磺化碳制备方法的研究进展
Progress in Preparation of Sulfonated Carbon
DOI: 10.12677/MS.2023.133019, PDF, HTML, XML, 下载: 185  浏览: 575 
作者: 方世杰*, 刘吉星:浙江师范大学含氟新材料研究所,先进催化材料教育部重点实验室,浙江 金华
关键词: 磺化碳磺化磺酸基团 Sulfonated Carbon Sulfonation Sulfonic Acid Group
摘要: “磺化碳”作为一种无金属固体质子酸,由于其与浓硫酸相当的布朗斯台德酸度,低生产成本以及可定制的孔结构,它们被认为是液态硫酸的潜在代替品。在催化领域,特别是对于生物质和大分子的催化转化,其性能优于传统的固体酸催化剂(阳离子交换树脂,硫酸化氧化物和酸性沸石)。在磺化碳的制备过程中最关键的步骤是磺化,碳前体通过该步骤使得碳骨架上拥有磺酸基团。经过多年的研究,目前已经开发并优化出许许多多的磺化方法,这些方法大致可分为原位官能化法和后接枝官能化法,两种方法对磺化碳的结构和表面性质有着直接的影响。本文主要总结论述了制备磺化碳方法的研究进展。
Abstract: As a metal-free solid protic acid, “sulfonated carbons” are considered as po-tential substitutes for liquid sulfuric acid due to their Brownsted acidity, low production costs, and customizable pore structure. In the field of catalysis, especially for the catalytic conversion of bio-mass and macromolecules, its performance is better than that of traditional solid acid catalysts (cation exchange resins, sulfated oxides and acid zeolite). The most critical step in the preparation of sulfonated carbon is sulfonation, through which the carbon precursor has sulfonic acid groups on the carbon skeleton. After many years of research, many sulfonation methods have been developed and optimized. These methods can be roughly divided into in situ functionalization method and grafting functionalization method. The two methods have direct effects on the structure and surface properties of sulfonated carbon. The research progress of preparation of sulfonated carbon is sum-marized in this paper.
文章引用:方世杰, 刘吉星. 磺化碳制备方法的研究进展[J]. 材料科学, 2023, 13(3): 150-159. https://doi.org/10.12677/MS.2023.133019

1. 引言

磺酸基团酸性碳材料(又名磺化碳)是固体酸家族中相对较新的成员,也是生物质衍生碳基固体酸的典范。其特点在于较低的生产成本和与浓硫酸相当的布朗斯台德酸度(-H0 ≤ 11)。由于这种碳基固体酸具有高化学、机械性、热稳定性和可定制的孔隙等特性,因此也被称作液体H2SO4的潜在代替品,并用于催化、电催化、水处理、CO2捕捉和储能等领域 [1] - [10]。自2004年,Hara和他的同事将磺化碳作为固体酸引入以来,这些材料在有机转化中作为低成本催化剂进行研究已经获得了相当大的关注 [9]。

将生物质或者活性碳材料通过磺化得到含有磺酸基团的酸性固体酸叫做磺化碳。2004年,Hara [9] 等通过将芳族化合物(萘)放入硫酸中加热轻易的制备出一种具有高密度磺酸基团和良好稳定性的碳基固体酸材料,并将其命名为“磺化碳”这一术语展开深入研究从而吸引了大批研究人员的共同关注和探索。

在过去十几年里,磺化基团碳材料领域得到了迅速的发展,磺化步骤中,通过使用不同的碳前体以及不同的磺化方法所得到的磺化碳其表面酸性和孔道结构具有一定的差异,但在制备磺化碳过程中,对磺化碳结构和表面性质起着决定性作用的步骤便是磺化,磺化过程中使用不同的磺化剂所得到的碳材料上的磺酸基团密度和比表面积有着很大的差别,从而影响了磺化碳固体酸的运用。本文主要总结论述了制备磺化碳方法的研究进展。

2. 磺化碳的结构

磺化碳拥有独特的碳骨架结构,与其他无机固体酸在结构和化学上有着相当大的不同。磺酸官能团连接在碳骨架上,在磺化的同时碳前体被强氧化剂诸如浓硫酸,氯磺酸以及发烟硫酸氧化产生大量含氧基团,从而使得磺化碳具有一定的亲水性。磺化碳本身含有的具有热惰性、化学惰性、疏水性无定形碳(sp2或sp2-sp3杂化)给其自身带来了更高的热稳定性(≤250℃),化学堕性和机械稳定性 [11]。

3. 磺化碳的制备方法

制备磺化碳材料最关键的步骤是磺化,碳前体通过该步骤使得碳骨架上拥有磺酸基团。经过这么多年的研究,开发并优化出了许许多多的磺化方法,这些方法可分为原位官能化法和后接枝官能化法。两种方法对磺化碳的稳定性,制备成本,材料结构和酸量都有着直接的影响。

3.1. 原位官能化法

原位官能化法是将生物质同时进行碳化和磺化的方法,也是较为常见的磺化方法,这种方法具有操作简单,成本较低以及制备出来的磺化碳具有较高磺酸含量的优点。图1显示的是原位官能化法的步骤。

Figure 1. In-site functionalization approach

图1. 原位官能化法

3.1.1. 硫酸原位官能化法

浓硫酸是较为常见的磺化剂。图2显示的是硫酸元官能化法的步骤和产生的废气,将浓硫酸和碳前体混合后高温处理就可得到含磺酸基团的磺化碳,这是一种简单却异常有效的方法。2004年,Hara及其同事就是采用芳烃化合物(如萘)为碳前体与浓硫酸混合,在200℃~300℃温度范围内加热来得到磺化碳材料,其磺酸基团密度高达4.9 mmol/g [9]。2011年,Devi [9] 等采用相同的方法,以硬质甘油沥青为碳前体,制备得到的磺化碳其磺酸基团密度也高达1.9 mmol/g,因此使用硫酸处理碳前体同时进行碳化和磺化,可以有效的得到含高密度的磺化碳材料。同样2018年,彭林 [12] 等以木质素磺酸钠为碳前体,使用浓硫酸通过简单的一步同时碳化和磺化,120℃下磺化6 h,所制备的酸性碳材料磺酸基团密度也高达1.33 mmol/g。糖类物质作为木质素生物质的一部分,可作为优异的磺化碳原,以有将葡萄糖与浓硫酸以1 g/10 mL的固定比例混合在一起,无需高温条件下磺化,便可得到磺酸基团高达1.29 mmol/g的磺化碳材料 [13] [14]。

尽管采用浓硫酸同时进行磺化和碳化可以有效地获得具有高磺酸的密度的磺化碳,并且操作简单,但是制备出来的碳材料的孔隙率几乎可以忽略不计,在磺化过程中会释放大量的酸性气体(如SO2和SO3),而硫酸本身是强氧化性酸,使用过程中也伴随着一定的危险性。

Figure 2. In situ functionalization of sulfuric acid

图2. 硫酸原位官能化法

3.1.2. 有机硫酸原位官能化法

在有机硫酸盐存在下同时磺化和碳化有机物是另一种原位方法,它也提具有供高酸性磺酸基团的磺化碳。图3显示的是有机硫酸原位官能化法的步骤和缺点,与硫酸不同,有机硫酸盐试剂的使用需要水热反应条件以诱导碳化并防止低沸点有机硫酸盐的蒸发逸出。例如,Baohua Zhang [15] 等将葡萄糖、对甲苯磺酸和水均匀混合加入到高压釜中,在180℃条件下保持24 h,然后洗涤干燥处理,所得磺酸基团密度也高达1.27 mmol/g。将三氯蔗糖,对甲苯磺酸和水混合加入到高压釜中,180℃条件下保持24 h,所得磺化碳的磺酸的密度也高达1.93 mmol/g [16]。除对甲苯磺酸盐外,还有诸如对氨基苯磺酸 [17] 、4-苯重氮磺酸盐 [18] [19] 和羟乙基磺酸 [20] [21] 等有机硫酸盐应用在磺化过程。与硫酸原位官能化法相比,有机硫酸盐的磺化过程不具备较大的环境污染并(不释放酸性气体),而且相比于浓硫酸在高温下进行磺化,有机硫酸酸盐磺化法的磺化温度较低(180℃),磺化剂使用过程没有太大的危险性。但得到的材料热稳定不高(<200℃)。并且磺化剂成本较高,不利于工业规模应用。

Figure 3. In situ functionalization of organic sulfuric acid

图3. 有机硫酸盐原位官能化法

3.2. 后接枝官能化法

后接枝官能化法是采用不同的磺化试剂处理碳化材料从而在碳骨架上嵌入磺酸基团,是对碳化固体载体进行官能化改性的方法,后接枝官能化法可以保留碳化固体载体一定程度上原有的结构性质的基础上对表面性质进行改性,图4显示的是后接枝官能化法基本步骤。

3.2.1. 硫酸接枝官能化法

用浓硫酸和发烟硫酸磺化碳化材料是一种很常见的后接枝官能化法。在图5中是硫酸接枝官能化法的步骤,该方法最初由Hara及其同事提出,他们将葡萄糖在低温(>300℃)下不完全碳化,然后通过硫酸磺化引入磺酸基团 [10]。经过十几年的发展,已经开发出了针对不同碳载体硫酸磺化的合成路线。磺化碳的磺酸密度受多种因素的影响,包括磺化温度、磺化时间、碳骨架结构和硫酸强度(浓硫酸和发烟硫酸)。在温度方面,磺化碳的磺酸密度并不会总随着温度的升高而一直升高,例如,Jifeng Pang [22] 等在

Figure 4. Postgrafting functionalization approach

图4. 后接枝官能化法

一项研究中使用硫酸处理葡萄糖碳化后材料,在不同温度下进行磺化,所得磺化碳的磺酸基团密度在150℃~250℃温度范围内从0.19 mmol/g涨到0.24 mmol/g,在250℃达到最大值,但之后便逐渐减小在300℃降到0.20 mmol/g,这归因于磺酸基团在高于250℃下不稳定,容易热分解。对于不同的碳载体,最佳磺化温度是有差异的,因此在制备磺化碳的时候,需探索最佳温度,以求得最大磺酸基团密度。用不同的生物质衍生的碳化材料同样影响磺酸基团密度。例如糖类物质(如葡萄糖,木糖)水热碳化衍生磺化碳材料用硫酸进行磺化,其磺酸基团密度不会有较大差别(0.56~0.95 mmol/g),并且在加热处理的同时,表面碳被氧化会产生大量额外的含氧基团(COOH和OH),在4.4~4.84 mmol/g,远高于从高温热解碳材料中得到的磺化碳 [23] - [33]。然而相同的磺化方法下使用碱木质素衍生碳材料得到磺酸基团密度最高达1.2 mmol/g [9] [10] [23] [24] [25] [26],两者相比,磺酸官能团的密度更高,这可能是因为后者相比于糖类物质衍生碳材料存在更多的芳香骨架结构。除此以外,Lipeng Zhou等采用淀粉做为碳源,在高温条件下碳化之后,使用浓硫酸在80℃下进行磺化,得到磺化碳的磺酸官能团密度在0.44~0.75 mmol/g范围内 [34]。Bin Wu [35] 等人同样以纤维素为碳源,经过425℃不完全碳化处理,加入浓硫酸高温磺化,磺酸基团密度也有1.35 mmol/g。

在磺化过程中,硫酸的强度的不同对磺化也会产生一定的影响,例如,将葡萄糖或蔗糖在150℃的氮气中碳化15 h,得到的碳化材料,分别使用浓硫酸(>96%)和发烟硫酸(15 wt% SO3)在150℃的氮气氛围中磺化15 h,洗涤干燥后得到的磺化碳的磺酸基团密度分别为0.7和1.2 mmol/g,总酸量也有较大的差别,分别为1.4和2.5 mmol/g [10]。

浓硫酸和发烟硫酸是磺化过程中最常采用也是价格较低的磺化剂,可以有效的在碳表面上接枝磺酸基团,然而磺化过程也伴随着比表面积的大量损失,甚至在较低的碳化温度下得到的碳化材料,经过硫酸氧化后,会导致孔隙结构的严重塌陷 [36]。除此之外,磺化过程会伴随着大量的有毒性酸性气体产生,使用发烟硫酸则更为严重,对于环境有着较大的污染。除此以外使用浓硫酸获得的磺化碳,更容易因为溶胀效应和磺酸基团的浸出而引起催化剂的失活 [37]。

Figure 5. Sulfuric acid graft functionalization

图5. 硫酸接枝官能化法

3.2.2. 氯磺酸接枝官能化法

除浓硫酸和发烟硫酸外,氯磺酸也是一种非常有效的磺化剂。氯磺酸是硫酸的一个OH基团被氯取代后形成的化合物,但是他的酸性强度比硫酸要强很多,其磺化过程在室温条件下就可进行。由于氯磺酸具有较强的酸性,通常将其缓慢滴入含有碳前体的混合物中,搅拌。Kiyoshi Tanemure [38] 等以蒽为碳源制备出的碳化材料与二氯甲烷充分均匀混合后,在氮气气氛下缓慢滴入氯磺酸,并在室温搅拌25 h,经洗涤干燥后得到的磺化碳磺酸基团密度高达2.25 mmol/g,高于浓硫酸1.92 mmol/g。除此之外,以氧化石墨烯GO为碳前体,与二氯甲烷混合,室温条件下剧烈搅拌下滴加氯磺酸,再进一步搅拌得到的磺化碳,也能拥有高密度的其磺酸基团密度(2.0 mmol/g) [39]。Sen Luan等人发现在磺化之前,对碳源的采用不同的处理,同样可以改变磺化效果,使用压缩CO2的双软模板方法处理碳源,然后再将其分散在二氯乙烯和氯磺酸的混合溶液中,低温条件下搅拌12 h,所的磺化碳的磺酸基团密度高达3.94 mmol/g [40]。

氯磺酸可以在温和条件下以较低的试剂用量实现碳化材料的高度磺化,对碳化材料的结构应性较低,相比于硫酸磺化更有优势。但是氯磺酸是比硫酸还强的酸性试剂,使用过程存在一定的危险性,磺化过程中会有少量HCl气体作为副产品释放出来。并且氯磺酸作为强氧化性酸,也会导致碳化材料结构的剧烈氧化和坍塌 [41]。Alana-Perez [42] 等采用氯磺酸使得碳化材料的总酸量由4.0 mmol/g升到8.2 mmol/g,但比表面积也从163 m2/g降到75 m2/g,降幅达50%以上。

3.2.3. 4-苯重氮磺酸盐接枝官能化法

4-苯重氮磺酸盐磺化碳化材料是在碳化材料表面通过芳基重氮化合物的化学还原接枝进行的 [43]。在图6中首先通过对氨基苯磺酸的重氮化反应合成4-芳基重氮酸盐,然后将其与碳化材料、乙醇和超纯水混匀,缓慢滴加稀酸溶液(如50 wt%的H3PO4水溶液),在温和条件下(温度小于5℃)不停搅拌进行磺化 [44] - [48]。这种磺化方法有多种优点,包括磺化过程在液相中低温或者常温下进行不具有有氧化性,磺化剂用量较低,以及所得磺酸位点的高稳定性(强键合C(sp2)-磺酸位点)。例如刘晓燕 [21] 等采用商业活性炭作为碳载体,通过4-氨基苯磺酸重氮化合成4-苯重氮磺酸盐,在低温(0℃~5℃)条件下进行磺化,其磺酸基团密度高达0.65 mmol/g,虽然反应过程中仍有磺酸基团会被浸出,但在第四次重复反应回收后磺酸基团仍有0.46 mmol/g。类似的,Gos Cianska [49] 等以有序介孔碳材料为碳化材料,采用相同的磺化方法,酸滴定显示磺酸基团有0.96 mmol/g,但是磺化过程也同样伴随孔道结构的破坏,其比表面积由1203 m2/g降至547 m2/g,接近50%以上的降低程度。Anna Malaika等人将聚对苯二甲酸乙二醇酯经过高温煅烧之后得到碳源,然后采用浓硫酸和4-苯重氮磺酸盐分别对其进行磺化,得到的磺化碳的磺酸基团密度分别为0.76和2.16 mmol/g,说明在此过程中,4-苯重氮磺酸盐起着更好的磺化作用 [50]。

苯重氮磺酸盐磺化方法解决了与使用浓硫酸、氯磺酸和发烟硫酸常规磺化试剂相关的主要缺点和环境危害(不释放SO2、SO3和HCl酸性气体以及减少废水的产生)。但是其较高的使用成本限制了其大规模的应用,并且磺化过程对于碳化材料的比表面积有着显著的降低。

Figure 6. Graft functionalization of 4-benzodiazosulfonate

图6. 4-苯重氮磺酸盐接枝官能化法

4. 总结和展望

磺化是磺化碳制备的关键步骤,但目前已经开发出来的磺化制备方法仍然存在一定的问题,因此磺化碳的制备方法仍需要进一步的研究。本文总结了磺化碳的制备方法的研究进展,磺化作为必要的步骤,需要使用到磺化剂、硫酸和氯磺酸作为最常用的传统磺化剂,可以有效地使得载体表面生成磺酸基团,但是也会伴随着产生酸性气体、酸性废液污染环境,较差孔径结构等问题,除此以外4-苯重氮磺酸盐和有机硫酸盐磺化剂虽然能够有效地减轻环境污染问题,但是制备成本较高,不利于大规模应用。因此为了制备过程中的污染问题和对碳材料结构的损害,仍然需要进一步开发和优化磺化碳制备方法。

参考文献

[1] Hara, M. (2010) Biomass Conversion by a Solid Acid Catalyst. Energy & Environmental Science, 3, 601-607.
https://doi.org/10.1039/b922917e
[2] Nakajima, K. and Hara, M. (2012) Amorphous Carbon with SO3H Groups as a Solid Brønsted Acid Catalyst. ACS Catalysis, 2, 1296-1304.
https://doi.org/10.1021/cs300103k
[3] Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hara, M. and Hayashi, S. (2006) Acid-Catalyzed Re-actions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon. Chemistry of Materials, 18, 3039-3045.
https://doi.org/10.1021/cm0605623
[4] Shen, Y. and Chen, B. (2015) Sulfonated Graphene Nanosheets as a Su-perb Adsorbent for Various Environmental Pollutants in Water. Environmental Science & Technology, 49, 7364-7372.
https://doi.org/10.1021/acs.est.5b01057
[5] Sun, Y., Zhao, J., Wang, J., Tang, N., Zhao, R., Zhang, D., Guan, T. and Li, K. (2017) Sulfur-Doped Millimeter-Sized Microporous Activated Carbon Spheres Derived from Sulfonated Poly(styrene-divinylbenzene) for CO2 Capture. The Journal of Physical Chemistry C, 121, 10000-10009.
https://doi.org/10.1021/acs.jpcc.7b02195
[6] choi, Y., Kim, Y., Kang, K.Y. and Lee, J.S. (2011) A Composite Electrolyte Membrane Containing High-Content Sulfonated Carbon Spheres for Proton Exchange Membrane Fuel Cells. Carbon, 49, 1367-1373.
https://doi.org/10.1016/j.carbon.2010.11.056
[7] Imaizumi, S., Matsumoto, H., Ashizawa, M., Minagawa, M. and Tanioka, A. (2012) Nanosize Effects of Sulfonated Carbon Nanofiber Fabrics for High Capacity Ion-Exchanger. RSC Advances, 2, 3109-3114.
https://doi.org/10.1039/c2ra20103h
[8] Liu, J., Xue, Y. and Dai, L. (2012) Sulfated Graphene Oxide as a Hole-Extraction Layer in High-Performance Polymer Solar Cells. The Journal of Physical Chemistry Letters, 3, 1928-1933.
https://doi.org/10.1021/jz300723h
[9] Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Hayashi, S. and Domen, K. (2004) A Carbon Material as a Strong Protonic Acid. Angewandte Chemie International Edi-tion, 43, 2955-2958.
https://doi.org/10.1002/anie.200453947
[10] Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K. and Hara, M. (2005) Biodiesel Made with Sugar Catalyst. Nature, 438, 178-178.
https://doi.org/10.1038/438178a
[11] Lam, E. and Luong, J.H.T. (2014) Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 4, 3393-3410.
https://doi.org/10.1021/cs5008393
[12] Yu, X., Peng, L., Gao, X., He, L. and Chen, K. (2018) One-Step Fabrica-tion of Carbonaceous Solid Acid Derived from Lignosulfonate for the Synthesis of Biobased Furan Derivatives. RSC Advances, 8, 15762-15772.
https://doi.org/10.1039/C8RA02056F
[13] Rokhum, S.L., Changmai, B., Kress, T. and Wheatley, A.E.H. (2022) A One-Pot Route to Tunable Sugar-Derived Sulfonated Carbon Catalysts for Sustainable Production of Biodiesel by Fatty Acid Esterification. Renewable Energy, 184, 908-919.
https://doi.org/10.1016/j.renene.2021.12.001
[14] Saikia, K., Rajkumari, K., Moyon, N.S., Basumatary, S., Halder, G., Rashid, U. and Rokhum, S.L. (2022) Sulphonated bio-mass-Based Catalyst for Solketal Synthesis by Acetalization of Glycerol—A Byproduct of Biodiesel Production. Fuel Processing Technology, 238, Article ID: 107482.
https://doi.org/10.1016/j.fuproc.2022.107482
[15] Zhang, B., Ren, J., Liu, X., Guo, Y., Guo, Y., Lu, G. and Wang, Y. (2010) Novel Sulfonated Carbonaceous Materials from p-Toluenesulfonic Acid/Glucose as a High-Performance Solid-Acid Catalyst. Catalysis Communications, 11, 629-632.
https://doi.org/10.1016/j.catcom.2010.01.010
[16] Shen, F., Guo, T., Bai, C., Qiu, M. and Qi, X. (2018) Hydroly-sis of Cellulose with One-Pot Synthesized Sulfonated Carbonaceous Solid Acid. Fuel Processing Technology, 169, 244-247.
https://doi.org/10.1016/j.fuproc.2017.10.015
[17] Malins, K., Kampars, V., Brinks, J., Neibolte, I. and Murnieks, R. (2015) Synthesis of Activated Carbon Based Heterogenous Acid Catalyst for Biodiesel Preparation. Ap-plied Catalysis B: Environmental, 176-177, 553-558.
https://doi.org/10.1016/j.apcatb.2015.04.043
[18] Geng, L., Wang, Y., Yu, G. and Zhu, Y. (2011) Efficient Car-bon-Based Solid Acid Catalysts for the Esterification of Oleic Acid. Catalysis Communications, 13, 26-30.
https://doi.org/10.1016/j.catcom.2011.06.014
[19] Zhang, T., Wei, H., Gao, J., Chen, S., Jin, Y., Deng, C., Wu, S., Xiao, H. and Li, W. (2022) Synthesis of Sulfonated Hierarchical Carbons and Theirs Application on the Production of Furfural from Wheat Straw. Molecular Catalysis, 517, Article ID: 112034.
https://doi.org/10.1016/j.mcat.2021.112034
[20] Xiao, H., Guo, Y., Liang, X. and Qi, C. (2010) One-Step Synthe-sis of Novel Biacidic Carbon via Hydrothermal Carbonization. Journal of Solid State Chemistry, 183, 1721-1725.
https://doi.org/10.1016/j.jssc.2010.05.020
[21] Nata, I.F., Irawan, C., Mardina, P. and Lee, C.-K. (2015) Car-bon-Based Strong Solid Acid for Cornstarch Hydrolysis. Journal of Solid State Chemistry, 230, 163-168.
https://doi.org/10.1016/j.jssc.2015.07.005
[22] Pang, J., Wang, A., Zheng, M. and Zhang, T. (2010) Hydrolysis of Cellulose into Glucose over Carbons Sulfonated at Elevated Temperatures. Chemical Communications, 46, 6935-6937.
https://doi.org/10.1039/c0cc02014a
[23] Chen, G., Wang, X., Jiang, Y., Mu, X. and Liu, H. (2019) Insights into Deactivation Mechanism of Sulfonated Carbonaceous Solid Acids Probed by Cellulose Hydrolysis. Catalysis Today, 319, 25-30.
https://doi.org/10.1016/j.cattod.2018.03.069
[24] Fraile, J.M., García-Bordejé, E., Pires, E. and Roldán, L. (2014) New Insights into the Strength and Accessibility of Acid Sites of Sulfonated Hydrothermal Carbon. Carbon, 77, 1157-1167.
https://doi.org/10.1016/j.carbon.2014.06.059
[25] Fraile, J.M., García-Bordejé, E. and Roldán, L. (2012) Deactivation of Sulfonated Hydrothermal Carbons in the Presence of Alcohols: Evidences for Sulfonic Esters Formation. Journal of Catalysis, 289, 73-79.
https://doi.org/10.1016/j.jcat.2012.01.017
[26] Fraile, J.M., García-Bordejé, E., Pires, E. and Roldán, L. (2015) Catalytic Performance and Deactivation of Sulfonated Hydrothermal Carbon in the Esterification of Fatty Acids: Com-parison with Sulfonic Solids of Different Nature. Journal of Catalysis, 324, 107-118.
https://doi.org/10.1016/j.jcat.2014.12.032
[27] Maciá-Agulló, J.A., Sevilla, M., Diez, M.A. and Fuertes, A.B. (2010) Synthesis of Carbon-Based Solid Acid Microspheres and Their Application to the Production of Biodiesel. ChemSusChem, 3, 1352-1354.
https://doi.org/10.1002/cssc.201000308
[28] Scholz, D., Kröcher, O. and Vogel, F. (2018) Deactivation and Re-generation of Sulfonated Carbon Catalysts in Hydrothermal Reaction Environments. ChemSusChem, 11, 2189-2201.
https://doi.org/10.1002/cssc.201800678
[29] Guo, H., Qi, X., Li, L. and Smith, R.L. (2012) Hydrolysis of Cellu-lose over Functionalized Glucose-Derived Carbon Catalyst in Ionic Liquid. Bioresource Technology, 116, 355-359.
https://doi.org/10.1016/j.biortech.2012.03.098
[30] Tran, T.T.V., Kaiprommarat, S., Kongparakul, S., Reubroy-charoen, P., Guan, G., Nguyen, M.H. and Samart, C. (2016) Green Biodiesel Production from Waste Cooking Oil Using an Environmentally Benign Acid Catalyst. Waste Management, 52, 367-374.
https://doi.org/10.1016/j.wasman.2016.03.053
[31] Kang, S., Ye, J., Zhang, Y. and Chang, J. (2013) Preparation of Biomass Hydrochar Derived Sulfonated Catalysts and Their Catalytic Effects for 5-Hydroxymethylfurfural Production. RSC Advances, 3, 7360-7366.
https://doi.org/10.1039/c3ra23314f
[32] Liu, M., Jia, S., Gong, Y., Song, C. and Guo, X. (2013) Effective Hy-drolysis of Cellulose into Glucose over Sulfonated Sugar-Derived Carbon in an Ionic Liquid. Industrial & Engineering Chemistry Research, 52, 8167-8173.
https://doi.org/10.1021/ie400571e
[33] Qi, X., Guo, H., Li, L. and Smith Jr, R.L. (2012) Acid-Catalyzed Dehydra-tion of Fructose into 5-Hydroxymethylfur- fural by Cellulose-Derived Amorphous Carbon. ChemSusChem, 5, 2215-2220.
https://doi.org/10.1002/cssc.201200363
[34] Zhou, L., Dong, B., Tang, S., Ma, H., Chen, C., Yang, X. and Xu, J. (2013) Sulfonated Carbon Catalyzed Oxidation of Aldehydes to Carboxylic Acids by Hydrogen Peroxide. Journal of Energy Chemistry, 22, 659-664.
https://doi.org/10.1016/S2095-4956(13)60087-X
[35] Wu, B., Shen, S., Yuan, S., Pan, H., Wang, C., Jing, S., Li, J. and Zhao, Y. (2021) Co-Improvement of -COOH Group and -SO3H Group Densities in Carbon-Based Solid Acid by a Simple Strategy. Molecular Catalysis, 506, Article ID: 111539.
https://doi.org/10.1016/j.mcat.2021.111539
[36] Kitano, M., Arai, K., Kodama, A., Kousaka, T., Nakajima, K., Hayashi, S. and Hara, M. (2009) Preparation of a Sulfonated Porous Carbon Catalyst with High Specific Surface Area. Catalysis Letters, 131, 242-249.
https://doi.org/10.1007/s10562-009-0062-4
[37] Mo, X., López, D.E., Suwannakarn, K., Liu, Y., Lotero, E., Goodwin, J.G. and Lu, C. (2008) Activation and Deactivation Characteristics of Sulfonated Carbon Catalysts. Journal of Catalysis, 254, 332-338.
https://doi.org/10.1016/j.jcat.2008.01.011
[38] Tanemura, K., Suzuki, T. and Horaguchi, T. (2013) Synthesis of Sulfonated Polynaphthalene, Polyanthracene, and Polypyrene as Strong Solid Acids via Oxidative Coupling Polymeriza-tion. Journal of Applied Polymer Science, 127, 4524-4536.
https://doi.org/10.1002/app.38045
[39] Nakhate, A.V. and Yadav, G.D. (2016) Synthesis and Characterization of Sulfonated Carbon-Based Graphene Oxide Monolith by Sol-vothermal Carbonization for Esterification and Unsymmetrical Ether Formation. ACS Sustainable Chemistry & Engi-neering, 4, 1963-1973.
https://doi.org/10.1021/acssuschemeng.5b01205
[40] Luan, S., Li, W., Guo, Z., Li, W., Hou, X., Song, Y., Wang, R. and Wang, Q. (2022) Synthesis of Ordered Hierarchically Mesoporous/Microporous Car-bon Materials via Compressed CO2 for Fructose-to-HMF Transformation. Green Energy & Environment, 7, 1033-1044.
https://doi.org/10.1016/j.gee.2021.01.005
[41] Sun, C., Liao, Q., Xia, A., Chen, C., Fu, Q., Huang, Y., Zhu, X. and Sun, F. (2021) Hydrolysis of Disaccharides via Carbon-Based Solid Acids with Binding and Catalytic Domains: Glycosidic Bond Fracture Properties and Reaction Kinetics. Fuel, 300, Article ID: 120978.
https://doi.org/10.1016/j.fuel.2021.120978
[42] Aldana-Pérez, A., Lartundo-Rojas, L., Gómez, R. and Niño-Gómez, M.E. (2012) Sulfonic Groups Anchored on Mesoporous Carbon Starbons-300 and Its Use for the Esterification of Oleic Acid. Fuel, 100, 128-138.
https://doi.org/10.1016/j.fuel.2012.02.025
[43] Bahr, J.L., Yang, J., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E. and Tour, J.M. (2001) Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts:  A Bucky Paper Electrode. Journal of the American Chemical Society, 123, 6536-6542.
https://doi.org/10.1021/ja010462s
[44] Hosseini, M.-S. and Masteri-Farahani, M. (2021) Phenyl Sulfonic Acid Functionalized Graphene-Based Materials: Synthetic Approaches and Applications in Organic Reactions. Tetrahedron, 86, Article ID: 132083.
https://doi.org/10.1016/j.tet.2021.132083
[45] Ji, J., Zhang, G., Chen, H., Wang, S., Zhang, G., Zhang, F. and Fan, X. (2011) Sulfonated Graphene as Water-Tolerant Solid Acid Catalyst. Chemical Science, 2, 484-487.
https://doi.org/10.1039/C0SC00484G
[46] Huang, L., Song, C., Liu, Y., Lin, H., Ye, W., Huang, H., Lu, R. and Zhang, S. (2021) Enhancement of Catalytic Esterification by Tuning Molecular Diffusion in Sulfonated Carbon. Mi-croporous and Mesoporous Materials, 318, Article ID: 111024.
https://doi.org/10.1016/j.micromeso.2021.111024
[47] Yang, H., Joh, H.-I., Choo, H., Choi, J.-W., Suh, D.J., Lee, U., Choi, J. and Ha, J.-M. (2021) Condensation of Furans for the Production of Diesel Precursors: A Study on the Ef-fects of Surface Acid Sites of Sulfonated Carbon Catalysts. Catalysis Today, 375, 155-163.
https://doi.org/10.1016/j.cattod.2020.05.006
[48] Bounoukta, C.E., Megías-Sayago, C., Ivanova, S., Penkova, A., Ammari, F., Centeno, M.A. and Odriozola, J.A. (2021) Effect of the Sulphonating Agent on the Catalytic Behavior of Activated Carbons in the Dehydration Reaction of Fructose in DMSO. Applied Catalysis A: General, 617, Article ID: 118108.
https://doi.org/10.1016/j.apcata.2021.118108
[49] Goscianska, J. and Malaika, A. (2020) A Facile Post-Synthetic Modification of Ordered Mesoporous Carbon to Get Efficient Catalysts for the Formation of Acetins. Catalysis Today, 357, 84-93.
https://doi.org/10.1016/j.cattod.2019.02.049
[50] Malaika, A., Mesjasz, D. and Kozłowski, M. (2023) Maximizing the Selectivity to Triacetin in Glycerol Acetylation through a Plastic Waste-Derived Carbon Catalyst Development and Selection of a Reaction Unit. Fuel, 333, Article ID: 126271.
https://doi.org/10.1016/j.fuel.2022.126271