DAP12介导小胶质细胞活化在神经系统中作用的研究进展
Research Progress on the Role of DAP12 Mediated Microglia Activation in Nervous System
DOI: 10.12677/ACM.2022.12121728, PDF, HTML, XML, 下载: 243  浏览: 561  科研立项经费支持
作者: 张 童, 姚 境:济宁医学院临床医学院,山东 济宁;李道静, 齐子有*:济宁医学院附属医院神经内科,山东 济宁
关键词: DAP12小胶质细胞神经系统疾病DAP12 Microglia Nervous System Disease
摘要: DNAX活化蛋白12 (DNAX-activating protein of 12 kDa, DAP12)是一种I型跨膜蛋白,在中枢神经系统(Central Nervous System, CNS)中主要表达于小胶质细胞,是将小胶质细胞从稳态转变为神经疾病相关状态的主要调节因子。DAP12信号通路可以通过调节小胶质细胞活性,参与许多神经系统疾病的免疫病理机制,如Nasu-Hakola病、阿尔茨海默病、帕金森病、缺血性卒中和神经病理性疼痛等,而且在不同疾病模型中发挥不同的调节作用。本文将就DAP12介导的小胶质细胞活化对神经系统生长发育以及神经系统疾病的调节机制进行深入阐述。
Abstract: DNAX-activating protein of 12 kDa (DAP12) is a type I transmembrane adapter protein mainly ex-pressed in microglia in Central Nervous System (CNS), which is a major regulator of the transition of microglia from homeostasis to a neuropathy-related state. DAP12 signaling pathway is involved in immunopathological mechanisms of many nervous system disease by regulating microglia activity, such as Nasu-Hakola disease, Alzheimer’s disease, Parkinson’s disease, ischemic stroke and neuropathic pain. And it plays different regulatory roles in different disease models. In this paper, DAP12-mediated microglia activation will be further elaborated on the growth and development of the nervous system and the regulatory mechanism of neurological diseases.
文章引用:张童, 姚境, 李道静, 齐子有. DAP12介导小胶质细胞活化在神经系统中作用的研究进展[J]. 临床医学进展, 2022, 12(12): 11992-11999. https://doi.org/10.12677/ACM.2022.12121728

1. DAP12介导小胶质细胞活化

小胶质细胞是中枢神经系统(Central Nervous System, CNS)中的固有免疫细胞,相当于脑和脊髓中的“巨噬细胞”。除了巨噬细胞常见的细菌吞噬、免疫激活反应等免疫功能外,小胶质细胞还对中枢神经系统发挥特异性作用,如维持大脑稳态、调节神经回路 [1]。健康成人大脑中的小胶质细胞呈分枝状,在生理条件下通过突触运动巡视周围区域 [2]。作为中枢神经系统中的“巡逻兵”,当神经元遭受损伤或在神经退行性疾病中,小胶质细胞被激活,转变为肥大或阿米巴样形态,分泌大量细胞炎症因子,导致血脑屏障的破坏,外周免疫细胞浸润并分泌更多的炎症因子,引发炎症级联反应 [3]。

小胶质细胞根据刺激的不同可以极化为M1型(促炎)和M2型(抗炎)两种表型。病原体或受损细胞碎片激活M1型小胶质细胞,分泌白介素-1β (interleukin-interleukin-1β, IL-1β)、肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)、白介素-6 (interleukin-interleukin-6, IL-6)、一氧化氮(nitric oxide, NO)等促炎因子,并招募外周免疫细胞,导致神经元的损害,最终吞噬受损神经元;而白介素-4 (interleukin-4, IL-4)、白介素-10 (interleukin-10, IL-10)、白介素-13 (interleukin-13, IL-13)和转化生长因子-β (transforming growth factor-β, TGF-β)可激活M2型小胶质细胞,分泌多种抗炎因子,如抵抗素样分子α1 (found in inflammatory zone 1, Fizz-1)、精氨酸酶1 (Arginase 1, Arg1)、几丁质酶3样蛋白3 (Chitinase-3-Like-3, Chi3l3/Ym-1)、CD206、胰岛素样生长因子(insulin-like growth factor 1, IGF-1)、卷曲蛋白1 (Frizzled class receptor 1, Fzd1)等,来保护受损神经元并吞噬细胞碎片,以促进组织修复 [4]。

质膜受体可以感知小胶质细胞周围的环境变化,是小胶质细胞的主要激活剂 [5]。最近一种质膜受体备受关注,即DAP12,也称为酪蛋白激酶结合蛋白(TYRO protein kinase-binding protein, TYROBP)或杀伤细胞激活受体相关蛋白(killer cell activating receptor-associated protein, KARAP)。1998年研究者最初发现DAP12在髓系细胞和NK细胞表面表达 [6],后来,Yuan等发现在脑组织中DAP12主要表达于小胶质细胞表面 [7],而Kaifu等发现DAP12在少突胶质细胞表面少量表达 [8]。

人类DAP12基因位于染色体19q13.1上,与小鼠DAP12在结构上有显著同源性(73%)。DAP12是由二硫键连接的同源二聚体多肽,由胞外区、跨膜片段和胞内区组成。由于胞外区非常短,DAP12本身没有配体结合能力,而是通过与DAP12相关受体形成复合物来与配体结合,进而发挥信号传导作用。目前已知的DAP12相关受体家族有20多个成员,主要分为两类:C型凝集素家族成员(包括MDL-1和NKG2D、Ly49H和Ly49D)和Ig结构域超家族成员(如NKp44、SIRP-b、Mair-II、CD200R1L、PILR-b和TREM家族)。DAP12的胞内区上有一个典型的免疫受体酪氨酸激活(Immunoreceptor tyrosine-based activation motif, ITAM)基序。ITAM最早是在免疫系统中发现的,它控制各种关键的细胞反应,包括细胞迁移、黏附、增殖、分化、吞噬和基因诱导。ITAM作为DAP12唯一的信号域,介导DAP12目前已知的所有功能效应。以最受关注的DAP12相关受体——髓样细胞触发受体2 (triggering receptor expressed on myeloid cell 2, TREM2)为例,DAP12信号转导通路如下:当配体与TREM-2/DAP12受体复合物结合后,ITAM的两个酪氨酸残基与Src蛋白激酶相互作用,导致ITAM完全磷酸化,招募并激活Syk和ZAP70激酶(在小鼠中主要招募Syk激酶),启动细胞内的信号级联反应。TREM-2可以激活与细胞存活(蛋白激酶B-Akt)、细胞激活和分化(Syk, ERK1/2, PLC-γ)以及控制肌动蛋白细胞骨架(Syk, Vav)有关的信号通路。DAP12受体复合物不仅可以介导信号激活,也可以介导信号抑制,这与配体的亲和力差异有关。当低亲和力配体与DAP12相关受体结合时,ITAM基序部分磷酸化,招募含有SH-2结构域的蛋白酪氨酸磷酸酶SHP-1,导致Syk激酶下游靶标的去磷酸化,进而抑制细胞激活 [9]。

2. DAP12信号通路在神经系统中的作用

DAP12信号被认为是小胶质细胞从稳态状态转变为神经疾病相关状态的主要调节因子。相关动物模型研究揭示了DAP12信号可以通过调节小胶质细胞活性,如存活、吞噬作用和细胞因子产生等,参与Nasu-Hakola病、阿尔茨海默病、帕金森病、缺血性卒中和神经病理性疼痛等许多神经疾病的免疫病理机制,并在不同疾病模型中发挥不同作用。

2.1. DAP12与神经系统生长发育

研究表明,DAP12信号介导小胶质细胞活化在中枢神经系统的发育、稳态维持和衰老过程中均发挥重要作用。

在大脑发育前期,神经前体细胞增殖分化为神经元,新生神经元迁移到皮质表面并将轴突延伸到靶神经元的树突上,形成过多的突触连接,随后消除不必要的突触和神经元以完善神经网络;在发育后期,少突胶质细胞形成髓鞘以加快信号在轴突上的快速传播。小胶质细胞参与以上所有大脑发育事件 [10]。实验发现,DAP12信号可能调节Lhx6 (LIM Homeobox 6)阳性中间神经元迁移 [11],促进轴突生长所必需因子分泌 [12],并通过增强脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)的表达 [13] [14]、增强小胶质细胞运动性 [15]、参与突触修剪 [16]、诱导非必要神经元死亡 [17] 等机制促进突触形成;且DAP12信号可通过调节小胶质细胞数量和活性促进新生儿期的髓鞘形成 [18]。

在成年期,小胶质细胞通过自我更新维持其数量,并广泛分布于整个中枢神经系统。每个小胶质细胞都有自己的“领地”,在健康状态下,邻近小胶质细胞的“领地”不会重叠。单个小胶质细胞领地的大小可能取决于小胶质细胞的分布密度。小胶质细胞通过突触活动巡视它们的“领地”,并对微环境事件变化做出快速反应。机体就是通过维持小胶质细胞数量及其微环境检测功能来维持大脑稳态 [10]。TREM2/DAP12信号可以促进小胶质细胞的存活和增殖,在成年期有助于维持小胶质细胞的数量 [19]。研究表明,TREM2/DAP12缺陷小鼠的小胶质细胞数量减少,且单个小胶质细胞的领地扩大 [20];小胶质细胞的突起对局灶性损伤的即时反应减弱,向损伤部位的延伸过程显著延迟 [15]。

在衰老的CNS中,小胶质细胞的形态变成类似于激活状态下观察到的形态:细胞体肿胀,突起分支变少。并通过分泌促炎细胞因子和活性氧自由基(reactive oxygen species, ROS)来产生神经毒性环境,从而诱发衰老神经元死亡 [10]。实验表明,在衰老的TREM2/DAP12缺陷小鼠中,小胶质细胞数量下降,神经毒性分子(如ROS、NO)产生减少,小胶质细胞的活化程度降低,致使衰老神经元丢失减少 [21]。

2.2. DAP12与Nasu-Hakola病

Nasu-Hakola病(Nasu-Hakola disease, NHD)也被称为多囊性脂膜样骨发育不良并硬化性白质脑病(polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy, PLOSL),是一种常染色体隐性遗传病,以多发性骨囊肿和早发进行性额叶型痴呆为特征,其病理特点为脑白质脱髓鞘改变 [22]。TREM2与DAP12均被报道为NHD的致病基因,且二者在CNS中均主要表达于小胶质细胞 [23]。虽然DAP12在星形胶质细胞中也有少量表达,但如上文所述,小胶质细胞可以通过促进少突胶质细胞分化进而参与新生儿髓鞘形成 [18],Miron等还发现小胶质细胞在髓鞘再生过程中可驱动少突胶质细胞分化 [24]。因此DAP12缺陷导致小胶质细胞减少进而无法驱动少突胶质细胞分化,或许是NHD脱髓鞘改变的主要原因。

与DAP12缺陷小鼠相比 [8],在TREM2缺陷小鼠CNS中观察到小胶质细胞数量减少、形态异常,但没有显示出髓鞘形成异常 [25] [26]。在铜氮酮诱导脱髓鞘模型中,TREM2缺陷小鼠的髓鞘碎片聚积和轴突损伤程度较正常基因型小鼠增加 [25]。Poliani等认为,在脱髓鞘状态下,髓磷脂触发TREM2诱导小胶质细胞激活,并上调促炎反应和髓鞘清除相关基因的表达,致使TREM2缺陷小鼠的小胶质细胞活化减少或表现为营养不良形态,增殖活性降低,最终导致髓鞘清除功能障碍 [26]。而髓鞘清除是髓鞘再生所必需的过程,因此TREM2虽然不直接参与髓鞘形成过程,但在脱髓鞘状态下可以通过参与髓鞘清除促进髓鞘再生。

2.3. DAP12与阿尔兹海默病(AD)

阿尔兹海默病(Alzheimer’s disease, AD)是老年痴呆的最常见病因,是一种神经退行性疾病,其特征在于认知功能缓慢进行性丧失。细胞外淀粉样蛋白斑块、细胞内神经原纤维缠结以及神经元和突触缺失导致脑萎缩是AD的主要病理机制 [27]。R47H是一种罕见的TREM2杂合子变异,研究表明,R47H可使AD和额颞叶痴呆的患病风险显著增加 [28]。同时DAP12也被报道为治疗迟发型AD的关键调节因子 [29]。Wang等观察到TREM2/DAP12复合体参与了AD细胞外淀粉样斑块周围小胶质细胞的激活,从而防止β-淀粉样蛋白(Aβ)的聚集和扩散 [30]。Ulland等发现TREM2/DAP12信号可以通过激活哺乳动物的mTOR信号通路影响小胶质细胞的生物合成代谢;在AD小鼠模型中,TREM2缺乏会损害小胶质细胞的生物合成代谢,促进小胶质细胞自噬增加进而损害小胶质细胞对Aβ的清除能力 [31]。Lee等通过转基因小鼠实验发现,TREM2过表达可以改变小胶质细胞的形态和功能,从而改善AD小鼠模型的病理和记忆缺陷 [32]。此外,Xin等人研究发现TREM2/DAP12复合物可以通过JNK信号通路抑制小胶质细胞炎症反应,从而减少Aβ斑块的沉积并改善AD小鼠的异常行为表现 [33]。

综上所述,TREM2/DAP12介导小胶质细胞激活对AD应是有益的。但Jay等人提出TREM2/DAP12在AD不同的病理阶段发挥着不同的功能作用,疾病早期TREM2/DAP12减少Aβ斑块的沉积,疾病后期则加重Aβ斑块的沉积 [34]。TREM2/DAP12介导小胶质细胞激活影响AD病理是毋庸置疑的,但其具体机制尚需深入探究。

2.4. DAP12与帕金森病

帕金森病(Parkinson’s Disease, PD)也是一种神经退行性疾病,其病理特点为黑质中的多巴胺能神经元变性。小胶质细胞介导的免疫炎症反应在PD病理中被认为是有害的:黑质中活化的小胶质细胞增殖并产生神经毒性分子,如NO、ROS和促炎细胞因子,导致多巴胺能神经元进行性退化 [35] [36]。因此抑制小胶质细胞增生和其导致的免疫炎症反应有望成为治疗PD的新方向。有试验结果表明,在PD小鼠模型中DAP12缺乏可抑制小胶质细胞介导的神经毒性 [37]。Belloli等还发现,TREM2缺乏导致PD小鼠的小胶质细胞数量减少和促炎细胞因子表达减少 [38]。由此可推论,TREM2/DAP12信号可能促进小胶质细胞激活和促炎因子释放,进而导致多巴胺能神经元退化。

2.5. DAP12与缺血性卒中

缺血性卒中(Ischemic Stroke, IS)是我国老年人死亡和残疾的主要原因之一。缺血会导致氧化应激,引起小胶质细胞活化,激活的小胶质细胞发挥双相作用:在急性期,小胶质细胞通过释放促炎分子和招募外周免疫细胞来增强炎症;而在恢复期,小胶质细胞会分泌抗炎细胞因子减轻炎症以促进组织修复 [39] [40] [41]。Kawabori等发现TREM2 KO小鼠脑梗死后神经缺损症状评分较野生型小鼠的评分更高 [42]。并有研究显示,在TREM2 KO小鼠中,缺血后小胶质细胞的增殖受到抑制,其清除凋亡细胞碎片的能力下降,分泌促炎细胞因子(如IL-1β、TNF-α)减少,这表明TREM2介导小胶质细胞极化为促炎表型从而发挥神经保护作用 [42] [43]。而Zhai等人、Wu等人的实验结果则与之相反,他们认为TREM2是通过诱导抗炎反应发挥神经保护作用的。研究结果显示,TREM2过表达显著抑制炎症反应和神经元凋亡,而TREM2基因缺失则加剧了卒中后炎症反应,增加神经元凋亡和梗死体积,导致更加严重的神经功能障碍 [14] [44]。由于卒中后小胶质细胞的活化表型与分布特点具有双相性,缺血模型构建或结果分析时间的不同可能是造成上述结果显著差异的原因。

此外,另一种DAP12相关受体——髓样细胞触发受体1 (triggering receptor expressed on myeloid cell 1, TREM1)也被证实可以激活小胶质细胞分泌促炎因子,并对神经元产生神经毒性作用 [45]。综上可知,不同的DAP12相关受体可能会引起下游不同的效应因子激活,产生完全相反的生物效应作用,而DAP12缺陷会导致何种结果尚无人研究。总之,卒中后炎症反应的分子机制或许比我们想象的更加复杂。

2.6. DAP12与神经病理性疼痛

神经病理性疼痛(Neuropathic pain)是一种由神经损伤引起的慢性疼痛,通常是由于代谢、癌症、感染性、化学或创伤性损伤造成的,其特征是持续的机械性超敏反应,表现为无害刺激即可引起剧烈疼痛 [46]。机械性超敏反应的形成机制与免疫反应密切相关。当感觉神经受损时,病变同侧脊髓后角的小胶质细胞活化,激活的小胶质细胞增殖,通过分泌各种与疼痛相关的分子(如BDNF)加重神经病理性疼痛 [47]。DAP12介导小胶质细胞活化也参与神经病理性疼痛的免疫病理机制。实验结果显示,与WT小鼠相比,DAP12 KO小鼠同侧脊髓后角的小胶质细胞数量和促炎分子表达减少,导致神经病理性疼痛减轻;使用TREM2激动剂诱导无神经损伤的小鼠,WT小鼠表现出神经性疼痛并促炎细胞因子表达上调,而DAP12 KO小鼠中在激动剂诱导后没有观察到明显的促炎反应和神经性疼痛表现,这进一步证明TREM2/DAP12复合物是影响神经病理性疼痛后炎症反应的关键因素 [48]。

Guan等则证明了损伤的感觉神经元表达集落刺激因子(Macrophage-colony stimulating factor, CSF-1)并将其运输到脊髓,作用于DAP12介导小胶质细胞活化,导致与神经病理性疼痛表型有关的小胶质细胞疼痛相关基因的表达上调 [49]。

唾液酸结合免疫球蛋白样凝集素(sialic acid-binding immunoglobulin-like lectin H, Siglec-H)也是目前已知的DAP12相关受体之一,表达于浆细胞样树突状细胞(plasmacytoid dendritic cells, pDCs)和小胶质细胞上,可以促进I型干扰素的分泌。在感觉神经损伤模型中,Siglec-H基因敲除小鼠表现出疼痛行为增强、促炎细胞因子表达增加 [50]。由此可知,Siglec-H/DAP12信号可以抑制小胶质细胞激活从而减轻神经病理性疼痛,这给神经病理性疼痛的治疗带来了新的研究方向。

3. 展望

综上所述,小胶质细胞是决定受损神经元命运的关键因素,了解小胶质细胞激活的分子机制、建立有效调控小胶质细胞活性的方法将有助于神经系统疾病的治疗。DAP12介导小胶质细胞活化参与神经系统的正常生长发育及神经系统疾病的免疫病理机制,是将小胶质细胞从稳态转变为疾病相关状态的主要开关。随着研究深入,将不断探索DAP12及其相关受体复合物介导小胶质细胞活化在神经系统生长发育和神经系统疾病中发挥作用的分子机制,寻找其潜在的治疗靶点,以利于更好地进行靶向治疗。未来有望研发出DAP12抑制剂或激动剂以用于临床治疗,为神经系统相关疾病的预防和治疗提供新的思路与方向。

基金项目

山东省中医药科技发展计划项目(编号2019-0493)。

NOTES

*通讯作者。

参考文献

[1] Konishi, H. and Kiyama, H. (2018) Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience, 12, Article 206.
https://doi.org/10.3389/fncel.2018.00206
[2] Nimmerjahn, A., Kirchhoff, F. and Helmchen, F. (2005) Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science, 308, 1314-1318.
https://doi.org/10.1126/science.1110647
[3] Fernández-Arjona, M.D.M., Grondona, J.M., Granados-Durán, P., Fernández-Llebrez, P. and López-Ávalos, M.D. (2017) Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis. Frontiers in Cellular Neuroscience, 11, Article 235.
https://doi.org/10.3389/fncel.2017.00235
[4] Kwon, H.S. and Koh, S.H. (2020) Neuroinflammation in Neuro-degenerative Disorders: The Roles of Microglia and Astrocytes. Translational Neurodegeneration, 9, Article No. 42.
https://doi.org/10.1186/s40035-020-00221-2
[5] Kierdorf, K. and Prinz, M. (2013) Factors Regulating Microglia Activation. Frontiers in Cellular Neuroscience, 7, Article 44.
https://doi.org/10.3389/fncel.2013.00044
[6] Campbell, K.S. and Colonna, M. (1999) DAP12: A Key Accessory Protein for Relaying Signals by Natural Killer Cell Receptors. The International Journal of Biochemistry & Cell Biology, 31, 631-636.
https://doi.org/10.1016/S1357-2725(99)00022-9
[7] Yuan, P., Condello, C., Keene, C.D., et al. (2016) TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy. Neuron, 90, 724-739.
https://doi.org/10.1016/j.neuron.2016.05.003
[8] Kaifu, T., Nakahara, J., Inui, M., et al. (2003) Osteopetrosis and Thalamic Hypomyelinosis with Synaptic Degeneration in DAP12-Deficient Mice. Journal of Clinical Investigation, 111, 323-332.
https://doi.org/10.1172/JCI16923
[9] Paradowska-Gorycka, A. and Jurkowska, M. (2013) Structure, Expression Pattern and Biological Activity of Molecular Complex TREM-2/DAP12. Human Immunology, 74, 730-737.
https://doi.org/10.1016/j.humimm.2013.02.003
[10] Konishi, H. and Kiyama, H. (2020) Non-Pathological Roles of Microglial TREM2/DAP12: TREM2/DAP12 Regulates the Physiological Functions of Microglia from Development to Aging. Neurochemistry International, 141, Article ID: 104878.
https://doi.org/10.1016/j.neuint.2020.104878
[11] Squarzoni, P., Oller, G., Hoeffel, G., et al. (2014) Microglia Modulate Wiring of the Embryonic Forebrain. Cell Reports, 8, 1271-1279.
https://doi.org/10.1016/j.celrep.2014.07.042
[12] Pont-Lezica, L., Beumer, W., Colasse, S., Drexhage, H., Versnel, M. and Bessis, A. (2014) Microglia Shape Corpus Callosum Axon Tract Fasciculation: Functional Impact of Prenatal Inflammation. European Journal of Neuroscience, 39, 1551-1557.
https://doi.org/10.1111/ejn.12508
[13] Parkhurst, C.N., Yang, G., Ninan, I., et al. (2013) Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell, 155, 1596-1609.
https://doi.org/10.1016/j.cell.2013.11.030
[14] Zhai, Q., Li, F., Chen, X., et al. (2017) Triggering Receptor Expressed on Myeloid Cells 2, a Novel Regulator of Immunocyte Phenotypes, Confers Neuroprotection by Relieving Neuroinflammation. Anesthesiology, 127, 98-110.
https://doi.org/10.1097/ALN.0000000000001628
[15] Mazaheri, F., Snaidero, N., Kleinberger, G., et al. (2017) TREM2 Deficiency Impairs Chemotaxis and Microglial Responses to Neuronal Injury. EMBO Reports, 18, 1186-1198.
https://doi.org/10.15252/embr.201743922
[16] Filipello, F., Morini, R., Corradini, I., et al. (2018) The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity, 48, 979-991.e8.
https://doi.org/10.1016/j.immuni.2018.04.016
[17] Wakselman, S., Béchade, C., Roumier, A., Bernard, D., Triller, A. and Bessis, A. (2008) Developmental Neuronal Death in Hippocampus Requires the Microglial CD11b Integrin and DAP12 Immunoreceptor. Journal of Neuroscience, 28, 8138-8143.
https://doi.org/10.1523/JNEUROSCI.1006-08.2008
[18] Wlodarczyk, A., Holtman, I.R., Krueger, M., et al. (2017) A Novel Microglial Subset Plays a Key Role in Myelinogenesis in Developing Brain. The EMBO Journal, 36, 3292-3308.
https://doi.org/10.15252/embj.201696056
[19] Zheng, H., Jia, L., Liu, C.C., et al. (2017) TREM2 Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway. Journal of Neuroscience, 37, 1772-1784.
https://doi.org/10.1523/JNEUROSCI.2459-16.2017
[20] Jay, T.R., von Saucken, V.E., Muñoz, B., et al. (2019) TREM2 Is Required for Microglial Instruction of Astrocytic Synaptic Engulfment in Neurodevelopment. Glia, 67, 1873-1892.
https://doi.org/10.1002/glia.23664
[21] Linnartz-Gerlach, B., Bodea, L.G., Klaus, C., et al. (2019) TREM2 Triggers Microglial Density and Age-Related Neuronal Loss. Glia, 67, 539-550.
https://doi.org/10.1002/glia.23563
[22] Sasaki, A., Kakita, A., Yoshida, K., et al. (2015) Variable Expression of Microglial DAP12 and TREM2 Genes in Nasu-Hakola Disease. Neurogenetics, 16, 265-276.
https://doi.org/10.1007/s10048-015-0451-3
[23] Thrash, J.C., Torbett, B.E. and Carson, M.J. (2009) Develop-mental Regulation of TREM2 and DAP12 Expression in the Murine CNS: Implications for Nasu-Hakola Disease. Neurochemical Research, 34, 38-45.
https://doi.org/10.1007/s11064-008-9657-1
[24] Miron, V.E., Boyd, A., Zhao, J.W., et al. (2013) M2 Microglia and Macrophages Drive Oligodendrocyte Differentiation during CNS Remyelination. Nature Neuroscience, 16, 1211-1218.
https://doi.org/10.1038/nn.3469
[25] Cantoni, C., Bollman, B., Licastro, D., et al. (2015) TREM2 Regulates Microglial Cell Activation in Response to Demyelination in Vivo. Acta Neuropathologica, 129, 429-447.
https://doi.org/10.1007/s00401-015-1388-1
[26] Poliani, P.L., Wang, Y., Fontana, E., et al. (2015) TREM2 Sus-tains Microglial Expansion during Aging and Response to Demyelination. Journal of Clinical Investigation, 125, 2161-2170.
https://doi.org/10.1172/JCI77983
[27] Jonsson, T., Stefansson, H., Steinberg, S., et al. (2013) Variant of TREM2 Associated with the Risk of Alzheimer’s Disease. The New England Journal of Medicine, 368, 107-116.
https://doi.org/10.1056/NEJMoa1211103
[28] Guerreiro, R., Wojtas, A., Bras, J., et al. (2013) TREM2 Variants in Alzheimer’s Disease. The New England Journal of Medicine, 368, 117-127.
https://doi.org/10.1056/NEJMoa1211851
[29] Zhang, B., Gaiteri, C., Bodea, L.G., et al. (2013) Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease. Cell, 153, 707-720.
https://doi.org/10.1016/j.cell.2013.03.030
[30] Wang, Y., Ulland, T.K., Ulrich, J.D., et al. (2016) TREM2-Mediated Early Microglial Response Limits Diffusion and Toxicity of Amyloid Plaques. Journal of Experi-mental Medicine, 213, 667-675.
https://doi.org/10.1084/jem.20151948
[31] Ulland, T.K., Song, W.M., Huang, S.C., et al. (2017) TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease. Cell, 170, 649-663.e13.
https://doi.org/10.1016/j.cell.2017.07.023
[32] Lee, C.Y.D., Daggett, A., Gu, X., et al. (2018) Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer’s Disease Models. Neuron, 97, 1032-1048.e5.
https://doi.org/10.1016/j.neuron.2018.02.002
[33] Cui, X., Qiao, J., Liu, S., Wu, M. and Gu, W. (2021) Mecha-nism of TREM2/DAP12 Complex Affecting β-Amyloid Plaque Deposition in Alzheimer’s Disease Modeled Mice through Mediating Inflammatory Response. Brain Research Bulletin, 166, 21-28.
https://doi.org/10.1016/j.brainresbull.2020.10.006
[34] Jay, T.R., Hirsch, A.M., Broihier, M.L., et al. (2017) Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer’s Disease. Journal of Neuroscience, 37, 637-647.
https://doi.org/10.1523/JNEUROSCI.2110-16.2016
[35] Hu, X., Zhang, D., Pang, H., et al. (2008) Macrophage Antigen Complex-1 Mediates Reactive Microgliosis and Progressive Dopaminergic Neurodegeneration in the MPTP Model of Parkinson’s Disease. The Journal of Immunology, 181, 7194-7204.
https://doi.org/10.4049/jimmunol.181.10.7194
[36] Subramaniam, S.R. and Federoff, H.J. (2017) Targeting Mi-croglial Activation States as a Therapeutic Avenue in Parkinson’s Disease. Frontiers in Aging Neuroscience, 9, Article 176.
https://doi.org/10.3389/fnagi.2017.00176
[37] Virgone-Carlotta, A., Uhlrich, J., Akram, M.N., et al. (2013) Mapping and Kinetics of Microglia/Neuron Cell-to-Cell Contacts in the 6-OHDA Murine Model of Parkinson’s Disease. Glia, 61, 1645-1658.
https://doi.org/10.1002/glia.22546
[38] Belloli, S., Pannese, M., Buonsanti, C., et al. (2017) Early Upregulation of 18-kDa Translocator Protein in Response to Acute Neurodegenerative Damage in TREM2-Deficient Mice. Neurobiology of Aging, 53, 159-168.
https://doi.org/10.1016/j.neurobiolaging.2017.01.010
[39] Guruswamy, R. and ElAli, A. (2017) Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. International Journal of Molecular Sciences, 18, Article 496.
https://doi.org/10.3390/ijms18030496
[40] Jayaraj, R.L., Azimullah, S., Beiram, R, Jalal, F.Y. and Rosenberg, G.A. (2019) Neuroinflammation: Friend and Foe for Ischemic Stroke. Journal of Neuroinflammation, 16, Article No. 142.
https://doi.org/10.1186/s12974-019-1516-2
[41] Ma, Y., Wang, J., Wang, Y. and Yang, G.Y. (2017) The Biphasic Function of Microglia in Ischemic Stroke. Progress in Neurobiology, 157, 247-272.
https://doi.org/10.1016/j.pneurobio.2016.01.005
[42] Kawabori, M., Kacimi, R., Kauppinen, T., et al. (2015) Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Deficiency Attenuates Phagocytic Activities of Microglia and Exacerbates Ischemic Damage in Experimental Stroke. Journal of Neuroscience, 35, 3384-3396.
https://doi.org/10.1523/JNEUROSCI.2620-14.2015
[43] Sieber, M.W., Jaenisch, N., Brehm, M., et al. (2013) Attenuated Inflammatory Response in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice Following Stroke. PLOS ONE, 8, e52982.
https://doi.org/10.1371/journal.pone.0052982
[44] Wu, R., Li, X., Xu, P., et al. (2017) TREM2 Protects against Cerebral Ischemia/Reperfusion Injury. Molecular Brain, 10, Article No. 20.
https://doi.org/10.1186/s13041-017-0296-9
[45] Xu, P., Zhang, X., Liu, Q., et al. (2019) Microglial TREM-1 Receptor Mediates Neuroinflammatory Injury via Interaction with SYK in Experimental Ischemic Stroke. Cell Death & Disease, 10, Article No. 555.
https://doi.org/10.1038/s41419-019-1777-9
[46] Grace, P.M., Hutchinson, M.R., Maier, S.F. and Watkins, L.R. (2014) Pathological Pain and the Neuroimmune Interface. Nature Reviews Immunology, 14, 217-231.
https://doi.org/10.1038/nri3621
[47] Inoue, K. and Tsuda, M. (2018) Microglia in Neuropathic Pain: Cellular and Molecular Mechanisms and Therapeutic Potential. Nature Reviews Neuroscience, 19, 138-152.
https://doi.org/10.1038/nrn.2018.2
[48] Kobayashi, M., Konishi, H., Sayo, A., Takai, T. and Kiyama, H. (2016) TREM2/DAP12 Signal Elicits Proinflammatory Response in Microglia and Exacerbates Neuropathic Pain. Journal of Neuroscience, 36, 11138-11150.
https://doi.org/10.1523/JNEUROSCI.1238-16.2016
[49] Guan, Z., Kuhn, J.A., Wang, X., et al. (2016) Injured Sensory Neuron-Derived CSF1 Induces Microglial Proliferation and DAP12-Dependent Pain. Nature Neuroscience, 19, 94-101.
https://doi.org/10.1038/nn.4189
[50] Konishi, H., Kobayashi, M., Kunisawa, T., et al. (2017) Siglec-H Is a Microglia-Specific Marker That Discriminates Microglia from CNS-Associated Macrophages and CNS-Infiltrating Monocytes. Glia, 65, 1927-1943.
https://doi.org/10.1002/glia.23204