|
[1]
|
Asokan, G.V., Ramadhan, T., Ahmed, E. and Sanad, H. (2019) WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Medical Journal, 34, 184-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Karaman, R., Jubeh, B. and Breijyeh, Z. (2020) Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules (Basel, Switzerland), 25, 2888. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L. and Fowler, V.G. (2015) Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clinical Microbiology Reviews, 28, 603-661. [Google Scholar] [CrossRef]
|
|
[4]
|
Vrancianu, C.O., Gheorghe, I., Dobre, E.G., Barbu, I.C., Cristian, R.E., Popa, M., Lee, S.H., Limban, C., Vlad, I.M. and Chifiriuc, M.C. (2020) Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. International Journal of Molecular Sciences, 21, 8527. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dweba, C.C., Zishiri, O.T. and El Zowalaty, M.E. (2018) Methicillin-Resistant Staphylococcus aureus: Livestock- Associated, Antimicrobial, and Heavy Metal Resistance. Infection and Drug Resistance, 11, 2497-2509. [Google Scholar] [CrossRef]
|
|
[6]
|
Lindsay, J.A. (2013) Hospital-Associated MRSA and Antibiotic Resistance—What Have We Learned from Genomics? International Journal of Medical Microbiology: IJMM, 303, 318-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Otto, M. (2013) Community-Associated MRSA: What Makes Them Special? International Journal of Medical Microbiology: IJMM, 303, 324-330. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Baseri, N., Najar-Peerayeh, S. and Bagheri Amiri, F. (2018) Prevalence of Vancomycin-Intermediate Staphylococcus aureus among Clinical Isolates in Iran: A Systematic Review and Meta-Analysis. Journal of Global Antimicrobial Resistance, 15, 178-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Giulieri, S.G., Tong, S. and Williamson, D.A. (2020) Using Genomics to Understand Meticillin- and Vancomycin- Resistant Staphylococcus aureus Infections. Microbial Genomics, 6, e000324. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bush, N.G., Diez-Santos, I., Abbott, L.R. and Maxwell, A. (2020) Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules (Basel, Switzerland), 25, 5662. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Foster, T.J. (2017) Antibiotic Resistance in Staphylococcus aureus. Current Status and Future Prospects. FEMS Microbiology Reviews, 41, 430-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hashemian, S., Farhadi, T. and Ganjparvar, M. (2018) Linezolid: A Review of Its Properties, Function, and Use in Critical Care. Drug Design, Development and Therapy, 12, 1759-1767. [Google Scholar] [CrossRef]
|
|
[13]
|
Taylor, S.D. and Palmer, M. (2016) The Action Mechanism of Daptomycin. Bioorganic & Medicinal Chemistry, 24, 6253-6268. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sulaiman, J.E., Long, L., Qian, P.Y. and Lam, H. (2022) Proteome Profiling of Evolved Methicillin-Resistant Staphylococcus aureus Strains with Distinct Daptomycin Tolerance and Resistance Phenotypes. Frontiers in Microbiology, 13, Article ID: 970146. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
García, A., Martínez, C., Juárez, R.I., Téllez, R., Paredes, M.A., Herrera, M. and Giono, S. (2019) Methicillin Resistance and Biofilm Production in Clinical Isolates of Staphylococcus aureus and Coagulase-Negative Staphylococcus in México. Biomedica: Revista del Instituto Nacional de Salud, 39, 513-523. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Krause, K.M., Serio, A.W., Kane, T.R. and Connolly, L.E. (2016) Aminoglycosides: An Overview. Cold Spring Harbor Perspectives in Medicine, 6, a027029. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Emaneini, M., Bigverdi, R., Kalantar, D., Soroush, S., Jabalameli, F., Noorazar Khoshgnab, B., Asadollahi, P. and Taherikalani, M. (2013) Distribution of Genes Encoding Tetracycline Resistance and Aminoglycoside Modifying Enzymes in Staphylococcus aureus Strains Isolated from a Burn Center. Annals of Burns and Fire Disasters, 26, 76-80.
|
|
[18]
|
Chen, H.J., Hung, W.C., Tseng, S.P., Tsai, J.C., Hsueh, P.R. and Teng, L.J. (2010) Fusidic Acid Resistance Determinants in Staphylococcus aureus Clinical Isolates. Antimicrobial Agents and Chemotherapy, 54, 4985-4991. [Google Scholar] [CrossRef]
|
|
[19]
|
Mlynarczyk-Bonikowska, B., Kowalewski, C., Krolak-Ulinska, A. and Marusza, W. (2022) Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. International Journal of Molecular Sciences, 23, 8088. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lee, T., Pang, S., Abraham, S. and Coombs, G.W. (2019) Antimicrobial-Resistant CC17 Enterococcus faecium: The Past, the Present and the Future. Journal of Global Antimicrobial Resistance, 16, 36-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gagetti, P., Bonofiglio, L., García Gabarrot, G., Kaufman, S., Mollerach, M., Vigliarolo, L., von Specht, M., Toresani, I. and Lopardo, H.A. (2019) Resistance to β-Lactams in Enterococci. Revista Argentina de Microbiologia, 51, 179-183. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Miller, W.R., Munita, J.M. and Arias, C.A. (2014) Mechanisms of Antibiotic Resistance in Enterococci. Expert Review of Anti-Infective Therapy, 12, 1221-1236. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rubinstein, E. and Keynan, Y. (2013) Vancomycin-Resistant Enterococci. Critical Care Clinics, 29, 841-852. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
陈俊, 孙刚. 耐万古霉素肠球菌研究进展[J]. 解放军医学院学报, 2017, 38(9): 899-902.
|
|
[25]
|
林东昉, 陈春辉, 周迎, 徐晓刚. 肠球菌万古霉素高水平耐药基因vanA、vanB、vanD和vanM快速分型检测[J]. 中华传染病杂志, 2017, 35(2): 99-104.
|
|
[26]
|
Mendes, R.E., Flamm, R.K., Hogan, P.A., Ross, J.E. and Jones, R.N. (2014) Summary of Linezolid Activity and Resistance Mechanisms Detected during the 2012 LEADER Surveillance Program for the United States. Antimicrobial Agents and Chemotherapy, 58, 1243-1247. [Google Scholar] [CrossRef]
|
|
[27]
|
Kim, D., Ahn, J.Y., Lee, C.H., Jang, S.J., Lee, H., Yong, D., Jeong, S.H. and Lee, K. (2017) Increasing Resistance to Extended-Spectrum Cephalosporins, Fluoroquinolone, and Carbapenem in Gram-Negative Bacilli and the Emergence of Carbapenem Non-Susceptibility in Klebsiella pneumoniae: Analysis of Korean Antimicrobial Resistance Monitoring System (KARMS) Data from 2013 to 2015. Annals of Laboratory Medicine, 37, 231-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sparo, M., Delpech, G. and García Allende, N. (2018) Impact on Public Health of the Spread of High-Level Resistance to Gentamicin and Vancomycin in Enterococci. Frontiers in Microbiology, 9, Article No. 3073. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cattoir, V. and Giard, J.C. (2014) Antibiotic Resistance in Enterococcus faecium Clinical Isolates. Expert Review of Anti-Infective Therapy, 12, 239-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Huang, S., Liu, X., Lao, W., Zeng, S., Liang, H., Zhong, R., Dai, X., Wu, X., Li, H. and Yao, Y. (2015) Serotype Distribution and Antibiotic Resistance of Streptococcus pneumoniae Isolates Collected at a Chinese Hospital from 2011 to 2013. BMC Infectious Diseases, 15, Article No. 312. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lupoli, T.J., Lebar, M.D., Markovski, M., Bernhardt, T., Kahne, D. and Walker, S. (2014) Lipoprotein Activators Stimulate Escherichia coli Penicillin-Binding Proteins by Different Mechanisms. Journal of the American Chemical Society, 136, 52-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
黄李丹, 杨美娟, 孙爱华, 严杰. 肺炎链球菌耐药分子机制的研究进展[J]. 中南医学科学杂志, 2021, 49(3): 275-280.
|
|
[33]
|
Zähner, D., Zhou, X., Chancey, S.T., Pohl, J., Shafer, W.M. and Stephens, D.S. (2010) Human Antimicrobial Peptide LL-37 Induces MefE/Mel-Mediated Macrolide Resistance in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 54, 3516-3519. [Google Scholar] [CrossRef]
|
|
[34]
|
Lee, J., Monk, I.R., Gonçalves da Silva, A., Seemann, T., Chua, K., Kearns, A., Hill, R., Woodford, N., Bartels, M.D., Strommenger, B., Laurent, F., Dodémont, M., Deplano, A., Patel, R., Larsen, A.R., Korman, T.M., Stinear, T.P. and Howden, B.P. (2018) Global Spread of Three Multidrug-Resistant Lineages of Staphylococcus epidermidis. Nature Microbiology, 3, 1175-1185. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lo, D.S., Shieh, H.H., Barreira, E.R., Ragazzi, S.L. and Gilio, A.E. (2015) High Frequency of Staphylococcus Saprophyticus Urinary Tract Infections among Female Adolescents. The Pediatric Infectious Disease Journal, 34, 1023-1025. [Google Scholar] [CrossRef]
|
|
[36]
|
胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5): 521-530. [Google Scholar] [CrossRef]
|
|
[37]
|
Chen, Z., Itzek, A., Malke, H., Ferretti, J.J. and Kreth, J. (2013) Multiple Roles of RNase Y in Streptococcus pyogenes mRNA Processing and Degradation. Journal of Bacteriology, 195, 2585-2594. [Google Scholar] [CrossRef]
|
|
[38]
|
李娟, 穆小平, 袁春雷, 计文婧, 刘海英, 高坎坎. 新生儿侵袭性感染b族链球菌的耐药表型及耐药机制[J]. 中华实验和临床感染病杂志: 电子版, 2018, 12(1): 20-27.
|
|
[39]
|
Bolukaoto, J.Y., Monyama, C.M., Chukwu, M.O., Lekala, S.M., Nchabeleng, M., Maloba, M.R., Mavenyengwa, R.T., Lebelo, S.L., Monokoane, S.T., Tshepuwane, C. and Moyo, S.R. (2015) Antibiotic Resistance of Streptococcus agalactiae Isolated from Pregnant Women in Garankuwa, South Africa. BMC Research Notes, 8, Article No. 364. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Spigaglia, P., Barbanti, F. and Mastrantonio, P. (2007) Detection of a Genetic Linkage between Genes Coding for Resistance to Tetracycline and Erythromycin in Clostridium difficile. Microbial Drug Resistance (Larchmont, N.Y.), 13, 90-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
王玮, 王明良, 云水英, 等. 一起产气荚膜梭菌和致泻大肠埃希菌混合感染引起食源性疾病暴发事件调查[J]. 首都公共卫生, 2019, 13(6): 286-288.
|
|
[42]
|
Bottone, E.J. (2010) Bacillus cereus, a Volatile Human Pathogen. Clinical Microbiology Reviews, 23, 382-398. [Google Scholar] [CrossRef]
|
|
[43]
|
Baquero, F., Lanza, V., Duval, M. and Coque, T.M. (2020) Ecogenetics of Antibiotic Resistance in Listeria monocytogenes. Molecular Microbiology, 113, 570-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Trost, E., Blom, J., Soares, S., Huang, I.H., Al-Dilaimi, A., Schröder, J., Jaenicke, S., Dorella, F.A., Rocha, F.S., Miyoshi, A., Azevedo, V., Schneider, M.P., Silva, A., Camello, T.C., Sabbadini, P.S., Santos, C.S., Santos, L.S., Hirata, R., Mattos-Guaraldi, A.L., Efstratiou, A. and Tauch, A. (2012) Pangenomic Study of Corynebacterium diphtheriae That Provides Insights into the Genomic Diversity of Pathogenic Isolates from Cases of Classical Diphtheria, Endocarditis, and Pneumonia. Journal of Bacteriology, 194, 3199-3215. [Google Scholar] [CrossRef]
|