KDM5C基因变异致X连锁精神发育迟滞-Claes-Jensen型综合征1例报道及文献回顾
KDM5C Gene Mutation Causing X-Linked Intellectual Disability-Claese-Jensen Type Syndrome: A Case Report and Literature Review
DOI: 10.12677/ACM.2023.132239, PDF, HTML, XML, 下载: 420  浏览: 670  科研立项经费支持
作者: 李国艳:西安医学院,陕西 西安;王罗俊, 魏子涵, 甘雅静, 冯 研, 邓艳春*:中国人民解放军空军军医大学第一附属医院神经内科,陕西 西安
关键词: KDM5C基因X连锁精神发育迟滞-Claes-Jensen型综合征MRXSCJ智力障碍KDM5C Gene X-Linked Intellectual Disability-Claes-Jensen Type Syndrome MRXSCJ Intellectual Disability
摘要: 目的:报道一例KDM5C基因变异致X连锁精神发育迟滞-Claes-Jensen型综合征的临床特征、基因突变位点以及治疗,并通过文献回顾加深广大医务工作者对该病的认识。方法:我们对2021年1月就诊于西京医院神经内科门诊的1例全面发育落后患者行3人家系全外显子组测序、全基因组拷贝数变异测序及Sanger测序验证。结果:先证者为KDM5C基因错义突变(c.145(exon 1)C>T, p.P49S(p. Pro49Ser) (NM_004187),其父母无该位点突变。根据美国医学遗传学与基因组学会(the American College of Medical Genetics and Genomics, ACMG)指南变异分类标准评定为可能致病性变异(PS2 + PM1 + PM2 + PP3)。结论:本病例KDM5C基因突变(c.145(exon 1)C>T, p.P49S(p. Pro49Ser)可能是X连锁精神发育迟滞-Claes-Jensen型综合征的致病性变异。基因检测有助于该病分子学诊断。
Abstract: Objective: To report KDM5C gene variant causing X-linked mental retardation-Claes-Jensen type syndrome with clinical features, mutation loci, and treatment, and review the literature to improve the understanding of the disease among medical professionals. Method: In January 2021, a patient who visited the outpatient Neurology Department of Xijing Hospital with the complaint of develop-mental delay, performing trio-whole exome sequencing (trioWES), trio-copy number variation se-quencing (trioCNVseq) and verifying Sanger sequencing. Result: The KDM5C gene (c.145 (exon 1)C>T, p.P49S(p. Pro49Ser) (NM_00418 7) was a missense mutation in the proband, but his parents had no mutation at the same locus. According to American College of Medical Genetics and Genomics guidelines, the mutation was likely pathogenic mutations (PS2 + PM1 + PM2 + PP3). Conclusion: The KDM5C gene (c.145(exon 1)C>T, p.P49S(p. Pro49Ser) (NM_00418 7) may be a pathogenic variant of the X-linked intellectual disability-Claes-Jensen syndrome. Genetic tests help in the molecular di-agnosis of the disease.
文章引用:李国艳, 王罗俊, 魏子涵, 甘雅静, 冯研, 邓艳春. KDM5C基因变异致X连锁精神发育迟滞-Claes-Jensen型综合征1例报道及文献回顾[J]. 临床医学进展, 2023, 13(2): 1729-1736. https://doi.org/10.12677/ACM.2023.132239

1. 引言

2000年,Clase等 [1] 首次报道一个家系两代中4例男性患者均有严重的精神发育迟滞、痉挛性截瘫、面部肌张力障碍和上颌发育不良。2007年Jensen等 [2] 对7个X连锁精神发育迟缓的家系进行X染色体脑表达基因筛选,发现KDM5C (lysine demethylase 5C)基因突变,初步描述了KDM5C基因致病变体,将该病称为X连锁精神发育迟滞Claes-Jensen型综合征(mental retardation X-linked Syndromic Claes-Jensen type, MRXSCJ)。目前世界报道病例数约50余例 [1] - [12] ,中国报道6例 [3] [4] [5] [6] ,包括笔者报道的一例在内。我们对一例KDM5C基因变异致X连锁精神发育迟滞-Claes-Jensen型综合征进行报道。

2. 对象与方法

2.1. 对象

患者,男,12岁。因“发育迟缓”于西京医院神经内科门诊就诊。患者8月龄能竖头、寻找声源;1岁8月龄会叫“爸爸、妈妈”、独站、独走;5岁会自己穿鞋;11岁完成指令、但学习困难,口齿不清,生活能独立。生育史:父母非近亲结婚,患者为第1胎第1产,足月顺产,出生有缺氧史。无家族史,患者1弟弟健康(见图1)。无特殊物质接触史。体格检查:生命体征正常,11岁,身高140 cm,体重39 kg,头围53 cm,能语言交流,进行眼神交流,可完成指令,头部有斑秃,膝外翻,小阴茎,无特殊面容,神经系统查体未见异常。辅助检查:头颅磁共振示脑白质髓鞘发育不良。脑电图提示清醒期及睡眠期各导多量单、连发棘波、棘慢波、多棘慢综合波发放。血尿代谢筛查未见异常。肌电/诱发电位:双耳高频听力稍减退,右耳听神经传导速度稍减慢,双耳听神经细胞兴奋性尚可。8岁4月IQ:50分。11岁时行韦氏儿童智力量表(第四版,中文版)测评,语言理解指数:≤48*,直觉推理指数:58*,工作记忆指数:≤45*,加工速度指数:≤59*,总智商:≤47* (中等智力低下)。患者曾接受长达年2年的营养神经药物治疗,精神发育未见进步,此后未接受任何治疗,精神发育同前。

Figure 1. Genetic map. III1 is a proband c.145(exon 1)C>T, II1 is the normal mother, II2 is the normal father

图1. 遗传图。III1为先证者,II1正常母亲,II2正常父亲

2.2. 方法

在获得患者及家属知情同意后行家系全外显子组基因测序(whole-exome sequencing, WES)和全基因组拷贝数变异(the copy number variation, CNV-seq)检测,Sanger测序验证。

2.2.1. 全外显子组测序

采集患者及父母的全血4 ml (EDTA抗凝血),提取患者及家属全基因组DNA进行二代测序,用华大DNBSEQ-T7系列测序仪进行高通量测序,测序读长150 bp,平均测序深度120X。参考GRCh37/hg19基因组,使用GATK软件分析出单核苷酸多态性(single nucleotide polymorphism, SNP)和插入缺失突变(insertion-deletion, Indel),用EXCAVATOR2 软件(https://sourceforge.net/projects/excavator2tool/)分析拷贝数变异,SNP和Indel的分类及报告根据美国医学遗传学与基因组学学会(American College of Medical Genetics and Genomics, ACMG)指南(2015)。

2.2.2. 全基因组拷贝数变异测序

通过超声将基因组DNA分解为200~300 bp片段,并使用琼脂糖凝胶电泳进行检查。基因组文库准备完成后,DNA样本随后在在华大DNBSEQ-T7系列测序仪上测序。使用BclToFastq (Illumina)对原始图像文件进行碱基识别和原始数据生成。使用BWA软件将碱基序列映射到人类参考基因组GRCh37/hg19。使用公共CNV数据库(Decipher、ClinVar、OMIM、DGV和ClinGen)对候选CNV进行过滤和检测。

2.2.3. Sanger测序

对通过测序筛选的可疑致病变异基因KDM5C的用Primer premier5软件设PCR引物进行扩增及Sanger测序分析,并对父母KDM5C基因进行Sanger验证,应用DNASTAR软件等对测序结果进行分析。

3. 结果

先证者KDM5C基因存在chrX:53253927,c.145(exon 1)C>T,p.P49S(p. Pro49Ser) (NM_00418 7)新发错义突变,其父母无该位点突变(见图2图3(A),图3(B),图4(A)~(C))。先证者父母亲验证为新发变异(SP2);错义变异位于无良性变异的外显子功能域,是已确定的致病性变异左右的错义变异且致病热点区(PM1);该变异在正常人群中的频率 < 0.005,属于低频变异(PM2);统计方法预测出变异对基因产物有影响(PP3),根据ACMG指南变异分类标准评定为可能致病性变异。结合临床表现及分子遗传诊断学检测结果,先证者诊断为X连锁精神发育迟滞-Claes-Jensen型综合征,MRXSCJ。

Figure 2. Gene sequence diagram. The proband’s mutation is in C.145 (exon 1)C>T, as shown by arrows in the figure. The father and mother are wild type

图2. 基因序列图。先证者在c.145(exon 1)C>T,图中箭头所示,父亲、母亲为野生型

Figure 3. (A)~(B) Three-dimensional map of disabled wild and mutant amino acids of KDM5C protein. (A) is wild type, (B) is mutant, Figure (a) is the local magnification of proline at position 49 of the wild type amino acid sequence in (A), (b) is the local magnification of Serine at position 49 of the mutant amino acid sequence in (B). The wild-type KDM5C Alpha FoLd prediction model was downloaded from Uniprot database, and the color and site markers are rendered by Pymol

图3. (A)~(B) KDM5C蛋白氨基酸残疾野生型和突变型三维图。(A) 野生型,(B) 突变型,图(a)是图(A)野生型氨基酸序列49位置脯氨酸的局部放大图,图(b)是图(B)突变型氨基酸序列49位置的丝氨酸局部放大图。在Uniprot数据库下载野生型KDM5C蛋白AlphaFoLd预测模型,用Pymol渲染颜色及位点标记

Figure 4. (A)~(C) KDM5C protein expression, pathogenic variation sites and possible pathogenic variation sites. The expression diagram of KDM5C protein is shown in the wire frame, and the KDM5C protein variation sites that have been included in the Clinvar database are displayed above the wire frame. Each type of variation is represented by a colored circle, and the number in the circle is the number of variation. Fig A shows the locus of pathogenic variation, (B) shows the locus of probable pathogenic variation, and Fig C shows the locus of significance uncertainty, including the mutation site reported in this study (indicated by arrows), but assessed as the locus of probable pathogenic variation according to the American Society of Medical Genetics and Genomics guidelines for variation classification. The proband mutation P49S occurs in the JmjN domain. JmjN = jumonji-N domain; ARID = AT-rich interacting domain; PHD = plant homeodomain box domain; JmjC = jumonji-C catalytic domain; ZF = zinc finger domain, PLU-1-like domain. The graph link by https://proteinpaint.stjude.org/

图4. (A)~(C) KDM5C蛋白质表达,致病性变异位点和可能致病性变异位点。线框内表示KDM5C蛋白表达图,线框上方显示Clinvar数据库中已收录的KDM5C蛋白质变异位点,每种变异类型用彩色圆圈表示,圆圈中的数字为变异数量。图A为致病性变异位点,图B为可能致病变异位点,图C为意义不确定性变异位点,包括本研究报道的突变位点(箭头所示),但根据美国医学遗传学与基因组学会指南变异分类标准评定为可能致病性变异。先证者突变p.P49S发生在JmjN结构域。JmjN = jumonji-N domain; ARID = AT-rich interacting domain; PHD = plant homeodomain box domain; JmjC = jumonji-C catalytic domain; ZF = zinc finger domain, PLU-1-like domain。图来自 https://proteinpaint.stjude.org/

4. 讨论

精神发育迟滞(ID, intellectual disability)是一种智力和适应功能障碍,包括推理、解决问题、规划、抽象思维、判断、学术学习和个人独立或社会责任方面障碍 [13] 。X染色体只携带4%人类蛋白质编码基因,但在孟德尔遗传模式的病例,超过10%的ID归因于X染色体变异,且导致ID男性明显多于女性 [14] 。X连锁精神发育迟滞(XLID, X-linked intellectual disability)的致病基因中,KDM5C基因变异是XLID中最常见的突变基因之一,约0.7%~2.8%与XLID病例相关 [15] [16] 。

KDM5C基因由26个外显子组成,位于X染色体p11.22,KDM5C基因编码一种高度保守的1560个氨基酸蛋白,该蛋白催化H3K4 (dimethylated and trimethylated histone H3 lysine 4)去甲基化 [17] 。KDM5C基因在组织中广泛表达,但在人脑和骨骼肌中特异性高表达 [18] ,尤其在大脑的主要认知功能区域如皮层、海马和杏仁核中表达 [19] 。KDM5C蛋白通过调节转录和染色质重塑在胚胎发育、组织特异性基因表达和细胞增殖中发挥重要作用 [20] 。KDM5C基因敲除的雄性小鼠表现出体型小、认知异常、异常树突树状结构、脊柱异常和转录组改变,并伴有数百个神经发育基因的失调 [21] 。人类KDM5C基因变异致X连锁精神发育迟滞-Claes-Jensen型综合征主要分子机制似乎是KDM5C蛋白的去甲基化酶活性降低或稳定性降低,导致组蛋白H3K4去甲基化功能的丧失 [22] ,在果蝇试验模型中也得到验证 [23] ,建立类似人类KDM5C基因错义突变的果蝇模型,转录组分析显示核糖体组装和功能所需的基因显著下调,翻译也随之减少,表型为学习困难和认知障碍,更重要的是,该模型与组蛋白去甲基酶活性丧失的果蝇的转录和行为相似。但Vallianatos等 [16] 研究一个表型为MRXSCJ样的KDM5C基因新突变R1115H病例,该突变损害了KDM5C的基因调节转录功能,未影响酶活性或稳定性。截止目前,已报道的KDM5C变异的Claes-Jensen综合征患者以错义突变为主,其次为移码突变、无义突变,剪切突变仅6个。对既往报道病例的表型及基因型分析,无义变异、移码变异患者表现为重度智力障碍,错义变异患者表现为轻度到重度智力障碍。研究发现KDM5C基因变异的男性患者与女性患者表型是有所差异。男性通常可表现为中度至重度ID、语言障碍、行为障碍、癫痫、独特的面部特征(小额头、下颌前突、小颌畸形、上颌发育不全、面部张力减退和人中扁平)、身材矮小或小头畸形、步态笨拙、共济失调、肌张力增加和肌腱反射活跃 [2] [24] 。笔者报道的先证者表现ID、言语障碍、斑秃、学习困难、好动与既往文献报道相同,而膝外翻首次报道;然而,先证者24小时视频脑电图显示癫痫波发放,但无癫痫发作,故X连锁精神发育迟滞-Claes-Jensen型综合患者可有癫痫波存在,但可无发作或在未来的某一天可能有发作。本研究中的患者肌电/诱发电位报告双耳高频听力稍减退,右耳听神经传导速度稍减慢,双耳听神经细胞兴奋性尚可,但查体粗测听力正常,既往文献未报道听力障碍的病例,对于该类患者即使粗测听力正常,也应注意筛查双耳肌电/诱发电位,有利于患者护理。相比男性而言,女性的认知障碍和神经症状较温和 [11] 。KDM5C基因变异的女性可表现为运动发育延迟、语言障碍、行为障碍、癫痫发作、特殊面容(如圆脸、高额头、眼睑裂下移、眶下皱褶、低位耳、短人中和薄嘴唇)、骨骼异常、内分泌异常(肥胖、超重、甲状腺功能减退和面部多毛)、视力障碍、胃肠道障碍和心脏结构异常等特征 [11] 。男性和女性之间表型的差异被认为与KDM5C基因部分逃逸X染色体失活有关 [13] [24] [25] 。但有研究发现KDM5C基因变异可能不仅仅由X染色体失活引起 [11] 。KDM5C基因突变导致X连锁精神发育迟滞-Claes-Jensen型综合征的原因需要进一步研究。

本研究报道一例KDM5C基因错义突变NM_00418 7:外显子1:c.145(exon 1)C>T,(p.P49S(p. Pro49Ser),该突变在Clinvar已有收录,但为变异意义不明确(Accession:VCV000452419.2)。据我们所知p.P49S变异无致病变异报道,也无良性变异报道,但笔者报道的变异根据ACMG指南变异分类标准评定为可能致病性变异。通过本病例KDM5C基因变异的报道,增加临床医生对X连锁精神发育迟滞-Claes-Jensen型综合的认识,同时基因检测有助于该病分子学诊断。目前该病无根本治疗方法,仍以对症治疗为主。

利益冲突

所有作者均声明不存在利益冲突。

基金项目

国家重点研发计划资助(2022YFC2503801);科技部国家重点研发计划精准医学研究–神经系统疾病专病队列癫痫临床队列研究(2017YFC0907702)。

知情同意与伦理审批

先证者及父母签署了知情同意书,本研究项目经第四军医大学第一附属医院药物临床试验伦理委员会批准(KY20182057-F-1号)。

NOTES

*通讯作者。

参考文献

[1] Claes, S., Devriendt, K., Van Goethem, G., et al. (2000) Novel Syndromic Form of X-Linked Complicated Spastic Para-plegia. American Journal of Medical Genetics, 94, 1-4.
https://doi.org/10.1002/1096-8628(20000904)94:1<1::AID-AJMG1>3.0.CO;2-V
[2] Jensen, L.R., Amende, M., Gurok, U., et al. (2005) Mutations in the JARID1C Gene, Which Is Involved in Transcriptional Regulation and Chroma-tin Remodeling, Cause X-Linked Mental Retardation. American Journal of Human Genetics, 76, 227-236.
https://doi.org/10.1086/427563
[3] 丁宁, 张平平, 毛莹莹, 等. 一个X连锁隐性精神发育迟滞Claes-Jensen型家系的临床特征及基因变异分析[J]. 中华医学遗传学杂志, 2020, 37(12): 1352-1355.
[4] 高敏, 邢梦娟, 张开慧, 等. 一例Claes-Jensen型X连锁精神发育迟滞的临床表型及遗传学分析[J]. 中华医学遗传学杂志, 2020, 37(7): 736-738.
[5] 王依柔, 苗丽燕, 胥雨菲, 等. KDM5C基因变异致X连锁智力障碍-Claes-Jensen综合征二例[J]. 中华儿科杂志, 2020, 58(5): 426-427.
[6] Shen, R., Li, Y., Liang, A., et al. (2022) A Female Case with Novel KDM5C Heterozygous Variation Presenting with Claes-Jensen Type-Like Phonotype. BMC Neurology, 22, Article No. 491.
https://doi.org/10.1186/s12883-022-03023-3
[7] Santos, C., Rodriguez-Revenga, L., Madrigal, I., et al. (2006) A Novel Mutation in JARID1C Gene Associated with Mental Retardation. European Journal of Human Genetics, 14, 583-586.
https://doi.org/10.1038/sj.ejhg.5201608
[8] Abidi, F.E., Holloway, L., Moore, C.A., et al. (2008) Mutations in JARID1C Are Associated with X-Linked Mental Retardation, Short Stature and Hyperreflexia. Journal of Medical Genetics, 45, 787-793.
https://doi.org/10.1136/jmg.2008.058990
[9] Santos-Rebouças, C.B., Fintelman-Rodrigues, N., Jensen, L.R., et al. (2011) A Novel Nonsense Mutation in KDM5C/JARID1C Gene Causing Intellectual Disability, Short Stature and Speech Delay. Neuroscience Letters, 498, 67-71.
https://doi.org/10.1016/j.neulet.2011.04.065
[10] Rujirabanjerd, S., Nelson, J., Tarpey, P.S., et al. (2010) Identification and Characterization of Two Novel JARID1C Mutations: Sug-gestion of an Emerging Genotype-Phenotype Correlation. European Journal of Human Genetics, 18, 330-335.
https://doi.org/10.1038/ejhg.2009.175
[11] Carmignac, V., Nambot, S., Lehalle, D., et al. (2020) Further Delinea-tion of the Female Phenotype with KDM5C Disease Causing Variants: 19 New Individuals and Review of the Literature. Clinical Genetics, 98, 43-55.
https://doi.org/10.1111/cge.13755
[12] Adegbola, A., Gao, H., Sommer, S. and Browning, M. (2008) A Novel Mutation in JARID1C/SMCX in a Patient with Autism Spectrum Disorder (ASD). American Journal of Medical Genet-ics Part A, 146A, 505-511.
https://doi.org/10.1002/ajmg.a.32142
[13] de Ligt, J., Willemsen, M.H., Van Bon, B.W., et al. (2012) Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability. New England Journal of Medicine, 367, 1921-1929.
https://doi.org/10.1056/NEJMoa1206524
[14] Ropers, H.-H. and Hamel, B.C.J. (2005) X-Linked Mental Retarda-tion. Nature Reviews Genetics, 6, 46-57.
https://doi.org/10.1038/nrg1501
[15] de Brouwer, A.P.M., Yntema, H.G., Kleefstra, T., et al. (2007) Mutation Frequencies of X-Linked Mental Retardation Genes in Families from the EuroMRX Consortium. Human Mutation, 28, 207-208.
https://doi.org/10.1002/humu.9482
[16] Vallianatos, C.N., Farrehi, C., Friez, M.J., et al. (2018) Altered Gene-Regulatory Function of KDM5C by a Novel Mutation Associated with Autism and Intellectual Disability. Fron-tiers in Molecular Neuroscience, 11, Article 104.
https://doi.org/10.3389/fnmol.2018.00104
[17] Gonçalves, T.F., Gonçalves, A.P., Fintelman Rodrigues, N., et al. (2014) KDM5C Mutational Screening among Males with Intellectual Disability Suggestive of X-Linked Inheritance and Review of the Literature. European Journal of Medical Genetics, 57, 138-144.
https://doi.org/10.1016/j.ejmg.2014.02.011
[18] Jensen, L.R., Bartenschlager, H., Rujirabanjerd, S., et al. (2010) A Distinctive Gene Expression Fingerprint in Mentally Retarded Male Patients Reflects Disease-Causing Defects in the Histone Demethylase KDM5C. PathoGenetics, 3, Article No. 2.
https://doi.org/10.1186/1755-8417-3-2
[19] Tahiliani, M., Mei, P., Fang, R., et al. (2007) The Histone H3K4 De-methylase SMCX Links REST Target Genes to X-Linked Mental Retardation. Nature, 447, 601-605.
https://doi.org/10.1038/nature05823
[20] Patsialou, A., Wilsker, D. and Moran, E. (2005) DNA-Binding Properties of ARID Family Proteins. Nucleic Acids Research, 33, 66-80.
https://doi.org/10.1093/nar/gki145
[21] Iwase, S., Brookes, E., Agarwal, S., et al. (2016) A Mouse Model of X-Linked Intellectual Disability Associated with Impaired Removal of Histone Methylation. Cell Reports, 14, 1000-1009.
https://doi.org/10.1016/j.celrep.2015.12.091
[22] Brookes, E., Laurent, B., Õunap, K., et al. (2015) Mutations in the Intellectual Disability Gene KDM5C Reduce Protein Stability and Demethylase Activity. Human Molecular Genetics, 24, 2861-2872.
https://doi.org/10.1093/hmg/ddv046
[23] Zamurrad, S., Hatch, H.A.M., Drelon, C., Belalcazar, H.M. and Secombe, J. (2018) A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5. Cell Reports, 22, 2359-2369.
https://doi.org/10.1016/j.celrep.2018.02.018
[24] Ounap, K., Puusepp-Benazzouz, H., Peters, M., et al. (2012) A Novel c.2T>C Mutation of the KDM5C/JARID1C Gene in One Large Family with X-Linked Intellectual Disability. Eu-ropean Journal of Medical Genetics, 55, 178-184.
https://doi.org/10.1016/j.ejmg.2012.01.004
[25] Xu, J., Deng, X. and Disteche, C.M. (2008) Sex-Specific Expres-sion of the X-Linked Histone Demethylase Gene Jarid1c in Brain. PLOS ONE, 3, e2553.
https://doi.org/10.1371/journal.pone.0002553