inflammatory Bowel Disease, IBD)

IBD是由肠道菌群改变、异常免疫反应和肠黏膜屏障受损等因素共同引起的宿主对肠道正常菌群的免疫反应。越来越多的研究显示出IBD患者肠道菌群所具有的共同特点 [75]。IBD患者肠道菌群总体丰富性和α多样性降低 [76],这与粘膜炎症反应相符 [77]。黏附侵袭性细菌如变形菌门的大肠埃希菌和梭杆菌门的梭菌属在北美、日本和意大利的IBD患者肠道中富集 [78] [79] [80] [81] [82]。大肠埃希菌的富集还可能促使IBD患者肠道中丙型变形菌纲数量的增加 [83] (见表1)。

Th17/Treg细胞数量稳态的破坏是导致IBD的一个重要原因 [84],而肠道菌群可以影响Th17/Treg细胞的分化。分节丝状菌(Segmented Filamentous Bacteria)的鞭毛蛋白可以促进Th17的分化 [85]。肠道菌群的代谢产物ATP和SCFAs可以分别影响Th17细胞和Treg细胞的分化 [70] [86]。

FMT治疗IBD的有效性和安全性目前仍存在争议。研究显示FMT可以在短期内缓解IBD的临床症状 [87] [88] [89] [90],且绝大多数患者并没有出现与FMT相关的严重不良反应 [87]。FMT对于一些IBD患者疗效显著,而对另一些患者没有明显作用,这可能和多种因素相关:患者的基因型、患者肠道菌群的组成、FMT植入的方式选择、FMT制备过程和粪菌捐献者个体差别等。FMT作为临床治疗IBD的方法还需要相关研究的理论支撑。

3.2.2. 系统性红斑狼疮

目前肠道菌群在系统性红斑狼疮中作用的相关研究还不多。目前绝大多数数据表明厚壁菌门和拟杆菌门的相对含量在系统性红斑狼疮患者中较健康个体有所降低 [91] [92] [93] [94] (见表1)。

一项针对中国人群的研究表明,系统性红斑狼疮患者相比于健康个体有几个属的肠道菌群增加(如:拟杆菌门的普氏菌属Prevotella,放线菌门的红球菌属Rhodococcus和变形菌门的克雷伯氏菌属Klebsiella),以及厚壁菌门的减少(主要由假丁酸弧菌属Pseudobutyrivibrio以及小类杆菌属Dialister降低引起) [91]。另一项研究发现系统性红斑狼疮患者肠道菌群与普通人相比有7个属的菌群量增加,19个属菌群量减少,此研究也得出了系统性红斑狼疮患者肠道中厚壁菌门和拟杆菌门相对含量降低的结论 [92]。也有一些研究发现一些特定的种属可能在系统性红斑狼疮发病中发挥作用。如厚壁菌门的鹑鸡肠球菌(Enterococcus gallinarum)被发现可能具有促进系统性红斑狼疮类疾病发病的作用 [95]。

目前关于肠道菌群和SLE之间关系的研究多为观察性的病例对照研究,而肠道菌群参与SLE致病的机制研究尚十分缺乏。机制类研究将有助于发现新的SLE诊断生物标记物,并为通过改变肠道菌群缓解SLE症状的临床治疗手段提供更多理论支撑。

由于肠道菌群在SLE发病中的作用,研究者们尝试探索使用益生菌缓解SLE的症状。动物实验和人类临床试验都显示使用益生菌可以减轻炎症反应和自身免疫反应 [96]。在SLE动物模型中,双歧杆菌, 乳杆菌属,卵瘤胃球菌(Ruminococcus obeum)等益生菌有助于调节过度的炎症反应 [97]。近期的多项研究显示,在小鼠SLE模型中,乳杆菌属可以抑制IL-6合成、减少Th17细胞数量、提高Treg细胞数量并缓解SLE相关的症状 [98] [99] [100] [101]。

4. 研究前景

肠道菌群和代谢、免疫、神经和心理疾病之间的关系主要是相关性,而不具有因果关系。由于导致以上的疾病的因素众多(如遗传、环境、饮食等),肠道菌群作为病理过程的重要因素越来越受到关注。

对于肠道菌群与代谢疾病和肥胖之间关系的研究,目前多数是建立在啮齿类动物模型基础上的,然而如果想将这些研究成果转化为可以在临床中使用的有效的疗法,还需要在人类中进行的长时间维度的机制类研究。对于特定表型的人群进行宏基因组,宏转录组,蛋白质组学的研究,通过大数据分析可能有助于找到疾病相关的肠道菌群特征 [105]。

影响肠道菌群的因素众多,如:地域和人群、饮食结构、环境因素、疾病状况和药物使用情况等。今后研究应当将以上因素也考虑在内,从而使得数据和研究之间有更强的可比性 [106] [107] [108]。尤其是在肠道菌群和心理疾病的相关性研究中,需要关注肠道菌群变化的表型是直接由心理疾病中脑活动变化引起的,还是由于各种心理疾病的表型附加产生的(例如,一些自闭症患者可能会倾向于选择某些食物,而饮食会造成肠道菌群发生变化)。

FMT成功用于rCDI治疗后,将其用于其他肠道菌群相关疾病的治疗是一个研究热点。由于影响FMT的因素众多,如:捐献者选择、制备方法、移植方式、患者具体临床情况和肠道菌群构成等,FMT治疗其他疾病的临床试验结果还具有争议。在FMT的实践中,还有一些难点需要解决,比如移植可能引发肠道不适,移植菌群很可能作用短暂等。对于肠道菌群病理作用的相关机制研究将会为FMT的临床应用提供更多理论支撑,标准化的FMT操作方法也需要建立。

基金项目

陕西省自然科学基础研究计划项目(2021JQ-776);陕西省教育厅专项科研计划项目(21JK0896);西安医学院博士启动基金(2020DOC14);西安医学院科技创新团队基金(2021TD01)。

参考文献

[1] Gilbert, J.A., et al. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400.
https://doi.org/10.1038/nm.4517
[2] Sender, R., Fuchs, S. and Milo, R. (2016) Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biology, 14, e1002533.
https://doi.org/10.1371/journal.pbio.1002533
[3] Cryan, J.F., et al. (2019) The Microbiota-Gut-Brain Axis. Phys-iological Reviews, 99, 1877-2013.
https://doi.org/10.1152/physrev.00018.2018
[4] Codagnone, M.G., et al. (2019) Programming Bugs: Microbiota and the Developmental Origins of Brain Health and Disease. Biological Psychiatry, 85, 150-163.
https://doi.org/10.1016/j.biopsych.2018.06.014
[5] Claesson, M.J., et al. (2012) Gut Microbiota Composition Correlates with Diet and Health in the Elderly. Nature, 488, 178-184.
https://doi.org/10.1038/nature11319
[6] Sandhu, K.V., et al. (2017) Feeding the Microbiota-Gut-Brain Axis: Diet, Microbiome, and Neuropsychiatry. Translational Research, 179, 223-244.
https://doi.org/10.1016/j.trsl.2016.10.002
[7] Hugon, P., et al. (2015) A Comprehensive Repertoire of Prokaryotic Species Identified in Human Beings. The Lancet Infectious Diseases, 15, 1211-1219.
https://doi.org/10.1016/S1473-3099(15)00293-5
[8] Li, J. and Jia, H. (2014) An Integrated Catalog of Reference Genes in the Human Gut Microbiome. Nature Biotechnology, 32, 834-841.
[9] Leitão-Gonçalves, R., et al. (2017) Commensal Bacteria and Essential Amino Acids Control Food Choice Behavior and Reproduction. PLOS Biology, 15, e2000862.
https://doi.org/10.1371/journal.pbio.2000862
[10] Nakazato, M., et al. (2001) A Role for Ghrelin in the Central Regulation of Feeding. Nature, 409, 194-198.
https://doi.org/10.1038/35051587
[11] Wren, A.M., et al. (2001) Ghrelin Causes Hyperphagia and Obesity in Rats. Diabetes, 50, 2540-2547.
https://doi.org/10.2337/diabetes.50.11.2540
[12] Shah, M. and Vella, A. (2014) Effects of GLP-1 on Appetite and Weight. Reviews in Endocrine and Metabolic Disorders, 15, 181-187.
https://doi.org/10.1007/s11154-014-9289-5
[13] Karra, E., Chandarana, K. and Batterham, R.L. (2009) The Role of Peptide YY in Appetite Regulation and Obesity. The Journal of Physiology, 587, 19-25.
https://doi.org/10.1113/jphysiol.2008.164269
[14] Tolhurst, G., et al. (2012) Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein- Coupled Receptor FFAR2. Diabetes, 61, 364-371.
https://doi.org/10.2337/db11-1019
[15] Cani, P.D., et al. (2009) Gut Microbiota Fermentation of Prebiotics In-creases Satietogenic and Incretin Gut Peptide Production with Consequences for Appetite Sensation and Glucose Re-sponse after a Meal. The American Journal of Clinical Nutrition, 90, 1236-1243.
https://doi.org/10.3945/ajcn.2009.28095
[16] Parnell, J.A. and Reimer, R.A. (2009) Weight Loss during Oli-gofructose Supplementation Is Associated with Decreased Ghrelin and Increased Peptide YY in Overweight and Obese Adults. The American Journal of Clinical Nutrition, 89, 1751-1759.
https://doi.org/10.3945/ajcn.2009.27465
[17] Lin, H.V., et al. (2012) Butyrate and Propionate Protect against Di-et-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLOS ONE, 7, e35240.
https://doi.org/10.1371/journal.pone.0035240
[18] Xiong, Y., et al. (2004) Short-Chain Fatty Acids Stimulate Lep-tin Production in Adipocytes through the G Protein- Coupled Receptor GPR41. Proceedings of the National Academy of Sciences of the United States of America, 101, 1045- 1050.
https://doi.org/10.1073/pnas.2637002100
[19] Turnbaugh, P.J., et al. (2006) An Obesity-Associated Gut Micro-biome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031.
https://doi.org/10.1038/nature05414
[20] Tims, S., et al. (2013) Microbiota Conservation and BMI Signatures in Adult Monozygotic Twins. The ISME Journal, 7, 707-717.
https://doi.org/10.1038/ismej.2012.146
[21] Gophna, U., Konikoff, T. and Nielsen, H.B. (2017) Oscillospira and Related Bacteria—From Metagenomic Species to Metabolic Features. Environmental Microbiology, 19, 835-841.
https://doi.org/10.1111/1462-2920.13658
[22] Miller, T.L., et al. (1982) Isolation of Methanobrevibacter smithii from Human Feces. Applied and Environmental Microbiology, 43, 227-232.
https://doi.org/10.1128/aem.43.1.227-232.1982
[23] Ridaura, V.K., et al. (2013) Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science, 341, Article ID: 1241214.
https://doi.org/10.1126/science.1241214
[24] Petersen, C., et al. (2019) T Cell-Mediated Regulation of the Micro-biota Protects against Obesity. Science, 365, eaat9351.
https://doi.org/10.1126/science.aat9351
[25] Wu, Y., et al. (2019) The Role of Neuropeptide Y and Peptide YY in the Development of Obesity via Gut-Brain Axis. Current Protein & Peptide Science, 20, 750-758.
https://doi.org/10.2174/1389203720666190125105401
[26] Bäckhed, F., et al. (2004) The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718-15723.
https://doi.org/10.1073/pnas.0407076101
[27] Zhong, H., et al. (2019) Distinct Gut Metagenomics and Metapro-teomics Signatures in Prediabetics and Treatment- Naïve Type 2 Diabetics. EBioMedicine, 47, 373-383.
https://doi.org/10.1016/j.ebiom.2019.08.048
[28] Allin, K.H., et al. (2018) Aberrant Intestinal Microbiota in Indi-viduals with Prediabetes. Diabetologia, 61, 810-820.
https://doi.org/10.1007/s00125-018-4550-1
[29] Wang, T.J., et al. (2011) Metabolite Profiles and the Risk of De-veloping Diabetes. Nature Medicine, 17, 448-453.
https://doi.org/10.1038/nm.2307
[30] Koh, A., et al. (2018) Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell, 175, 947-961.e17.
https://doi.org/10.1016/j.cell.2018.09.055
[31] Vieira-Silva, S., et al. (2020) Statin Therapy Is Associated with Lower Prevalence of Gut Microbiota Dysbiosis. Nature, 581, 310-315.
https://doi.org/10.1038/s41586-020-2269-x
[32] Forslund, K., et al. (2015) Disentangling Type 2 Diabetes and Metformin Treatment Signatures in the Human Gut Microbiota. Nature, 528, 262-266.
https://doi.org/10.1038/nature15766
[33] Wu, H., et al. (2017) Metformin Alters the Gut Microbiome of Individu-als with Treatment-Naive Type 2 Diabetes, Contributing to the Therapeutic Effects of the Drug. Nature Medicine, 23, 850-858.
https://doi.org/10.1038/nm.4345
[34] Bryrup, T., et al. (2019) Metformin-Induced Changes of the Gut Microbiota in Healthy Young Men: Results of a Non- Blinded, One-Armed intervention Study. Diabetologia, 62, 1024-1035.
https://doi.org/10.1007/s00125-019-4848-7
[35] Cammarota, G., et al. (2015) Randomised Clinical Trial: Faecal Microbiota Transplantation by Colonoscopy vs. Vancomycin for the Treatment of Recurrent Clostridium difficile Infection. Alimentary Pharmacology & Therapeutics, 41, 835-843.
https://doi.org/10.1111/apt.13144
[36] van Nood, E., et al. (2013) Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile. The New England Journal of Medicine, 368, 407-415.
https://doi.org/10.1056/NEJMoa1205037
[37] Hvas, C.L., et al. (2019) Fecal Microbiota Transplantation Is Supe-rior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection. Gastroenterology, 156, 1324-1332.e3.
https://doi.org/10.1053/j.gastro.2018.12.019
[38] Yu, E.W., et al. (2020) Fecal Microbiota Transplantation for the Improvement of Metabolism in Obesity: The FMT-TRIM Double-Blind Placebo-Controlled Pilot Trial. PLOS Medicine, 17, e1003051.
https://doi.org/10.1371/journal.pmed.1003051
[39] Vermeire, S., et al. (2016) Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. Journal of Crohn’s and Colitis, 10, 387-394.
https://doi.org/10.1093/ecco-jcc/jjv203
[40] Nicco, C., et al. (2020) From Donor to Patient: Collection, Preparation and Cryopreservation of Fecal Samples for Fecal Microbiota Transplantation. Diseases, 8, Article No. 9.
https://doi.org/10.3390/diseases8020009
[41] Paramsothy, S., et al. (2015) Donor Recruitment for Fecal Microbio-ta Transplantation. Inflammatory Bowel Diseases, 21, 1600-1606.
https://doi.org/10.1097/MIB.0000000000000405
[42] Costello, S.P., et al. (2015) Faecal Microbiota Transplant for Recurrent Clostridium difficile Infection Using Long- Term Frozen Stool Is Effective: Clinical Efficacy and Bacterial Via-bility Data. Alimentary Pharmacology & Therapeutics, 42, 1011-1018.
https://doi.org/10.1111/apt.13366
[43] Youngster, I., et al. (2014) Fecal Microbiota Transplant for Relapsing Clos-tridium difficile Infection Using a Frozen Inoculum from Unrelated Donors: A Randomized, Open-Label, Controlled Pilot Study. Clinical Infectious Diseases, 58, 1515-1522.
https://doi.org/10.1093/cid/ciu135
[44] Cammarota, G., Ianiro, G. and Gasbarrini, A. (2014) Fecal Microbiota Transplantation for the Treatment of Clostridium difficile Infection: A Systematic Review. Journal of Clinical Gastroenterology, 48, 693-702.
https://doi.org/10.1097/MCG.0000000000000046
[45] Postigo, R. and Kim, J.H. (2012) Colonoscopic versus Nasogastric Fecal Transplantation for the Treatment of Clostridium difficile Infection: A Review and Pooled Analysis. Infection, 40, 643-648.
https://doi.org/10.1007/s15010-012-0307-9
[46] Cammarota, G., et al. (2015) Decrease in Surgery for Clostridium difficile Infection after Starting a Program to Transplant Fecal Microbiota. Annals of Internal Medicine, 163, 487-488.
https://doi.org/10.7326/L15-5139
[47] Vindigni, S.M. and Surawicz, C.M. (2017) Fecal Microbiota Transplanta-tion. Gastroenterology Clinics of North America, 46, 171-185.
https://doi.org/10.1016/j.gtc.2016.09.012
[48] Cammarota, G., et al. (2019) International Consensus Conference on Stool Banking for Faecal Microbiota Transplantation in Clinical Practice. Gut, 68, 2111-2121.
https://doi.org/10.1136/gutjnl-2019-319548
[49] Goldenberg, S.D., et al. (2018) Comparison of Different Strate-gies for Providing Fecal Microbiota Transplantation to Treat Patients with Recurrent Clostridium difficile Infection in Two English Hospitals: A Review. Infectious Diseases and Therapy, 7, 71-86.
https://doi.org/10.1007/s40121-018-0189-y
[50] DeFilipp, Z., et al. (2019) Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. The New England Journal of Medicine, 381, 2043-2050.
https://doi.org/10.1056/NEJMoa1910437
[51] Vrieze, A., et al. (2012) Transfer of Intestinal Microbiota from Lean Donors Increases Insulin Sensitivity in Individuals with Metabolic Syndrome. Gastroenterology, 143, 913-916.e7.
https://doi.org/10.1053/j.gastro.2012.06.031
[52] Kootte, R.S., et al. (2017) Improvement of Insulin Sensitivity af-ter Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metabolism, 26, 611-619.e6.
[53] Ng, S.C. and Xu, Z. (2021) Microbiota Engraftment after Faecal Microbiota Transplantation in Obese Subjects with Type 2 Diabetes: A 24-Week, Double-Blind, Randomised Controlled Trial. Gut, 71, 716-723.
https://doi.org/10.1136/gutjnl-2020-323617
[54] Rinott, E., et al. (2021) Effects of Diet-Modulated Autologous Fecal Microbiota Transplantation on Weight Regain. Gastroenterology, 160, 158-173.e10.
https://doi.org/10.1053/j.gastro.2020.08.041
[55] de Groot, P., et al. (2021) Faecal Microbiota Transplantation Halts Progression of Human New-Onset Type 1 Diabetes in a Randomised Controlled Trial. Gut, 70, 92-105.
https://doi.org/10.1136/gutjnl-2020-322630
[56] Witjes, J.J., et al. (2020) Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals with Steatohepatitis. Hepatology Communications, 4, 1578-1590.
https://doi.org/10.1002/hep4.1601
[57] Abt, M.C., et al. (2012) Commensal Bacteria Calibrate the Ac-tivation Threshold of Innate Antiviral Immunity. Immunity, 37, 158-170.
https://doi.org/10.1016/j.immuni.2012.04.011
[58] Rosser, E.C., et al. (2014) Regulatory B Cells Are Induced by Gut Microbiota-Driven Interleukin-1β and Interleukin-6 Production. Nature Medicine, 20, 1334-1339.
https://doi.org/10.1038/nm.3680
[59] Tailford, L.E., et al. (2015) Mucin Glycan Foraging in the Human Gut Mi-crobiome. Frontiers in Genetics, 6, Article No. 81.
https://doi.org/10.3389/fgene.2015.00081
[60] Hotamisligil, G.S., Inflammation and Metabolic Disorders. Nature, 444, 860-867.
https://doi.org/10.1038/nature05485
[61] Cani, P.D., et al. (2007) Selective Increases of Bifidobacteria in Gut Microflora Improve High-Fat-Diet-Induced Diabetes in Mice through a Mechanism Associated with Endotoxaemia. Diabetologia, 50, 2374-2383.
https://doi.org/10.1007/s00125-007-0791-0
[62] Wexler, A.G. and Goodman, A.L. (2017) An Insider’s Perspec-tive: Bacteroides as a Window into the Microbiome. Nature Microbiology, 2, Article No. 17026.
https://doi.org/10.1038/nmicrobiol.2017.26
[63] Ramakrishna, C., et al. (2019) Bacteroides Fragilis Polysaccharide A Induces IL-10 Secreting B and T Cells That Prevent Viral Encephalitis. Nature Communications, 10, Article No. 2153.
https://doi.org/10.1038/s41467-019-09884-6
[64] Mishima, Y., et al. (2019) Microbiota Maintain Colonic Homeo-stasis by Activating TLR2/MyD88/PI3K Signaling in IL-10-Producing Regulatory B Cells. Journal of Clinical Investiga-tion, 129, 3702-3716.
https://doi.org/10.1172/JCI93820
[65] Mishima, Y., et al. (2015) Resident Bacteria-Stimulated IL-10-Secreting B Cells Ameliorate T Cell-Mediated Colitis by Inducing Tr-1 Cells That Require IL-27-Signaling. Cellular and Molecular Gastroenterology and Hepatology, 1, 295-310.
https://doi.org/10.1016/j.jcmgh.2015.01.002
[66] Round, J.L. and Mazmanian, S.K. (2009) The Gut Microbiota Shapes Intestinal Immune Responses during Health and Disease. Nature Reviews Immunology, 9, 313-323.
https://doi.org/10.1038/nri2515
[67] Vinolo, M.A., et al. (2011) Regulation of Inflammation by Short Chain Fatty Acids. Nutrients, 3, 858-876.
https://doi.org/10.3390/nu3100858
[68] Koh, A., et al. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345.
https://doi.org/10.1016/j.cell.2016.05.041
[69] Arpaia, N., et al. (2013) Metabolites Produced by Commensal Bac-teria Promote Peripheral Regulatory T-Cell Generation. Nature, 504, 451-455.
https://doi.org/10.1038/nature12726
[70] Smith, P.M., et al. (2013) The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science, 341, 569-573.
https://doi.org/10.1126/science.1241165
[71] Chang, P.V., et al. (2014) The Microbial Metabolite Butyrate Regu-lates Intestinal Macrophage Function via Histone Deacetylase Inhibition. Proceedings of the National Academy of Sci-ences of the United States of America, 111, 2247- 2252.
https://doi.org/10.1073/pnas.1322269111
[72] Wang, Y.D., et al. (2011) The G-Protein-Coupled Bile Acid Receptor, Gpbar1 (TGR5), Negatively Regulates Hepatic Inflammatory Response through Antagonizing Nuclear Factor κ Light-Chain Enhancer of Activated B Cells (NF-κB) in Mice. Hepa-tology, 54, 1421-1432.
https://doi.org/10.1002/hep.24525
[73] Biagioli, M. and Carino, A. (2017) The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intestinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis. The Journal of Immunology, 199, 718-733.
https://doi.org/10.4049/jimmunol.1700183
[74] Melhem, H., Kaya, B. and Ayata, C.K. (2019) Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells, 8, Article No. 450.
https://doi.org/10.3390/cells8050450
[75] Kostic, A.D., Xavier, R.J. and Gevers, D. (2014) The Microbiome in In-flammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology, 146, 1489-1499.
https://doi.org/10.1053/j.gastro.2014.02.009
[76] Manichanh, C., et al. (2012) The Gut Microbiota in IBD. Nature Reviews Gastroenterology & Hepatology, 9, 599-608.
https://doi.org/10.1038/nrgastro.2012.152
[77] Martinez, C., et al. (2008) Unstable Composition of the Fecal Mi-crobiota in Ulcerative Colitis during Clinical Remission. American Journal of Gastroenterology, 103, 643-648.
https://doi.org/10.1111/j.1572-0241.2007.01592.x
[78] Gevers, D., et al. (2014) The Treatment-Naive Microbiome in New-Onset Crohn’s Disease. Cell Host Microbe, 15, 382-392.
https://doi.org/10.1016/j.chom.2014.02.005
[79] Ohkusa, T., et al. (2003) Induction of Experimental Ulcerative Colitis by Fusobacterium varium Isolated from Colonic Mucosa of Patients with Ulcerative Colitis. Gut, 52, 79-83.
https://doi.org/10.1136/gut.52.1.79
[80] Ohkusa, T., et al. (2009) Commensal Bacteria Can Enter Colonic Epithelial Cells and Induce Proinflammatory Cytokine Secretion: A Possible Pathogenic Mechanism of Ulcerative Colitis. Journal of Medical Microbiology, 58, 535-545.
https://doi.org/10.1099/jmm.0.005801-0
[81] Martinez-Medina, M., et al. (2009) Molecular Diversity of Esche-richia coli in the Human Gut: New Ecological Evidence Supporting the Role of Adherent-Invasive E. coli (AIEC) in Crohn’s Disease. Inflammatory Bowel Diseases, 15, 872-882.
https://doi.org/10.1002/ibd.20860
[82] Santoru, M.L., et al. (2017) Cross Sectional Evaluation of the Gut-Microbiome Metabolome Axis in an Italian Cohort of IBD Pa-tients. Scientific Reports, 7, Article No. 9523.
https://doi.org/10.1038/s41598-017-10034-5
[83] Frank, D.N., et al. (2011) Disease Phenotype and Genotype Are Associated with Shifts in Intestinal-Associated Microbiota in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 17, 179-184.
https://doi.org/10.1002/ibd.21339
[84] Yan, J.B. and Luo, M.M. (2020) The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease. Journal of Immunology Research, 2020, Article ID: 8813558.
https://doi.org/10.1155/2020/8813558
[85] Wang, Y., et al. (2019) Induction of Intestinal Th17 Cells by Flagellins from Segmented Filamentous Bacteria. Frontiers in Immunology, 10, Article No. 2750.
https://doi.org/10.3389/fimmu.2019.02750
[86] Larmonier, C.B., et al. (2015) T Lymphocyte Dynamics in Inflammatory Bowel Diseases: Role of the Microbiome. BioMed Research International, 2015, Article ID: 504638.
https://doi.org/10.1155/2015/504638
[87] Paramsothy, S., et al. (2017) Faecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Journal of Crohn’s and Colitis, 11, 1180-1199.
https://doi.org/10.1093/ecco-jcc/jjx063
[88] Narula, N., et al. (2017) Systematic Review and Me-ta-Analysis: Fecal Microbiota Transplantation for Treatment of Active Ulcerative Colitis. Inflammatory Bowel Diseases, 23, 1702-1709.
https://doi.org/10.1097/MIB.0000000000001228
[89] Shi, Y., et al. (2016) Fecal Microbiota Transplantation for Ulcerative Colitis: A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0157259.
https://doi.org/10.1371/journal.pone.0157259
[90] Zhang, T., et al. (2021) The Potential of Akkermansia mucini-phila in Inflammatory Bowel Disease. Applied Microbiology and Biotechnology, 105, 5785-5794.
https://doi.org/10.1007/s00253-021-11453-1
[91] He, Z., et al. (2016) Alterations of the Gut Microbiome in Chi-nese Patients with Systemic Lupus Erythematosus. Gut Pathogens, 8, Article No. 64.
https://doi.org/10.1186/s13099-016-0146-9
[92] van der Meulen, T.A., et al. (2019) Shared Gut, but Distinct Oral Microbiota Composition in Primary Sjögren’s Syndrome and Systemic Lupus Erythematosus. Journal of Autoimmunity, 97, 77-87.
https://doi.org/10.1016/j.jaut.2018.10.009
[93] Hevia, A., et al. (2014) Intestinal Dysbiosis Associated with Sys-temic Lupus Erythematosus. mBio, 5, e01548-14.
https://doi.org/10.1128/mBio.01548-14
[94] Rodríguez-Carrio, J., et al. (2017) Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Frontiers in Im-munology, 8, Article No. 23.
https://doi.org/10.3389/fimmu.2017.00023
[95] Manfredo Vieira, S. and Hiltensperger, M. (2018) Translocation of a Gut Pathobiont Drives Autoimmunity in Mice and Humans. Science, 359, 1156-1161.
https://doi.org/10.1126/science.aar7201
[96] Liu, Y., Alookaran, J.J. and Rhoads, J.M. (2018) Probiotics in Auto-immune and Inflammatory Disorders. Nutrients, 10, Article No. 1537.
https://doi.org/10.3390/nu10101537
[97] Esmaeili, S.A., et al. (2017) Tolerogenic Probiotics: Potential Immuno-regulators in Systemic Lupus Erythematosus. Jour- nal of Cellular Physiology, 232, 1994-2007.
https://doi.org/10.1002/jcp.25748
[98] Yeh, Y.L., et al. (2021) Heat-Killed Lactobacillus reuteri GMNL-263 In-hibits Systemic Lupus Erythematosus-Induced Cardiomyopathy in NZB/W F1 Mice. Probiotics and Antimicrobial Pro-teins, 13, 51-59.
https://doi.org/10.1007/s12602-020-09668-1
[99] Khorasani, S. and Mahmoudi, M. (2019) Amelioration of Regu-latory T Cells by Lactobacillus delbrueckii and Lactobacillus rhamnosus in Pristane-Induced Lupus Mice Model. Jour-nal of Cellular Physiology, 234, 9778-9786.
https://doi.org/10.1002/jcp.27663
[100] de la Visitación, N., Robles-Vera, I. and Toral, M. (2020) Lactobacillus fermentum CECT5716 Prevents Renal Damage in the NZBWF1 Mouse Model of Systemic Lupus Erythematosus. Food & Function, 11, 5266-5274.
https://doi.org/10.1039/D0FO00578A
[101] Toral, M., et al. (2019) Lactobacillus fermentum CECT5716: A Novel Alternative for the Prevention of Vascular Disorders in a Mouse Model of Systemic Lupus Erythematosus. The FASEB Journal, 33, 10005-10018.
https://doi.org/10.1096/fj.201900545RR
[102] Liu, R., et al. (2017) Gut Microbiome and Serum Metabolome Alter-ations in Obesity and after Weight-Loss Intervention. Nature Medicine, 23, 859-868.
https://doi.org/10.1038/nm.4358
[103] Gurung, M., et al. (2020) Role of Gut Microbiota in Type 2 Diabetes Patho-physiology. EBioMedicine, 51, Article ID: 102590.
https://doi.org/10.1016/j.ebiom.2019.11.051
[104] Kudelka, M.R., et al. (2020) Intestinal Epithelial Glycosylation in Homeostasis and Gut Microbiota Interactions in IBD. Nature Reviews Gastroenterology & Hepatology, 17, 597-617.
https://doi.org/10.1038/s41575-020-0331-7
[105] Gupta, A. and Osadchiy, V. (2020) Brain-Gut-Microbiome Interactions in Obesity and Food Addiction. Nature Reviews Gastroen-terology & Hepatology, 17, 655-672.
https://doi.org/10.1038/s41575-020-0341-5
[106] Quigley, E.M.M. (2017) Gut Microbiome as a Clinical Tool in Gastrointestinal Disease Management: Are We There Yet? Nature Reviews Gas-troenterology & Hepatology, 14, 315-320.
https://doi.org/10.1038/nrgastro.2017.29
[107] Wu, G.D., et al. (2016) Comparative Metabolomics in Vegans and Omnivores Reveal Constraints on Diet-Dependent Gut Microbiota Metabolite Production. Gut, 65, 63-72.
https://doi.org/10.1136/gutjnl-2014-308209
[108] Devkota, S. (2016) MICROBIOME. Prescription Drugs Obscure Microbiome Analyses. Science, 351, 452-453.
https://doi.org/10.1126/science.aaf1353