基于网络药理学的绞股蓝治疗急性肺损伤疗效分析
Analysis of the Efficacy of Gynostemias pentaphyllum in the Treatment of Acute Lung Injury Based on Network Pharmacology
DOI: 10.12677/HJBM.2023.131003, PDF, HTML, XML, 下载: 119  浏览: 271  科研立项经费支持
作者: 吕冠平:洱源县人民医院内四科,云南 大理;赵 敏*:丽江文化旅游学院,云南 丽江
关键词: 网络药理学绞股蓝急性肺损伤活性成分机制Network Pharmacology Gynostemma pentaphyllum Acute Lung Injury Active Components Mechanism
摘要: 目的:基于网络药理学研究绞股蓝治疗急性肺损伤(acute lung injury, ALI)的有效成分和潜在靶点。方法:从中药系统药理学数据库和分析平台(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, TCMSP)中获取绞股蓝的活性成分、相关靶点和相关靶基因。同时,通过OMIM数据库、GeneCards数据库和Therapeutic Target数据库获取ALI靶基因信息。文氏图用于显示绞股蓝和ALI的共同靶点。使用Cytoscape 3.7.2构建药物成分靶点疾病网络图,并从STRING数据库获得蛋白–蛋白相互作用(Protein-Protein Interaction Networks, PPI)网络。同时,使用生物信息学网站平台进行基因本体富集分析和KEGG (Kyoto Encyclopedia of Genes and Genomes)通路富集分析以揭示该机制。结果:结果分为三个阵营:成分、靶点和途径。在成分方面,发现绞股蓝的15种活性成分在细胞膜、细胞质和细胞核中具有生物活性,其中槲皮素、鼠李素和异岩藻甾醇是主要活性成分。共发现155个靶点,其中134个主要靶点和ALI共同拥有(尤其是AKT1 (Protein Kinase Bα)、TP53 (tumor protein p53)、TNF (tumor necrosis factor)、IL-6 (Interleukin-6)、VEGFA (Vascular endothelial growth factor A)、CASP3 (Caspase-3)、IL-1B (Interleukin-1B)、HIF-1A (hypoxia inducible factor-1A)、EGFR (Epidermal growth factor receptor)和PTGS2 (Prostaglandin-Endoperoxide Synthase 2))有助于ALI的治疗。此外,绞股蓝治疗ALI的主要途径是PI3K-Akt (Phosphatidylinositol-3-kinase)信号通路、脂质和动脉粥样硬化、糖尿病并发症中的AGE-RAGE (advanced glycosylation end products-receptor of AGEs)信号通路、HIF-1信号通路、肿瘤和感染相关通路。结论:由于绞股蓝的多组分、多靶点和多通道功能,本研究通过网络药理学初步揭示了绞股蓝治疗ALI的潜在调节网络。为后续的实验研究和临床应用提供了理论依据。
Abstract: Objective: To study the active components and potential targets of Gynostemma pentaphyllum in the treatment of acute lung injury (ALI) based on network pharmacology. Methods: The active components, related targets and related target genes of Gynostemma pentaphyllum were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). At the same time, ALI target gene information is obtained through OMIM database, GeneCards database and Therapeutic Target database. Venn diagram is used to show the common targets of Gynostemma pentaphyllum and ALI. Use Cytoscape 3.7.2 to construct the target disease network diagram of drug components, and obtain the protein-protein interaction networks (PPI) network from STRING database. At the same time, the bioinformatics website platform was used for gene ontology enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis to reveal the mechanism. Results: The results were divided into three camps: component, target and pathway. In terms of components, it was found that 15 active components of Gynostemma pentaphyllum had biological activities in the cell membrane, cytoplasm and nucleus, among which quercetin, rhamnolicin and isofucosterol were the main active components. A total of 155 targets were found, 134 of which were jointly owned by ALI (especially AKT1 (Protein Kinase Bα), TP53 (tumor protein p53), TNF (tumor neurosis factor), IL-6 (Interleukin-6), VEGFA (Vascular endothelial growth factor A), CASP3 (Caspase-3), IL-1B (Interleukin-1B), HIF-1A (hybrid inducible factor-1A), EGFR (Epidermal growth factor receptor) and PTGS2 (Prostaglandin Endoxide Synthase 2)) contribute to the treatment of ALI. In addition, the main ways of Gynostemma pentaphyllum to treat ALI are PI3K-Akt (Phosphatidylinositol-3-kinase) signaling pathway, lipid and atherosclerosis, AGE-RAGE (advanced glycolysis end products receptor of AGEs) signaling pathway, HIF-1 signaling pathway, tumor and infection related pathways. Conclusion: Due to the multi-component, multi target and multi-channel functions of Gynostemma pentaphyllum, this study preliminarily revealed the potential regulatory network of Gynostemma pentaphyllum in the treatment of ALI through network pharmacology. It provides a theoretical basis for the follow-up experimental research and clinical application.
文章引用:吕冠平, 赵敏. 基于网络药理学的绞股蓝治疗急性肺损伤疗效分析[J]. 生物医学, 2023, 13(1): 20-34. https://doi.org/10.12677/HJBM.2023.131003

1. 引言

ALI是由肺血管通透性增加引起的非心源性肺水肿引起的缺氧呼吸功能不全的肺部炎症综合征 [1]。如果不及时治疗ALI,它可能发展到严重的阶段,即急性呼吸窘迫综合征(ARDS)。ARDS是一种致命疾病 [2] [3] [4],死亡率高达40% [5]。因此,早期控制疾病的发展对改善患者的预后具有重要意义。尽管糖皮质激素和西药以及其他治疗方法在临床实践中是可用的,但它们会产生许多不良反应,无法达到理想的治疗效果。目前,缺乏特效药物和方法,因此临床中ALI的发病率和死亡率仍然很高。然而,中医主要采用辨证论治的方法,用中药复方或单味中药防治急性肺损伤,并取得了一定的疗效 [6]。

Figure 1. Flow chart of this study

图1. 本研究的流程图

绞股蓝是葫芦科的一种爬草植物,又名七叶胆、五叶参等,味甘、苦、寒,属肺、脾、肾。1986年,绞股蓝被科技部列为第一种“珍贵中药材”。2002年,它被卫生部列入保健品清单。现有研究表明,绞股蓝的主要化学成分是皂苷、黄酮类、多糖、氨基酸和多种微量元素。现代药理研究发现,它具有多种药理活性,如降低血糖 [7] 和血脂 [8]、抗肿瘤 [9] [10]、免疫调节 [11]、抗炎 [12]、肝脏保护 [13] [14] 和心血管 [15] [16]、抗氧化剂 [17] 和其他作用 [18]。然而,绞股蓝对ALI的影响尚未报道。网络药理学是一种新兴的技术,它将网络生物学与多药药理学相结合,在药物与疾病相互作用的研究中有着广泛的应用,可以从海量数据中直接识别药物和疾病靶点,并了解其潜在机制和途径。因此,本文结合网络药理学,探讨了绞股蓝在治疗ALI中的活性成分、核心靶点和作用机制,为绞股蓝未来的治疗提供了理论依据。本研究的流程图(图1)。

2. 方法

2.1. 筛选绞股蓝的活性成分和靶基因

通过中药系统药理学(TCMSP:https://old.tcmsp-e.com/tcmsp.php)数据库并利用文献收集绞股蓝的有效成分。绞股蓝活性成分的选择遵循药物动力学规律,包括吸收、分布、代谢和排泄(ADME)。口服生物利用度阈值设置为 ≥ 30%,药物相似性阈值设置为 ≥ 0.18 [19]。最后通过Uniprot (https://www.uniprot.org/)对基于这些有效成分获得的相应靶基因进行了校正,被选为“智人”。

2.2. ALI相关靶点筛选

通过OMIM (https://www.omim.org/)数据库、GeneCards (https://www.genecards.org/)数据库和Therapeutic Target数据库(https://db.idrblab.net/ttd/),以“急性肺损伤”为关键词搜索相关靶点。

2.3. 构建有效成分–靶点网络图

为了确定活性成分与靶点之间可能的相互作用,根据活性成分的度值构建了成分–靶标网络。将绞股蓝中的成分和155个靶点输入到Cytoscape 3.7.2中,以绘制“成分–靶点”网络。网络中活性成分的颜色和节点形状根据度值而变化。具有更多连接成分或目标的节点以更大的尺寸表示,表明它们在整个网络中的重要性。

2.4. 药物–疾病共同靶点筛选及蛋白-蛋白相互作用网络构建和核心基因筛选

在本文中,利用Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/)在线软件绘图工具分析绞股蓝与ALI的相互作用靶点,获得药物–疾病共同靶点。蛋白质相互作用的PPI网络由在线String (https://string-db.org/)平台构建,随后,使用cytoHubba插件通过拓扑网络算法为每个基因赋值,并对核心基因进行排序和挖掘。此外,还绘制了核心基因的条形图。

2.5. GO和KEGG途径富集分析

为了进一步研究绞股蓝治疗ALI的机制。绞股蓝和ALI的共同基因被提交到Metascape (https://metascape.org)在线数据库 [20] 用于基因本体(GO)功能富集分析和京都基因和基因组百科全书(KEGG)途径分析。在GO富集分析中,生物过程、细胞成分和分子功能的前10项被可视化并用气泡图显示。按P值排序的前20个KEGG通路也被可视化并用气泡图显示。同时,使用Cytoscape 3.7.2整合成分、靶点和信号通路,构建“成分–靶点–通路”网络图。

3. 结果

3.1. 绞股蓝活性成分及ALI相关靶点的筛选

总共从TCMSP数据库中获得了15种绞股蓝活性成分,符合OB ≥ 30%和DL ≥ 0.18的筛选标准(表1)。接下来,我们从TCMSP和Uniport数据库中识别了与绞股蓝中活性成分相对应的155个靶点,并将其输入到Cytoscape3.7.2中以绘制“成分–靶点”网络(图2)。此外,通过GeneCards、TTD和OMIM数据库识别了7731、9和93个ALI相关靶点。在过滤和去除重复后,共获得3951个ALI相关靶点。在将绞股蓝的目标与ALI的目标进行匹配后,确定了134个共同目标,并显示在维恩图中(图3(a))。将其输入到Cytoscape3.7.2软件中绘制“疾病–药物–靶点–成分”相互作用网络图(图3(b))。

Figure 2. Gynostemma pentaphyllum component target network diagram. The yellow triangle represents the active ingredient of Gynostemma pentaphyllum, and the green diamond represents the drug target

图2. 绞股蓝成分靶点网络图。黄色三角形代表绞股蓝的活性成分,绿色菱形代表药物靶点

Table 1. Active components of Gynostemma pentaphyllum

表1. 绞股蓝的活性成分

(a)(b)

Figure 3. Network analysis of common targets in Gynostemma pentaphyllum and ALI. (a): Venn diagram analysis of the common target of Gynostemma pentaphyllum and ALI. (b): Network diagram analysis of the interaction between the active components of Gynostemma pentaphyllum and ALI common target

图3. 绞股蓝和ALI中共同靶点的网络分析。(a):绞股蓝和ALI共同靶点的维恩图分析。(b):绞股蓝活性成分与ALI共同靶点相互作用的网络图分析

(a)(b)

Figure 4. Analysis of interaction between Gynostemma pentaphyllum and ALI common target protein. (a): Core target protein PPI network diagram. (b): Core target protein interaction network diagram

图4. 绞股蓝和ALI共同靶蛋白相互作用分析。(a):核心靶蛋白PPI网络图。(b):核心靶蛋白相互作用网络图

3.2. PPI网络的构建和核心基因的筛选

我们将134个共同靶点输入到String获取PPI网络(图4(a)),随后将其输入到Cytoscape3.7.2软件中绘制蛋白质相互作用网络(图4(b),节点、颜色和度参数的值成比例)。图5(a)和图5(b)基于PPI拓扑分析和聚类分析,列出了绞股蓝治疗ALI的主要靶点:AKT1、TP53、TNF、IL-6、VEGFA、CASP3、IL-1B、HIF-1A、EGFR和PTGS2。

(a)(b)

Figure 5. Core genes of Gynostemma pentaphyllum and ALI common targets. (a): Molecular histogram of the first 20 core targets; (b): The interaction network diagram of the first 30 core target proteins

图5. 绞股蓝和ALI共同靶点的核心基因。(a):前20位核心靶点分子柱状图;(b):前30位核心靶蛋白相互作用网络图

3.3. GO功能富集分析

通过GO富集分析,获得了1920个与绞股蓝对ALI治疗作用相关的项目,可分为3类,即1700个生物过程项目、150个分子功能项目和67个细胞成分项目。气泡图显示了上述3个类别中的前20个项目。图6(a)显示了生物学结果;绞股蓝中的推测成分主要对激素反应、无机物质反应、细胞对脂类反应和脂多糖反应的负调节作出反应,以及对氧水平的反应。图6(b)显示了分子功能的结果;绞股蓝的活性成分与激酶结合、DNA结合转录因子结合、蛋白结构域特异性结合、蛋白同源二聚活性和蛋白激酶活性密切相关。根据图6(c)所示的细胞成分结果,绞股蓝中的活性成分与转录调节复合物、膜筏、质膜蛋白复合物、细胞外基质和膜侧有关。

3.4. KEGG富集分析

KEGG分析验证了134个交叉基因在201个信号通路中的丰富应用。根据p值,图7(a)和图7(b)给出了前20个结果。同时,整合前20种活性成分和核心靶点,以构建“成分–靶点–通路”网络图(图7(c)节点大小因度值而异)。图7(a)和图7(b)显示了具有丰富KEGG通路的主要通路:PI3K-Akt信号通路、脂质和动脉粥样硬化、糖尿病并发症中的AGE-RAGE信号通路、HIF-1信号通路、肿瘤和感染相关通路等,以及主要分子靶点,包括AKT1、MAPK1、PRKACA (Protein Kinase CAMP-Activated Catalytic Subunit Alpha)、PRKCB (Protein Kinase C Beta)、RAF1 (Proto oncogene serine/threonine protein kinase1)、RELA (V Rel avian reticulovirus oncogene homology A)、PGR (progesterone receptor)、NCOA2 (Nuclear Receptor Coactivator 2)、PRKCA (Protein Kinase C Alpha)和IL-6。

(a) (b) (c)

Figure 6. GO enrichment analysis. (a): Biological processes. (b): Molecular function. (c): Cellular composition

图6. GO富集分析。(a):生物过程。(b):分子功能。(c):细胞成分

(a) (b) (c)

Figure 7. KEGG pathway enrichment and component target pathway analysis of Gynostemma pentaphyllum and ALI core targets (top 20). (a): KEGG pathway enrichment analysis histogram of Gynostemma pentaphyllum and ALI core target. (b): Bubble diagram of KEGG pathway enrichment analysis of Gynostemma pentaphyllum and ALI core target. (c): Gynostemma pentaphyllum and ALI interaction pathway network diagram (pink is the active ingredient; yellow is the target; brown is the KEGG path; the size of the shape in the diagram represents the size of the degree value)

图7. 绞股蓝和ALI核心靶点的KEGG途径富集和成分–靶点–途径分析(前20)。(a):绞股蓝和ALI核心靶点的KEGG途径富集分析柱状图。(b):绞股蓝和ALI核心靶点的KEGG途径富集分析的气泡图。(c):绞股蓝和ALI相互作用通路网络图(粉红色为活性成分;黄色为目标;棕色为KEGG路径;图中形状的大小表示度值的大小)

4. 讨论

绞股蓝具有多种功能,包括抗炎、抗肿瘤、免疫调节、抗氧化、抗运动疲劳、肝脏和神经保护活性,可作为治疗高脂血症的药物 [21]。原因在于其多种化学成分,包括皂苷、氨基酸、多糖、黄酮、有机酸、微量元素和其他化学物质 [22]。在LPS (Lipopolysaccharide)诱导的大鼠肺损伤模型中,绞股蓝可以减少过量自由基造成的损伤,提高细胞存活率,减少组织的氧化损伤,并降低IL-6、IL-10、TNF-α、TGF-β1和其他炎症因子的表达水平,降低大鼠肺损害的程度 [23]。基于以往的研究,本研究的目的是通过网络药理学方法,主要探讨急性肺损伤治疗的作用机制,发现绞股蓝由多组分、多靶点组成,初步揭示了治疗ALI调节网络的潜力。但是,所有这些因素都需要在我们的后续计划中的动物实验和临床试验中进一步阐明。

首先,网络药理学探索和分析了广泛应用的中草药的活性成分、靶点和作用机制,利用复杂的网络模型阐述了绞股蓝的药理特性,并阐明了成分与疾病的复杂相互作用 [24] [25]。筛选了绞股蓝的15个活性成分,共155个靶点。进一步分析发现,主要活性成分主要是槲皮素、鼠李素和异岩藻甾醇,主要靶点与氧化应激、炎症反应、脂质代谢和细胞凋亡高度相关 [26] [27] [28] [29]。绞股蓝治疗ALI的核心靶点是AKT1、TP53、TNF、IL-6、VEGFA、CASP3、IL-1B、HIF-1A、EGFR和PTGS2,阻断其生物活性可降低炎症和组织损伤 [30] [31] [32]。绞股蓝对ALI的GO富集分析支持活性成分在细胞膜、细胞质中发挥生物活性的能力,这不能通过参与蛋白激酶活性调节、蛋白结构域特异性结合、对氧水平的反应、DNA结合和转录因子结合来实现。此外,KEGG分析发现,丰富的基因富含信号通路,主要是PI3K-Akt信号通路、脂质和动脉粥样硬化、糖尿病并发症中的AGE-RAGE信号通路、HIF-1信号通路、肿瘤和感染相关通路等。

鉴于PI3K-Akt和HIF-1信号通路参与各种炎症性疾病的发生和发展,靶向调节其激活可显著改善许多炎症性疾病中的炎症反应和组织损伤 [33] [34] [35] [36]。在大鼠和小鼠急性肺损伤模型中,抑制HIF-1和PI3K途径以减少炎症 [37] [38]。在急性肺损伤的大鼠模型中,MAPK (mitogen-activated protein kinases)信号通路在调节炎症和免疫中至关重要,其激活促进各种炎症因子的基因转录,导致炎症反应和组织损伤 [39] [40] [41]。阻断MAPK信号通路可以显著改善ALI模型动物的炎症反应和组织损伤 [42] [43]。同时,降低TNF水平也可以达到保护肺组织的效果 [44]。在这项研究中,槲皮素是治疗急性肺损伤的绞股蓝中最重要的成分,这与现有研究相同,可以减少肺损伤和炎症 [45] [46]。最后但并非最不重要的是,由于本研究主要依赖于基于网络的数据库,因此仍存在一些局限性。筛选的黄芪活性成分缺乏分析化学鉴定。此外,还需要进一步的体内和体外实验来验证绞股蓝及其活性成分的作用。

5. 结论

绞股蓝的成分有助于以多组分、多靶点和多路径协同方式治疗ALI,包括槲皮素、鼠李素和异岩藻甾醇,它们通过PI3K-Akt、HIF-1和感染相关通路信号通路作用于AKT1、MAPK1、PRKACA、PRKCB、RAF1、RELA、PGR、NCOA2、PRKCA和IL-6靶点。通过这项研究,我们希望为急性肺损伤提供更多的治疗方法。然而,本文受限于不完整的数据库和潜在的目标,未能考虑低丰度活性组分,需要进一步验证。

基金项目

丽江文化旅游学院校级科研项目,红景天苷对急性肺损伤炎症因子的作用,编号:2022XY20。

NOTES

*通讯作者。

参考文献

[1] Shaw, T.D., McAuley, D.F. and O’Kane, C.M. (2019) Emerging Drugs for Treating the Acute Respiratory Distress Syndrome. Expert Opinion on Emerging Drugs, 24, 29-41.
https://doi.org/10.1080/14728214.2019.1591369
[2] Zhang, Y., Zhang, H., Li, S., et al. (2022) Metformin Alleviates LPS-Induced Acute Lung Injury by Regulating the SIRT1/NF-κB/NLRP3 Pathway and Inhibiting Endothelial Cell Pyroptosis. Frontiers in Pharmacology, 13, Article ID: 801337.
https://doi.org/10.3389/fphar.2022.801337
[3] Reilly, J.P., Calfee, C.S. and Christie, J.D. (2019) Acute Respiratory Distress Syndrome Phenotypes, 2019. Thieme Medical Publishers, New York.
https://doi.org/10.1055/s-0039-1684049
[4] Fan, E., Brodie, D. and Slutsky, A.S. (2018) Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA, 319, 698-710.
https://doi.org/10.1001/jama.2017.21907
[5] Matthay, M.A., Zemans, R.L., Zimmerman, G.A., et al. (2019) Acute Respiratory Distress Syndrome. Nature Reviews Disease Primers, 5, 1-22.
https://doi.org/10.1038/s41572-019-0069-0
[6] Fan, W.-J., et al. (2022) Research Progress on Mechanism of Jiegeng Decoction and Its Active Components in Treatment of Acute Lung Injury. Chinese Traditional and Herbal Drugs, 53, 1230-1239.
[7] 张琼, 黄晓飞, 翟文海. 绞股蓝总皂苷对2型糖尿病小鼠糖脂代谢水平及肝脏自噬基因表达的影响[J]. 时珍国医国药, 2018, 29(2): 3.
[8] Lu, Y.-L., et al. (2018) Hypolipemic Mechanism of Saponins from Gynostemma pentaphylla Based on Analysis of Bile Acids. Natural Product Research and Development, 30, 1143.
[9] Xing, S., Liu, L., Zu, M., et al. (2019) Inhibitory Effect of Damulin B from Gynostemma pentaphyllum on Human Lung Cancer Cells. Planta Medica, 85, 394-405.
https://doi.org/10.1055/a-0810-7738
[10] Zhang, X., Shi, G., Wu, X., et al. (2020) Gypensapogenin H from Hydrolyzate of Total Gynostemma pentaphyllum Saponins Induces Apoptosis in Human Breast Carcinoma Cells. Natural Product Research, 34, 1642-1646.
https://doi.org/10.1080/14786419.2018.1525370
[11] 方磊涵, 毕玉霞, 王振, 等. 绞股蓝多糖对猪瘟弱毒疫苗免疫效果的影响[J]. 中兽医医药杂志, 2018, 37(1): 58-60.
[12] Zhou, W.C. (2018) Research on Extraction and Anti-Inflammatory Activity of New Saponins from Gynostemma pentaphyllum Seeds. Yunnan Chemical Industry, 45, 34-37.
[13] 南瑛, 张薇, 常晋瑞, 等. 绞股蓝皂苷通过Nrf2/NF-κB信号通路发挥抗小鼠急性酒精性肝损伤作用[J]. 中国药理学通报, 2019, 35(1): 40-45.
[14] 彭心怡, 倪锴文, 丁阳阳, 等. 绞股蓝水提醇沉液抗川楝子致小鼠慢性肝损伤的实验研究[J]. 浙江中西医结合杂志, 2018, 28(10): 818-820.
[15] 孙立峰, 郭华, 孟剑锋, 等. 绞股蓝总黄酮通过抑制氧化应激反应抗心肌缺血保护作用的研究[J]. 中华中医药学刊, 2018, 36(10): 2513-2515.
[16] 宋囡, 杨芳, 曹慧敏, 等. 绞股蓝总甙调控mTOR/ULK1通路对ApoE-/-小鼠动脉粥样硬化的影响[J]. 中国动脉硬化杂志, 2018, 26(2): 127-132.
[17] 杜楠, 王璐, 白鸽, 等. 绞股蓝籽油食品安全毒理学评价及抗衰老研究[J]. 西北农林科技大学学报: 自然科学版, 2018, 46(5): 131-140, 148.
[18] Nguyen, N.-H., et al. (2021) Triterpenoids from the Genus Gynostemma: Chemistry and Pharmacological Activities. Journal of Ethnopharmacology, 268, Article ID: 113574.
https://doi.org/10.1016/j.jep.2020.113574
[19] Jin, J., Chen, B., Zhan, X., et al. (2021) Network Pharmacology and Molecular Docking Study on the Mechanism of Colorectal Cancer Treatment Using Xiao-Chai-Hu-Tang. PLOS ONE, 16, e252508.
https://doi.org/10.1371/journal.pone.0252508
[20] Zhou, Y., Zhou, B., Pache, L., et al. (2019) Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nature Communications, 10, Article No. 1523.
https://doi.org/10.1038/s41467-019-09234-6
[21] Ji, X., Shen, Y. and Guo, X. (2018) Isolation, Structures, and Bioactivities of the Polysaccharides from Gynostemma pentaphyllum (Thunb.) Makino: A Review. BioMed Research International, 2018, Article ID: 6285134.
https://doi.org/10.1155/2018/6285134
[22] Fan, D. (2017) Research Progress in Chemical Constituents and Pharmacological Activities of Gynostemma pentaphyllum. Chinese Pharmaceutical Journal, 52, 342-352.
[23] 王玉荣. 壮药国虾薄(绞股蓝)黄酮及其肺损伤修复作用的研究[D]: [博士学位论文]. 北京: 中央民族大学, 2018.
[24] Luo, T., Lu, Y., Yan, S., et al. (2020) Network Pharmacology in Research of Chinese Medicine Formula: Methodology, Application and Prospective. Chinese Journal of Integrative Medicine, 26, 72-80.
https://doi.org/10.1007/s11655-019-3064-0
[25] Zhang, Q., Guo, Y. and Zhang, D. (2022) Network Pharmacology Integrated with Molecular Docking Elucidates the Mechanism of Wuwei Yuganzi San for the Treatment of Coronary Heart Disease. Natural Product Communications, 17, 2006-2017.
https://doi.org/10.1177/1934578X221093907
[26] Jiang, M., Lv, Z., Huang, Y., et al. (2022) Quercetin Alleviates Lipopolysaccharide-Induced Inflammatory Response in Bovine Mammary Epithelial Cells by Suppressing TLR4/NF-κB Signaling Pathway. Frontiers in Veterinary Science, 9, Article ID: 915726.
https://doi.org/10.3389/fvets.2022.915726
[27] Ebokaiwe, A.P., Obasi, D.O. and Kalu, W.O. (2022) Abatement of Cyclophosphamide-Induced Splenic Immunosuppressive Indoleamine 2,3-Dioxygenase and Altered Hematological Indices in Wister Rats by Dietary Quercetin. Immunobiology, 227, Article ID: 152218.
https://doi.org/10.1016/j.imbio.2022.152218
[28] Karancsi, Z., Kovács, D., Palkovicsné Pézsa, N., et al. (2022) The Impact of Quercetin and Its Methylated Derivatives 3-o-Methylquercetin and Rhamnazin in Lipopolysaccharide-Induced Inflammation in Porcine Intestinal Cells. Antioxidants, 11, 1265.
https://doi.org/10.3390/antiox11071265
[29] He, D., Huang, J., Zhang, Z., et al. (2019) A Network Pharmacology-Based Strategy for Predicting Active Ingredients and Potential Targets of LiuWei DiHuang Pill in Treating Type 2 Diabetes Mellitus. Drug Design, Development and Therapy, 13, 3989.
https://doi.org/10.2147/DDDT.S216644
[30] Zhang, L., Han, L., Wang, X., et al. (2021) Exploring the Mechanisms Underlying the Therapeutic Effect of Salvia Miltiorrhiza in Diabetic Nephropathy Using Network Pharmacology and Molecular Docking. Bioscience Reports, 41, BSR20203520.
https://doi.org/10.1042/BSR20203520
[31] Zheng, W., Yan, Q., Ni, Y., et al. (2020) Examining the Effector Mechanisms of Xuebijing Injection on COVID-19 Based on Network Pharmacology. BioData Mining, 13, 1-23.
https://doi.org/10.1186/s13040-020-00227-6
[32] Jin, Z., Li, M., Tang, L., et al. (2022) Protective Effect of Ulinastatin on Acute Lung Injury in Diabetic Sepsis Rats. International Immunopharmacology, 108, Article ID: 108908.
https://doi.org/10.1016/j.intimp.2022.108908
[33] Burgos, R.A., Alarcón, P., Quiroga, J., et al. (2020) Andrographolide, an Anti-Inflammatory Multitarget Drug: All Roads Lead to Cellular Metabolism. Molecules, 26, 5.
https://doi.org/10.3390/molecules26010005
[34] Yeung, Y.T., Aziz, F., Guerrero-Castilla, A., et al. (2018) Signaling Pathways in Inflammation and Anti-Inflammatory Therapies. Current Pharmaceutical Design, 24, 1449-1484.
https://doi.org/10.2174/1381612824666180327165604
[35] Akiyama, Y., Miyakawa, J., O’Donnell, M.A., et al. (2022) Overexpression of HIF1α in Hunner Lesions of Interstitial Cystitis: Pathophysiological Implications. The Journal of Urology, 207, 635-646.
https://doi.org/10.1097/JU.0000000000002278
[36] Zhao, S., Gao, J., Li, J., et al. (2021) PD-L1 Regulates Inflammation in LPS-Induced Lung Epithelial Cells and Vascular Endothelial Cells by Interacting with the HIF-1α Signaling Pathway. Inflammation, 44, 1969-1981.
https://doi.org/10.1007/s10753-021-01474-3
[37] Chen, S., Wu, J., Yang, L., et al. (2022) Dexmedetomidine Leads to the Mitigation of Myocardial Ischemia/Reperfusion- Induced Acute Lung Injury in Diabetic Rats via Modulation of Hypoxia-Inducible Factor-1α. Brazilian Journal of Cardiovascular Surgery, 37, 370-379.
https://doi.org/10.21470/1678-9741-2020-0591
[38] Tian, G., Gu, X., Bao, K., et al. (2021) Anti-Inflammatory Effects and Mechanisms of Pudilanantiphlogistic Oral Liquid. ACS Omega, 6, 34512-34524.
https://doi.org/10.1021/acsomega.1c04797
[39] Chen, L., Deng, H., Cui, H., et al. (2018) Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget, 9, 7204.
https://doi.org/10.18632/oncotarget.23208
[40] Luo, J., Yang, C., Luo, X., et al. (2020) Chlorogenic Acid Attenuates Cyclophosphamide-Induced Rat Interstitial Cystitis. Life Sciences, 254, Article ID: 117590.
https://doi.org/10.1016/j.lfs.2020.117590
[41] Sun, Z., Li, Q., Hou, R., et al. (2019) Kaempferol-3-O-Glucorhamnoside Inhibits Inflammatory Responses via MAPK and NF-κB Pathways in Vitro and in Vivo. Toxicology and Applied Pharmacology, 364, 22-28.
https://doi.org/10.1016/j.taap.2018.12.008
[42] Cai, X., Chen, Y., Xie, X., et al. (2019) Astaxanthin Prevents against Lipopolysaccharide-Induced Acute Lung Injury and Sepsis via Inhibiting Activation of MAPK/NF-κB. American Journal of Translational Research, 11, 1884.
[43] Xu, M., Wang, C., Li, N., et al. (2019) Intraperitoneal Injection of Acetate Protects Mice against Lipopolysaccharide (LPS)-Induced Acute Lung Injury through Its Anti-Inflammatory and Anti-Oxidative Ability. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 2278.
https://doi.org/10.12659/MSM.911444
[44] Zheng, J., Zhuo, J., Nie, J., et al. (2021) Phenylethanoid Glycosides From Callicarpa Kwangtungensis Chun Attenuate TNF-α-Induced Cell Damage by Inhibiting NF-κB Pathway and Enhancing Nrf2 Pathway in A549 Cells. Frontiers in Pharmacology, 12, Article ID: 693983.
https://doi.org/10.3389/fphar.2021.693983
[45] Sahib, H.B., Kathum, O.A., Alanee, R.S., et al. (2022) The Anti-Cytokine Storm Activity of Quercetin Zinc and Vitamin C Complex. Advances in Virology, 2022, Article ID: 1575605.
https://doi.org/10.1155/2022/1575605
[46] Sang, A., Wang, Y., Wang, S., et al. (2022) Quercetin Attenuates Sepsis-Induced Acute Lung Injury via Suppressing Oxidative Stress-Mediated ER Stress through Activation of SIRT1/AMPK Pathways. Cellular Signalling, 2022, Article ID: 110363.
https://doi.org/10.1016/j.cellsig.2022.110363