年龄相关性黄斑变性的相关危险因素研究进展
Research Progress on Risk Factors Related to Age-Related Macular Degeneration
DOI: 10.12677/ACM.2023.133523, PDF, HTML, XML, 下载: 157  浏览: 295 
作者: 汪玖玲:成都中医药大学临床医学院,四川 成都;郑燕林*:四川省中医院眼科,四川 成都
关键词: 年龄相关性黄斑变性危险因素研究进展Age-Related Macular Degeneration Risk Factors Research Progress
摘要: 年龄相关性黄斑变性(AMD)是全球主要老年性致盲眼病之一,其发病机制尚不明确,常因多种因素共同作用而发病,研究发现,AMD的发病与多种因素密切相关,如年龄、性别、种族、吸烟、糖尿病、高血压及饮食结构等,通过严格控制可调控危险因素或可降低AMD的发生,故本文对AMD相关危险因素的研究进展进行综述。
Abstract: Age-related macular degeneration (AMD) is one of the major age-related blindness diseases in the world. Its pathogenesis is still unclear, and it is often caused by the combined action of many factors. Studies have found that the incidence of AMD is closely related to many factors, such as age, gender, race, smoking, diabetes, high blood pressure and diet. Strict control of risk factors may reduce the incidence of AMD. Therefore, this article reviews the research progress of risk factors related to AMD.
文章引用:汪玖玲, 郑燕林. 年龄相关性黄斑变性的相关危险因素研究进展[J]. 临床医学进展, 2023, 13(3): 3651-3656. https://doi.org/10.12677/ACM.2023.133523

1. 引言

年龄相关性黄斑变性(age-related macular degeneration, AMD)是导致55岁以上老年人群失明及中心性盲的重要原因,发病率可达13%,约占老年人失明病因构成的20% [1] 。是西方国家50岁以上人群首要的致盲性眼病 [2] ,其发病率随着年龄增加而上升,可导致中心视力进行性下降。其发病的确切病因尚未明了,可能的危险因素包括个人因素、环境因素、全身疾病因素、营养及饮食结构等。在临床治疗过程中,除关注疾病本身问题外,还应考虑眼睛局部以外的全身及环境因素,以控制危险因素,延缓疾病进程,故本文对AMD的相关危险因素进行概述。

2. 个人因素

2.1. 年龄

尽管AMD是由多种因素影响共同致病的眼底疾病,但年龄依然是其最主要的危险因素,并且随着年龄的增长,疾病发生的概率也随之上升 [3] ,在75岁以上的患者中,早期AMD的风险为25%,晚期AMD的风险为8%,并且随着社会人口老龄化发展,预计病例数将高于上述数值 [4] 。随着年龄的增加,患者视网膜色素上皮层出现功能障碍、黄斑区细胞外物质沉积形成玻璃膜疣,玻璃膜的变性损害引起脉络膜新生血管形成 [5] ,继发渗出或出血,导致视力丧失。

2.2. 性别

有研究提示AMD的发病与性别存在相关性,女性患AMD的风险更大 [6] 。亦有研究提示男性患早期AMD的几率较女性更高 [7] ,造成这种差异的原因可能与雌激素的抗氧化、抗炎作用相关 [8] [9] 。目前关于AMD患病的性别差异存在争议,尚需大样本量的调查研究其相关性。

2.3. 种族

国外既往研究结果均表明,AMD发病率有明显的种族差异,白种人与黑种人相比AMD患病率更高,欧洲人AMD患病率高于亚洲人 [10] 。AMD相关的遗传风险评分欧洲也高于亚洲 [11] 。俄罗斯人群中AMD的患病率低于欧洲人,但较东亚人高 [12] 。这一差异背后的可能机制有待进一步研究。

2.4. 吸烟

吸烟可引起脉络膜血管收缩,血管阻力增加,血管内皮功能障碍,导致脉络膜和视网膜血管反应性受损,香烟中的尼古丁可导致血管内皮生长因子(VEGF)过度表达,VEGF增加血管通透性、诱导内皮细胞增生,从而导致脉络膜新生血管形成,吸烟可诱发氧化应激,导致巨噬细胞功能异常,促进玻璃膜疣形成 [13] 。吸烟者患AMD几率较非吸烟者高,且吸烟的量越大、烟龄越大,疾病进展的风险就越大,长期吸入二手烟者发病风险亦较非吸烟者高 [14] 。Harshil Dharamdasani Detaram等 [15] 纳入547例AMD患者进行研究,经过12个月的治疗及随访发现,在此12个月内未戒烟的患者,黄斑中心厚度(Central macular thickness, CMT)显著高于有过吸烟史但已戒烟的患者,未戒烟者相对于从不吸烟者存在视网膜下液的几率更高。目前的研究已经明确主动、被动吸烟都会增加AMD发病及向晚期进展的风险并且影响治疗效果,由于吸烟是可以主动规避的AMD危险因素,故建议AMD患者及高风险人群戒烟。

2.5. 遗传因素

既往遗传因素与AMD进展研究发现,与AMD相关的基因编码是补体系统组分的基因,例如CFH、C2、C3及CFB等,已证实包括C3和CFH基因序列在内的基因变异与AMD的风险有关联,而CFB对AMD具有保护作用 [16] 。在遗传因素与AMD相关性方面有大量的研究,基本均显示了遗传因素对AMD的发病率及进展存在一定程度的影响,基因通过多种生物学途径对AMD产生影响,由此可预测AMD的发生及进展。

3. 全身因素

3.1. 高血压

目前大量研究表明,高血压是AMD的危险因素,高血压患者发生AMD的几率高于非高血压患者。且在常规三次玻璃体腔注射抗VEGF药物治疗后,同非高血压患者相比,AMD合并高血压患者再次注射的时间间隔更短 [17] 。

3.2. 糖尿病

糖尿病被认为是AMD的危险因素之一,早期AMD的发病与糖尿病病史具有很强的相关性,糖尿病患者比未患糖尿病者发生AMD的风险更高 [18] [19] 。但近年有研究认为糖尿病与AMD的发生无明显关系,但合并有糖尿病的患者患新生血管性AMD的风险增加 [20] 。

3.3. 体重指数

研究发现肥胖人群患AMD的风险增加,且BMI升高与AMD风险呈线性剂量反应关系,在超重和肥胖BMI范围内,BMI每增加1 kg/m2,AMD风险就增加2% [21] 。提示我们保持正常体重和避免BMI指数进一步增加,可能对AMD有保护作用。

3.4. 高血脂

多项研究表明,高血脂与AMD的发病存在相关性,血脂异常可以导致视网膜色素上皮细胞形态损害、Bruch膜脂质沉着,且破坏其完整性,导致脉络膜毛细血管内皮细胞的病理改变 [22] 。外周血TC、LDL-C、apoA水平升高可能是AMD病理机制中非常重要的危险因素 [23] 。

3.5. 慢性肾脏疾病

研究发现CKD与周围视网膜玻璃膜以及早期AMD之间存在相关性 [24] ,慢性肾脏疾病(CKD)与AMD的高风险相关。

3.6. 哮喘

国外一项研究表明哮喘病史与AMD之间存在相关性 [25] ,但其作用机制尚未明了,国内一项动物实验提示哮喘可能通过慢性气道炎症引起全身细胞因子释放,增加补体C3和VEGF因子浓度,引起脉络膜新生血管形成,由此推测哮喘是AMD的危险因素 [26] 。

4. 环境因素

目前关于阳光照射与AMD关系的研究结果并不一致,大量流行病学研究提示阳光照射与AMD的发生之间可能存在联系,可能原因是紫外线和蓝光造成视网膜氧化应激。Schick Tina等 [27] 等研究纳入3701人进行多因素回归分析,提示既往日照暴露(≥8小时/天)与早期AMD相关。而Hongjie Zhou等 [28] 关于日照暴露与AMD相关性的meta分析显示,日光暴露与AMD风险增加无关,且在研究过程中发现靠近赤道和较高日照与AMD的低患病率相关。此外,研究发现,高海拔地区(≥2100 m)居住时间越长患AMD的几率就越大,这可能是与紫外线损害视网膜及高海拔地区空气稀薄有关 [29] 。

5. 营养及饮食因素

多项研究提示,从蔬菜中摄入更多的抗氧化剂如维生素A、C、E及叶黄素的人群AMD患病率更低。一项回顾性研究亦发现,晚期AMD患者的维生素A、C、E摄入量显著低于对照组 [30] ,可佐证维生素A、C、E与AMD的相关性。朱跃弟 [31] 等发现,维生素D缺乏与AMD的发生相关,可能原因是维生素D抑制晚期细胞凋亡,减轻氧化DNA损伤,增加细胞增殖,对视网膜形成保护作用 [32] ,缺乏维生素D则使AMD患病风险升高。另外,叶黄素是存在于人眼视网膜黄斑区最主要的色素,能够帮助视网膜黄斑区抵御紫外线的损害,在老年人中无论是否患有AMD,较高的黄斑叶黄素浓度与更好的最佳矫正视力呈正相关 [33] 。血浆微量元素失衡也可能与AMD的发病机制有关,而人体需从膳食中摄取叶黄素及微量元素 [34] ,故关注膳食均衡可能对降低AMD患病风险有所帮助,AMD患者使用多种维生素、抗氧化剂、和矿物质补充剂可能会延缓病情的进展 [35] 。Alex Lk Ng等 [36] 对中国人群饮食结构与AMD关系的研究提示,类胡萝卜素水平在AMD患者中明显降低,血中低类胡萝卜素水平增加了发生AMD的几率,且ω-3 PUFAs的摄入是新生血管性AMD的保护因素。此类脂肪酸主要存在于鱼类食物中。日本学者认为随着饱和脂肪酸(SFA)摄入量的增加,早期AMD的风险显著降低 [37] 。但我国一项研究提示,人红细胞膜中饱和脂肪酸(SFA)含量在病例组高于对照组,而多不饱和脂肪酸(PUFA)含量在病例组均低于对照组,红细胞膜SFA含量增加可能是AMD患病的危险因素 [38] 。SFA摄入与AMD发生的相关性仍需进一步研究证实,目前来看,增加维生素D、叶黄素、类胡萝卜素等微量元素的摄入,对视网膜具有保护作用。

6. 其他因素

研究显示甲状腺功能亢进及使用甲状腺素药物是AMD的危险因素,明显甲亢患者与基线甲状腺功能正常者相比,甲亢患者发生AMD事件的风险更高,使用甲状腺素的参与者与未使用者相比,发生AMD的风险增加68%。曾经服用甲状腺素药物者与从未服用甲状腺素者相比,患AMD的风险也更高 [39] 。

有学者研究阿司匹林使用与AMD相关性发现,阿司匹林的使用与AMD及其亚型的进展没有显著联系 [40] 。且小剂量的阿司匹林具有抗炎作用,可减轻AMD早期的轻度炎症反应,可能减缓其向晚期AMD发展,但对于晚期AMD患者,阿司匹林的抗血小板聚集作用则可能加重视网膜出血 [41] 。

7. 小结

综上所述,AMD的发病危险因素众多,与个人因素、全身疾病因素、营养及饮食结构等均相关,尽管AMD的发病机制尚不清楚,但积极研究其危险因素,提示医生在治疗AMD患者时应针对不同患者给出不同指导,对已知的可能危险因素进行规避,将有利于预防AMD的发生、发展。

NOTES

*通讯作者。

参考文献

[1] Keenan, T.D.L., Cukras, C.A. and Chew, E.Y. (2021) Age-Related Macular Degeneration: Epidemiology and Clinical Aspects. In: Chew, E.Y. and Swaroop, A., Eds., Age-Related Macular Degeneration. Advances in Experimental Medi-cine and Biology, Vol. 1256, Springer, Cham, 1-31.
https://doi.org/10.1007/978-3-030-66014-7_1
[2] Klein, R., Klein, B.E.K. and Linton, K.L.P. (2020) Prevalence of Age-Related Maculopathy: The Beaver Dam Eye Study. Oph-thalmology, 127, S122-S132.
https://doi.org/10.1016/j.ophtha.2020.01.033
[3] Zhu, Z., Wang, W., Keel, S., Zhang, J. and He, M. (2019) Association of Age-Related Macular Degeneration with Risk of All-Cause and Specif-ic-Cause Mortality in the National Health and Nutrition Examination Survey, 2005 to 2008. JAMA Ophthalmology, 137, 248-257.
https://doi.org/10.1001/jamaophthalmol.2018.6150
[4] Thomas, C.J., Mirza, R.G. and Gill, M.K. (2021) Age-Related Macular Degeneration. Medical Clinics of North America, 105, 473-491.
https://doi.org/10.1016/j.mcna.2021.01.003
[5] Tan, W., Zou, J., Yoshida, S., Jiang, B. and Zhou, Y. (2020) The Role of Inflammation in Age-Related Macular Degeneration. International Journal of Biological Sciences, 16, 2989-3001.
https://doi.org/10.7150/ijbs.49890
[6] Lin, X., Lou, L., Miao, Q., et al. (2021) The Pattern and Gender Disparity in Global Burden of Age-Related Macular Degeneration. European Journal of Ophthalmology, 31, 1161-1170.
https://doi.org/10.1177/1120672120927256
[7] Sasaki, M., Harada, S., Kawasaki, Y., et al. (2018) Gen-der-Specific Association of Early Age-Related Macular Degeneration with Systemic and Genetic Factors in a Japanese Population. Scientific Reports, 8, Article No. 785.
https://doi.org/10.1038/s41598-017-18487-4
[8] Fraser-Bell, S., Wu, J., Klein, R., et al. (2006) Smoking, Alcohol Intake, Estrogen Use, and Age-Related Macular Degeneration in Latinos: The Los Angeles Latino Eye Study. American Journal of Ophthalmology, 141, 79-87.
https://doi.org/10.1016/j.ajo.2005.08.024
[9] Kaarniranta, K., Machalińska, A., Veréb, Z., et al. (2015) Estrogen Signalling in the Pathogenesis of Age-Related Macular Degeneration. Current Eye Research, 40, 226-233.
https://doi.org/10.3109/02713683.2014.925933
[10] Vanderbeek, B.L., Zacks, D.N., Talwar, N., et al. (2011) Ra-cial Differences in Age-Related Macular Degeneration Rates in the United States: A Longitudinal Analysis of a Managed Care Network. American Journal of Ophthalmology, 152, 273-282.
https://doi.org/10.1016/j.ajo.2011.02.004
[11] Jones, M., Whitton, C., Tan, A.G., et al. (2020) Exploring Factors Underlying Ethnic Difference in Age-Related Macular Degeneration Prevalence. Ophthalmic Epidemiology, 27, 399-408.
https://doi.org/10.1080/09286586.2020.1762229
[12] Bikbov, M.M., Zainullin, R.M., Gilmanshin, T.R., et al. (2020) Prevalence and Associated Factors of Age-Related Macular Degeneration in a Russian Population: The Ural Eye and Medical Study. American Journal of Ophthalmology, 210, 146-157.
https://doi.org/10.1016/j.ajo.2019.10.004
[13] 张志诚, 张美霞. 吸烟对年龄相关性黄斑变性发生和发展的影响[J]. 中华实验眼科杂志, 2021, 39(1): 93-96.
[14] Myers, C.E., Klein, B.E., Gangnon, R., et al. (2014) Cigarette Smoking and the Natural History of Age-Related Macular Degeneration: The Beaver Dam Eye Study. Ophthalmology, 121, 1949-1955.
https://doi.org/10.1016/j.ophtha.2014.04.040
[15] Detaram, H.D., Joachim, N., Liew, G., et al. (2020) Smoking and Treatment Outcomes of Neovascular Age-Related Macular Degeneration over 12 Months. British Journal of Oph-thalmology, 104, 893-898.
https://doi.org/10.1136/bjophthalmol-2019-314849
[16] Neto, J.M., Viturino, M.G., Ananina, G., et al. (2021) Association of genetic Variants rs641153 (CFB), rs2230199 (C3), and rs1410996 (CFH) with Age-Related Macular Degeneration in a Brazilian Population. Experimental Biology and Medicine, 246, 2290-2296.
https://doi.org/10.1177/15353702211024543
[17] Wang, T., Xia, J., Yuan, M., et al. (2021) Hypertension Affects the Treatment of Wet Age-Related Macular Degeneration. Acta Ophthalmologica, 99, 871-876.
https://doi.org/10.1111/aos.14791
[18] He, M.-S., Chang, F.-L., Lin, H.-Z., et al. (2018) The Association Between Diabetes and Age-Related Macular Degeneration Among the Elderly in Taiwan. Diabetes Care, 41, 2202-2211.
https://doi.org/10.2337/dc18-0707
[19] Choi, J.K., Lym, Y.L., Moon, J.W., Shin, H.J. and Cho, B. (2011) Diabe-tes Mellitus and Early Age-Related Macular Degeneration. Archives of ophthalmology, 129, 196-199.
https://doi.org/10.1001/archophthalmol.2010.355
[20] 曹奕虹. 糖尿病与年龄相关性黄斑变性发生风险的关系[D]: [硕士学位论文]. 苏州: 苏州大学, 2020.
[21] Zhang, Q.-Y., Tie, L.-J., Wu, S.-S., et al. (2016) Overweight, Obesity, and Risk of Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 57, 1276-1283.
https://doi.org/10.1167/iovs.15-18637
[22] 贾之祥, 刘广峰, 王禄娅, 汪军. 高脂血症和视网膜色素上皮层-Bruch膜-脉络膜毛细血管复合体的相关性研究进展[J]. 眼科新进展, 2011, 31(8): 789-792.
[23] 邵明希, 李圣杰, 曹文俊. 外周血血脂水平与年龄相关性黄斑变性的相关性[J]. 检验医学, 2017, 32(12): 1105-1108.
[24] Choi, J., Moon, J.W. and Shin, H.J. (2011) Chronic Kidney Disease, Early Age-related Macular Degeneration, and Peripheral Retinal Drusen. Ophthalmic Epidemiology, 18, 259-263.
https://doi.org/10.3109/09286586.2011.602509
[25] Lynch, A.M., Patnaik, J.L., Cathcart, J.N., et al. (2019) Colo-rado Age-Related Macular Degeneration Registry: Design and Clinical Risk Factors of the Cohort. Retina, 39, 656-663.
https://doi.org/10.1097/IAE.0000000000002023
[26] Sun, Y., Yu, W., Huang, L., et al. (2012) Is Asthma Related to Choroidal Neovascularization? PLOS ONE, 7, e35415.
https://doi.org/10.1371/journal.pone.0035415
[27] Schick, T., Ersoy, L., Lechanteur, Y.T., et al. (2016) History of Sunlight Exposure Is a Risk Factor for Age-Related Macular Degeneration. Retina, 36, 787-790.
https://doi.org/10.1097/IAE.0000000000000756
[28] Zhou, H., Zhang, H., Yu, A. and Xie, J. (2018) Association between Sunlight Exposure and Risk of Age-Related Macular Degeneration: A Meta-Analysis. BMC Ophthalmology, 18, Article No. 331.
https://doi.org/10.1186/s12886-018-1004-y
[29] 关瑞娟, 李凌, 晏鑫, 汪亚萍. 高海拔地区ARMD相关危险因素分析及诺莫图预测模型的建立[J]. 国际眼科杂志, 2020, 20(12): 2139-2145.
[30] Gopinath, B., Liew, G., Russell, J., et al. (2017) Intake of Key Micronutrients and Food Groups in Patients with Late-Stage Age-Related Macular Degeneration Compared with Age-Sex-Matched Controls. British Journal of Ophthalmology, 101, 1027-1031.
https://doi.org/10.1136/bjophthalmol-2016-309490
[31] 朱跃弟, 姚琨, 樊晓娟. 维生素D缺乏与年龄相关性黄斑变性发生的相关性研究[J]. 国际眼科杂志, 2019, 19(10): 1779-1782.
[32] Hernandez, M., Recalde, S., Gonzá-lez-Zamora, J., et al. (2021) Anti-Inflammatory and Anti-Oxidative Synergistic Effect of Vitamin D and Nutritional Complex on Retinal Pigment Epithelial and Endothelial Cell Lines against Age-Related Macular Degeneration. Nutrients, 13, Article No. 1423.
https://doi.org/10.3390/nu13051423
[33] Kar, D., Clark, M.E., Swain, T.A., et al. (2020) Local Abundance of Macular Xanthophyll Pigment Is Associated with Rod- and Cone-Mediated Vision in Aging and Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 61, Article 46.
https://doi.org/10.1167/iovs.61.8.46
[34] Heesterbeek, T.J., Rouhi-Parkouhi, M., Church, S.J., et al. (2020) Asso-ciation of Plasma Trace Element Levels with Neovascular Age-Related Macular Degeneration. Experimental Eye Re-search, 201, Article ID: 108324.
https://doi.org/10.1016/j.exer.2020.108324
[35] Evans, J.R. and Lawrenson, J.G. (2017) Antioxidant Vitamin and Mineral Supplements for Slowing the Progression of Age-Related Macular Degeneration. Cochrane Database of Sys-tematic Reviews, 7, Article ID: CD000254.
https://doi.org/10.1002/14651858.CD000253.pub4
[36] Ng, A.L.-K., Leung, H.H., Kawasaki, R., et al. (2019) Di-etary Habits, Fatty Acids and Carotenoid Levels Are Associated with Neovascular Age-Related Macular Degeneration in Chinese. Nutrients, 11, Article No. 1720.
https://doi.org/10.3390/nu11081720
[37] Sasaki, M., Harada, S., Tsubota, K., et al. (2020) Dietary Saturated Fatty Acid Intake and Early Age-Related Macular Degeneration in a Japanese Population. Investigative Ophthalmology & Vis-ual Science, 61, Article 23.
https://doi.org/10.1167/iovs.61.3.23
[38] 崔蕾. 红细胞膜脂肪酸含量与渗出性年龄相关性黄斑变性的相关性研究[C]//上海市医学会眼科分会, 浙江省医学会眼科分会, 安徽省医学会眼科分会, 福建省医学会眼科分会, 山东省医学会眼科分会. 第十四届国际眼科学学术会议、第十四届国际视光学学术会议、第三届国际角膜塑形学术大会论文集. 2014: 1.
[39] Gopinath, B., Liew, G., Kifley, A. and Mitchell, P. (2016) Thyroid Dysfunction and Ten-Year Incidence of Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 57, 5273-5277.
https://doi.org/10.1167/iovs.16-19735
[40] Keenan, T.D., Wiley, H.E., Agrón, E., et al. (2019) The Association of Aspirin Use with Age-Related Macular Degeneration Progression in the Age-Related Eye Disease Studies: Age-Related Eye Disease Study 2 Report No. 20. Ophthalmology, 126, 1647-1656.
https://doi.org/10.1016/j.ophtha.2019.06.023
[41] Robman, L.D., Phuong Thao, L.T., Guymer, R.H., et al. (2020) Baseline Characteristics and Age-Related Macular Degeneration in Participants of the “ASPirin in Reducing Events in the Elderly” (ASPREE)-AMD Trial. Contemporary Clinical Trials Communications, 20, Article ID: 100667.
https://doi.org/10.1016/j.conctc.2020.100667