肥胖对膝关节骨性关节炎的影响研究进展
Research Progress of the Effect of Obesity on Knee Osteoarthritis
DOI: 10.12677/ACM.2023.133615, PDF, HTML, XML, 下载: 186  浏览: 332 
作者: 程逸凡:山东大学医学融合与实践中心,山东 济南;山东省立医院骨关节科,山东 济南;孙 水*:山东大学附属省立医院骨关节科,山东 济南;山东第一医科大学附属省立医院骨关节科,山东 济南
关键词: 膝关节骨性关节炎肥胖机制综述KOA Obesity Mechanisms Review
摘要: 膝关节骨关节炎是一种进展性的慢性退行病变,其以关节软骨变性、破坏及骨赘的形成为特征。关节进行性疼痛、活动度降低,且晚期伴有关节畸形,是膝关节骨关节炎的主要临床表现。原发性膝关节骨关节炎的病因尚未完全清楚,临床提示,其与肥胖、性别、年龄、职业以及膝关节长期慢性损伤密切相关。其中,肥胖在膝关节骨性关节炎中起着很重要的作用,本文将从病因、发病机制、手术治疗三方面探讨肥胖对膝关节骨性关节炎影响的研究进展,为膝关节骨性关节炎的诊治提供思路与参考。
Abstract: Osteoarthritis of the knee is a progressive chronic degenerative lesion characterized by the de-generation and destruction of the articular cartilage and the formation of osteophytes. Progressive joint pain, reduced range of motion, and late stage with joint deformity are the main clinical manifestations of KOA. The etiology of primary knee osteoarthritis is not fully clear, and it clinically suggests that it is closely related to obesity, gender, age, occupation, and long-term chronic injury of the knee. Among them, obesity plays a very important role in knee osteoarthritis. This paper will discuss the research progress of the influence of obesity on knee osteoarthritis from three aspects of etiology, pathogenesis and surgical treatment, in order to provide evidence as well as new way of thinking for clinical application of knee osteoarthritis.
文章引用:程逸凡, 孙水. 肥胖对膝关节骨性关节炎的影响研究进展[J]. 临床医学进展, 2023, 13(3): 4284-4290. https://doi.org/10.12677/ACM.2023.133615

1. 背景

骨关节炎(Osteoarthritis, OA)是一种常见的临床病症,表现为关节疼痛,可能伴随不同程度的膝关节活动限制,是中老年龄群体最常见的慢性关节病变。病理上,它以关节软骨退变、软骨丧失、骨质硬化、增生重塑,并伴有相关炎症等为主要特征 [1]。临床可见进行性进展的关节疼痛,可能伴有关节肿胀、僵硬,以致出现其功能障碍,严重时导致关节畸形,甚至丧失关节功能,对患者的生活造成极大程度负面影响。本病发病率,在中年以后和年龄增长成正相关,随年龄增长而增加,虽本身不致命,但由于其致残率极高,可能会大大影响患病人群生活质量,并伴随高额的经济压力,形成对社会经济的重大冲击 [2],引起国际社会广泛关注。

世界卫生组织(WHO)将肥胖定义为机体摄入过多热量,使体内脂肪堆积过多或者分布异常,对人的健康状况造成负面影响。临床上习惯使用体质指数(BMI)来评估肥胖水平,常常将肥胖依据BMI分为三级:BMI在30~34.9 kg/m2之间为I级,BMI在35~39.9 kg/m2之间为II级,BMI如若大于40 kg/m则为III级 [3]。肥胖会极大程度危害人的健康状况,对人体机能及内环境稳态产生各种不良影响,是引发高血压、糖尿病、动脉粥样硬化等多种基础疾病的重要危险因素 [3]。肥胖对于膝关节骨关节炎的影响也是多年以来学者们研究的热点。

2. 肥胖与膝关节骨性关节炎的关系

一直以来,肥胖作为重要危险因素,被认为和膝关节骨性关节炎的起病、进展及预后息息相关 [4] [5] [6]。Anderson等人 [7] 在研究肥胖与膝关节骨关节炎中表明,BMI作为一项独立危险因素,在影像学表现及临床表现方面,与肥胖、膝骨关节炎密切关联。Powell等人 [8] 的研究表明,在肥胖人群中,如若BMI大于27 kg/m2,那其每增加一个单位,则会使骨关节炎的患病率提升15%;在西方女性中,BMI每降低2 kg/m2,OA病程进展的可能性会降低50%。此外,在每个年龄层段中可发现,肥胖人群KOA的发病率均明显高于体重正常人群 [9] ;前瞻性研究 [10] [11] 发现,BMI大于等于30 kg/m2的人群,膝关节骨性关节炎的发病率,比BMI低于25 kg/m2的人群高7倍,且肥胖程度与膝骨关节炎之间存在剂量–反应关系。在一项KOA患者中进行回顾性研究发现,OA组患者男性、女性BMI分别为25.5 ± 3.46、25.2 ± 3.72,体重正常对照组男性、女性BMI分别为24.1 ± 2.59、23.0 ± 4.28,OA组BMI要显著高于对照组 [12]。

肖彦燊等人 [13] 在研究肥胖相关基因与KOA的关系中发现,KOA组和对照组相比,血清中肥胖相关基因的RNA表达量、TNF-α、IL-6、IL-1β均显著升高(P < 0.05),证明肥胖患者血清中有更高的炎症因子水平,以及承担更严重的KOA风险。蔡跃波等人 [14] 在研究肥胖者KOA的影像学KL分级与对照组KOA患者的比较过程中发现,BMI在30至34.9 kg/m2的老年KOA患者的KOA影像学KL分级,比BMI正常的老年KOA患者明显更高,说明肥胖可能是引发老年患者KOA病程进展的重要危险因素。

综上,肥胖与膝关节骨性关节炎之间有密不可分的联系,一方面,肥胖患者更易罹患KOA,另一方面,在KOA患者中,肥胖患者的病程进展相比体重正常患者要更为快速。

3. 肥胖导致膝关节骨性关节炎的可能机制

3.1. 生物机械负荷与骨关节炎

肥胖会导致膝关节生物机械负荷增加,这是肥胖对加重膝关节炎的最主要的机械贡献。过大的生物负荷会使膝关节表面压力分布不均衡,关节机能失常,从而加重软骨损伤,致使关节软骨退变,形成骨刺 [15] [16]。Newberry等人 [17] 研究发现,关节软骨如果承担过大压力,超过其承受阈值,则会发生严重损伤,包括关节肿胀、软骨基质丢失,以致软骨细胞坏死,从而引发骨关节炎。Lin PM等人 [18] 研究发现,生物机械负荷对关节软骨的损伤程度同样也和其承受负荷时间成比例关系。多项研究表明,机械负荷导致了炎症通路及其通道的激活,如IL-1b、TNF-a、NF-kB、Wnt、microRNA和氧化应激通路 [19] [20]。膝关节内收力矩可能是与膝关节骨性关节炎发展相关的重要机械变量 [21] [22]。由于体重的增加,肥胖患者的膝关节内收力矩更大,步态也会相应作出代偿改变,如行走速度减慢、脚趾外翻角度增加 [23] [24]。在一项研究42例骨关节炎患者的膝盖内侧室研究中发现,所有患者经历了更快速的地面摩擦应力,更大的膝盖和臀部外展矩、更大的外侧地面反应力使得身体和对侧肢体的横向移动更快速,与正常体重的个体相比,肥胖人群的关节软骨,对于行走时较高水平的膝关节内收力矩作出适应性改变 [22],最终导致膝关节炎的发生。

3.2. 脂肪组织与骨关节炎

脂肪组织是人体重要组成部分,其内分泌、代谢功能也是近年来学者们的主要研究方向。脂肪组织可分泌大量的炎症介质,包括炎性因子(白介素1、白介素6、白介素8、肿瘤坏死因子α)和脂肪因子(瘦素、脂联素等) [25]。

3.2.1. 炎性因子

研究表明,脂肪组织会随着其量的增加,而产生并释放更多的细胞因子,肥胖患者的炎症水平相较于体重正常人会更高 [26]。在OA患者中,白介素可在软骨中激活金属蛋白酶(MMP)。白介素与金属蛋白酶家族发挥协同作用,且互相促进,降解软骨基质,加重关节炎软骨损伤 [27]。软骨细胞在白介素等炎性因子的作用下,也会促进一氧化氮(NO)的合成与释放,促进关节软骨细胞凋亡 [28] [29]。在疾病过程中,白介素等炎性因子增加活性氧的产生,活性氧产生过氧化物和羟基化自由基,直接损伤关节软骨 [30]。

3.2.2. 脂肪因子

脂肪因子是主要来源于脂肪细胞的可溶性分子,与肥胖和代谢诱导的炎症有关 [31] [32]。以瘦素、脂联素为首的各种脂肪因子经由脂肪组织分泌,且随着脂肪组织增多,脂肪因子的分泌也相应增加。OA患者瘦素水平高于正常患者,晚期OA患者关节软骨和滑膜液中瘦素的含量和活性显著增加 [33]。也有证据表明,该脂肪因子在骨性关节炎的发生过程中起着关键作用。瘦素会提高机体金属蛋白酶家族相关蛋白如金属蛋白酶2、金属蛋白酶9、II型胶原等的表达,而显著降低正常关节软骨中的碱性成纤维细胞生长因子(β-FGF)。此外,聚集酶1和2 (ADAMTS-4和ADAMTS-5)的基因表达也显著增加,并且在瘦素治疗后观察到关节软骨中蛋白多糖的消耗。此外,瘦素与IL-1β可共同增加人OA软骨中MMP-1、MMP-3和MMP-13的产生 [34]。综上所述,瘦素是软骨的分解代谢调节因子 [35]。

脂联素在参与OA病程进展中,对多个组织、细胞的病理变化发挥着分解和合成的双重作用。一方面,骨性关节炎滑膜液中的脂联素水平已被证明与聚集聚糖降解相关 [36]。脂联素通过人OA软骨细胞中的AMPK和c-Junn端激酶(JNK)通路上调MMP和诱导型一氧化氮合酶(iNOS)的表达,致使软骨基质降解。另一方面,脂联素可能在关节炎的进展中发挥正向作用,通过促进软骨细胞增殖,稳定关节软骨内环境 [37]。低水平的脂联素增加软骨细胞增殖、蛋白多糖合成,这反映在II型胶原、聚集聚糖、Runx2和X型胶原的表达和碱性磷酸酶活性 [38] 的上调。

3.3. 其他

此外,肥胖人群罹患如高血压、糖尿病、动脉粥样硬化等慢性疾病风险较常人增高。这些基础疾病可能对KOA间接产生影响。研究表明,在糖尿病中,细胞外基质增加与晚期糖基化终产物(AGE)有关,AGE可刺激软骨细胞,诱导炎性因子释放 [39]。动脉粥样硬化状态下,软骨下骨的血液供应可能会受到影响,从而加重KOA进展 [40]。

综上,肥胖引发KOA的机制,不仅包括了因机械负荷增加造成的影响,还涉及到脂肪因子等代谢因素,同时,肥胖造成的其他疾病的高危状态,也会增加罹患KOA的风险。

4. 肥胖对手术治疗膝关节骨性关节炎的影响

4.1. 肥胖患者手术特点

肥胖患者进行关节置换手术的主要手术特点,在于膝周软组织质量的增加,这通常为术中暴露及体表定位带来更大的困难和挑战。Lozano等人 [41] 测量了一组BMI为35 kg/m2的TKA患者的肢体长度与髌上和髌下肢体周长。他们观察到,随着肢体长度缩短及髌上围增加,术中止血带时间和手术复杂性大大增加。根据In等人 [38] 的研究,肥胖患者术中暴露通常需要更长的时间,而且髌骨可能难以半脱位或外翻。手术时间延长和2%的术中并发症发生率很可能是由于与难以获得暴露相关的可视化不足。足够大的切口、必要的扩大剥离、充分的暴露,均是手术成功与否的关键。

随着暴露的难度增加,术中对位、调整力线的技术性要求也就更高。Krushell等人 [42] 的研究表明,肥胖患者初次置换后随访发现,相比于体重正常对照组患者,假体磨损和力线不正导致假体松动的风险更高。因此,对于肥胖KOA患者,精准高超的手术技术、材料的高耐磨,意义重大。

4.2. 肥胖患者术后并发症

学者们研究发现,肥胖患者在接受全膝关节置换术治疗后,其预后相比于体重正常人群要更差 [43]。随着BMI水平上升,围手术期并发症几率也在上升 [44]。Wagner等人 [45] 研究表明,BMI与再手术率和翻修手术率的增加显著相关。

肥胖患者在TKA术后更容易发生血栓形成。Wallace等人 [46] 在针对32,485名接受TKA治疗的患者的研究调查了肥胖对深静脉血栓(DVT)和肺栓塞(PE)的影响。肥胖人群中DVT/PE的风险显著增加。

Thornqvist等人 [47] 研究发现,在行初次关节置换时,肥胖患者随着BMI升高,罹患缺血性卒中、急性心肌梗死等心血管并发症的风险就越高。

Winiarsky等人 [48] 研究发现,肥胖患者中22%的膝关节出现伤口并发症,而对照组仅为2%。在一项对1214名连续接受TKA治疗的患者进行的前瞻性研究中,Dowsey和Choong等人 [49] 发现总体感染率为1.5% (n = 18),其中,深层假体感染在肥胖患者的发生率显著高于非肥胖患者。

此外,Perka等人 [50] 提出,心血管系统疾病、内分泌系统疾病等基础疾病,与围手术期并发症发病率密切关联。而肥胖患者术前此类基础疾病患病率更高,一定程度上也解释了肥胖患者TKA术后并发症增加的原因。

5. 总结

现在全球约有3.03亿的人口罹患骨关节炎,每年新增病例数量约为1500万,此数据相比于20世纪90年代,增长了9.3% [2]。在我国,膝关节骨关节炎是引起中高年龄人群下肢疼痛、关节活动功能不良的主要原因。21世纪后,体质指数异常人群数量逐渐上升,其所反映出的机体肥胖状态,大大增加人体罹患多种疾病的风险。膝骨关节炎与肥胖共同对公共卫生、社会经济发起重大挑战,提升人口质量,改善患者预后,也一直是我国医疗卫生从业者的职业目标。

肥胖不仅会提高膝骨关节炎的发病率,同样也会加重膝骨关节炎的病程。其作用机理,不单单因为肥胖患者体质指数增加,从而引发生物机械负荷加重相关,同时也与因肥胖造成的脂质代谢、炎症微环境密切关联。此外,肥胖所引发的高血压、糖尿病、动脉粥样硬化等基础疾病,也对膝关节内环境稳定造成巨大冲击,成为其高危因素。

从临床角度讲,肥胖是一个极其普遍的致病因素,也给骨外科临床工作者带来了许多挑战。肥胖患者在THA后或TKA后刀口感染率会普遍增高。术后并发症如深静脉血栓、心肌梗死等发病率也高于正常患者。且植入物存活率较差,假体松动率、术后翻修率也相应提升。为患者带来的不仅有身体健康上的痛苦,更伴随经济上的更高的压力 [51]。

医学体重减轻或减肥评估、术前进行营养评估,对于患有膝骨关节炎的患者尤为重要。随着国家经济、医学健康事业的蓬勃发展,如何降低人口肥胖率、提升膝骨关节炎患者预后,成为整个社会越来越重要的关注点。

NOTES

*通讯作者。

参考文献

[1] National Clinical Guideline Centre (UK) (2014) Osteoarthritis: Care and Management in Adults. National Institute for Health and Clinical Excellence: Guidance, National Institute for Health and Care Excellence (UK), London.
[2] Safiri, S., et al. (2020) Global, Regional and National Burden of Osteoarthritis 1990-2017: A Systematic Analysis of the Global Burden of Disease Study 2017. Annals of the Rheumatic Diseases, 79, 819-828.
https://doi.org/10.1136/annrheumdis-2019-216515
[3] Hou, J., et al. (2020) Obesity and Bone Health: A Com-plex Link. Frontiers in Cell and Developmental Biology, 8, Article 600181.
https://doi.org/10.3389/fcell.2020.600181
[4] Kulkarni, K., Karssiens, T., Kumar, V. and Pandit, H. (2016) Obesity and Osteoarthritis. Maturitas, 89, 22-28.
https://doi.org/10.1016/j.maturitas.2016.04.006
[5] Francisco, V., et al. (2018) Biomechanics, Obesity, and Oste-oarthritis. The Role of Adipokines: When the Levee Breaks. Journal of Orthopaedic Research, 36, 594-604.
https://doi.org/10.1002/jor.23788
[6] Rios, J.L., et al. (2019) Protective Effect of Prebiotic and Exercise Inter-vention on Knee Health in a Rat Model of Diet-Induced Obesity. Scientific Reports, 9, Article No. 3893.
https://doi.org/10.1038/s41598-019-40601-x
[7] Anderson, J.J. and Felson, D.T. (1988) Factors Associated with Osteoarthritis of the Knee in the First National Health and Nutrition Examination Survey (HANES I): Evidence for an Association with Overweight, Race, and Physical Demands of Work. American Journal of Epidemiology, 128, 179-189.
https://doi.org/10.1093/oxfordjournals.aje.a114939
[8] Powell, A., Teichtahl, A.J., Wluka, A.E. and Cicuttini, F.M. (2005) Obesity: A Preventable Risk Factor for Large Joint Osteoarthritis Which May Act through Biomechanical Factors. British Journal of Sports Medicine, 39, 4-5.
https://doi.org/10.1136/bjsm.2004.011841
[9] Deshpande, B.R., et al. (2016) Number of Persons with Sympto-matic Knee Osteoarthritis in the US: Impact of Race and Ethnicity, Age, Sex, and Obesity. Arthritis Care & Research, 68, 1743-1750.
https://doi.org/10.1002/acr.22897
[10] Toivanen, A.T., et al. (2010) Obesity, Physically Demanding Work and Traumatic Knee Injury Are Major Risk Factors for Knee Osteoarthritis—A Population-Based Study with a Follow-up of 22 Years. Rheumatology, 49, 308-314.
https://doi.org/10.1093/rheumatology/kep388
[11] Grotle, M., Hagen, K.B., Natvig, B., Dahl, F.A. and Kvien, T.K. (2008) Obesity and Osteoarthritis in Knee, Hip and/or Hand: An Epidemiological Study in the General Population with 10 Years Follow-up. BMC Musculoskeletal Disorders, 9, Article No. 132.
https://doi.org/10.1186/1471-2474-9-132
[12] 史冬泉, 等. 体质指数与膝关节骨性关节炎关系[J]. 中国公共卫生, 2007, 23(3): 299-300.
[13] 肖彦燊, 董文铭, 蔡华昌. 脂肪与肥胖相关基因(FTO)与原发性膝骨关节炎的相关性研究[J]. 智慧健康, 2022, 8(1): 78-81.
[14] 蔡跃波, 等. 肥胖者影像学KL分级与膝关节骨性关节炎的临床研究[J]. 中国医疗器械信息, 2022, 28(24): 77-79.
[15] Jiang, L., et al. (2016) Body Mass Index and Hand Osteoar-thritis Susceptibility: An Updated Meta-Analysis. International Journal of Rheumatic Diseases, 19, 1244-1254.
https://doi.org/10.1111/1756-185X.12895
[16] Sharma, L., Lou, C., Cahue, S. and Dunlop, D.D. (2000) The Mechanism of the Effect of Obesity in Knee Osteoarthritis: The Mediating Role of Malalignment. Arthritis & Rheuma-tism, 43, 568-575.
https://doi.org/10.1002/1529-0131(200003)43:3<568::AID-ANR13>3.0.CO;2-E
[17] Newberry, W.N., Garcia, J.J., Mackenzie, C.D., Decamp, C.E. and Haut, R.C. 1998) Analysis of Acute Mechanical Insult in an Animal Model of Post-Traumatic Osteoarthrosis. Journal of Biomechanical Engineering, 120, 704-709.
https://doi.org/10.1115/1.2834882
[18] Lin, P.M., Chen, C.T. and Torzilli, P.A. (2004) Increased Stromelysin-1 (MMP-3), Proteoglycan Degradation (3B3 and 7D4) and Collagen Damage in Cyclically Load-Injured Articular Cartilage. Osteoarthritis and Cartilage, 12, 485-496.
https://doi.org/10.1016/j.joca.2004.02.012
[19] Fang, T., Zhou, X., Jin, M., Nie, J. and Li, X. (2021) Molecular Mechanisms of Mechanical Load-Induced Osteoarthritis. International Orthopaedics, 45, 1125-1136.
https://doi.org/10.1007/s00264-021-04938-1
[20] Zhu, J., Zhu, Y., Xiao, W., Hu, Y. and Li, Y. (2020) Instability and Excessive Mechanical Loading Mediate Subchondral Bone Changes to Induce Osteoarthritis. Annals of Translational Medicine, 8, Article No. 350.
https://doi.org/10.21037/atm.2020.02.103
[21] Brouwer, G.M., et al. (2007) Association between Valgus and Varus Alignment and the Development and Progression of Radiographic Osteoarthritis of the Knee. Arthritis & Rheu-matology, 56, 1204-1211.
https://doi.org/10.1002/art.22515
[22] Andriacchi, T.P. and Mundermann, A. (2006) The Role of Ambulatory Mechanics in the Initiation and Progression of Knee Osteoarthritis. Current Opinion in Rheumatology, 18, 514-518.
https://doi.org/10.1097/01.bor.0000240365.16842.4e
[23] Segal, N.A., Yack, H.J. and Khole, P. (2009) Weight, Rather than Obesity Distribution, Explains Peak External Knee Adduction Moment during Level Gait. American Journal of Physical Medicine & Rehabilitation, 88, 180-191.
https://doi.org/10.1097/PHM.0b013e318198b51b
[24] Lai, P.P., Leung, A.K., Li, A.N. and Zhang, M. (2008) Three-Dimensional Gait Analysis of Obese Adults. Clinical Biomechanics, 23, S2-S6.
https://doi.org/10.1016/j.clinbiomech.2008.02.004
[25] Margetic, S., Gazzola, C., Pegg, G.G. and Hill, R.A. (2002) Leptin: A Review of Its Peripheral Actions and Interactions. International Journal of Obesity, 26, 1407-1433.
https://doi.org/10.1038/sj.ijo.0802142
[26] Nedunchezhiyan, U., et al. (2022) Obesity, Inflammation, and Immune System in Osteoarthritis. Frontiers in Immunology, 13, Article 907750.
https://doi.org/10.3389/fimmu.2022.907750
[27] Wang, X., Li, F., Fan, C., Wang, C. and Ruan, H. (2011) Effects and Relationship of ERK1 and ERK2 in Interleukin-1β-Induced Alterations in MMP3, MMP13, Type II Collagen and Aggrecan Expression in Human Chondrocytes. International Journal of Molecular Medicine, 27, 583-589.
https://doi.org/10.3892/ijmm.2011.611
[28] Blanco, F.J., Ochs, R.L., Schwarz, H. and Lotz, M. (1995) Chondro-cyte Apoptosis Induced by Nitric Oxide. The American Journal of Pathology, 146, 75-85.
[29] Murrell, G.A., et al. (1996) Nitric Oxide: An Important Articular Free Radical. The Journal of Bone & Joint Surgery, 78, 265-274.
https://doi.org/10.2106/00004623-199602000-00014
[30] Afonso, V., Champy, R., Mitrovic, D., Collin, P. and Lomri, A. (2007) Reactive Oxygen Species and Superoxide Dismutases: Role in Joint Diseases. Joint Bone Spine, 74, 324-329.
https://doi.org/10.1016/j.jbspin.2007.02.002
[31] Qatanani, M., Szwergold, N.R., Greaves, D.R., Ahima, R.S. and Lazar, M.A. (2009) Macrophage-Derived Human Resistin Exacerbates Adipose Tissue Inflammation and In-sulin Resistance in Mice. Journal of Clinical Investigation, 119, 531-539.
https://doi.org/10.1172/JCI37273
[32] Wang, X., Hunter, D., Xu, J. and Ding, C. (2015) Metabolic Triggered In-flammation in Osteoarthritis. Osteoarthritis and Cartilage, 23, 22-30.
https://doi.org/10.1016/j.joca.2014.10.002
[33] Fowler-Brown, A., et al. (2015) The Mediating Effect of Leptin on the Relationship Between Body Weight and Knee Osteoarthritis in Older Adults. Arthritis & Rheumatology, 67, 169-175.
https://doi.org/10.1002/art.38913
[34] Koskinen, A., et al. (2011) Leptin Enhances MMP-1, MMP-3 and MMP-13 Production in Human Osteoarthritic Cartilage and Correlates with MMP-1 and MMP-3 in Synovial Fluid from OA Patients. Clinical and Experimental Rheumatology, 29, 57-64.
https://doi.org/10.1016/S1063-4584(10)60038-6
[35] Bao, J.-P., et al. (2015) Leptin Plays a Catabolic Role on Ar-ticular Cartilage. Molecular Biology Reports, 37, 3265-3272.
https://doi.org/10.1007/s11033-009-9911-x
[36] Tilg, H. and Moschen, A.R. (2006) Adipocytokines: Mediators Linking Adipose Tissue, Inflammation and Immunity. Nature Reviews Immunology, 6, 772-783.
https://doi.org/10.1038/nri1937
[37] Chen, T.-H., et al. (2006) Evidence for a Protective Role for Adiponectin in Osteoarthritis. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1762, 711-718.
https://doi.org/10.1016/j.bbadis.2006.06.008
[38] In, Y., Kim, J.-M., Choi, N.-Y. and Kim, S.-J. (2007) Large Thigh Girth Is a Relative Contraindication for the Subvastus Approach in Primary Total Knee Arthroplasty. The Journal of Arthroplasty, 22, 569-573.
https://doi.org/10.1016/j.arth.2006.06.007
[39] Loeser, R.F., et al. (2005) Articular Chondrocytes Express the Receptor for Advanced Glycation End Products: Potential Role in Osteoarthritis. Arthritis & Rheumatology, 52, 2376-2385.
https://doi.org/10.1002/art.21199
[40] Conaghan, P.G., Vanharanta, H. and Dieppe, P.A. (2005) Is Progressive Osteoarthritis an Atheromatous Vascular Disease? Annals of the Rheumatic Diseases, 64, 1539-1541.
https://doi.org/10.1136/ard.2005.039263
[41] Lozano, L.M., et al. (2008) Relationship between Knee Anthro-pometry and Surgical Time in Total Knee Arthroplasty in Severely and Morbidly Obese Patients: A New Prognostic In-dex of Surgical Difficulty. Obesity Surgery, 18, 1149-1153.
https://doi.org/10.1007/s11695-008-9481-3
[42] Krushell, R.J. and Fingeroth, R.J. (2007) Primary Total Knee Arthroplasty in Morbidly Obese Patients A 5- to 14-Year Follow-up Study. The Journal of Arthroplasty, 22, 77-80.
https://doi.org/10.1016/j.arth.2007.03.024
[43] Thelwall, S., Harrington, P., Sheridan, E. and Lamagni, T. (2015) Impact of Obesity on the Risk of Wound Infection Following Surgery: Results From a Nationwide Prospective Multi-centre Cohort Study in England. Clinical Microbiology and Infection, 21, 1008.E1-1008.E8.
https://doi.org/10.1016/j.cmi.2015.07.003
[44] Werner, B.C., Evans, C.L., Carothers, J.T. and Browne, J.A. (2015) Primary Total Knee Arthroplasty in Super-obese Patients: Dramatically Higher Postoperative Complication Rates Even Compared to Revision Surgery. The Journal of Arthroplasty, 30, 849-853.
https://doi.org/10.1016/j.arth.2014.12.016
[45] Wagner, E.R., Kamath, A.F., Fruth, K., Harmsen, W. and Berry, D.J. (2016) Effect of Body Mass Index on Reoperation and Complications after Total Knee Arthroplasty. The Journal of Bone and Joint Surgery, 98, 2052-2060.
https://doi.org/10.2106/JBJS.16.00093
[46] Wallace, G., et al. (2014) The Effect of Body Mass Index on the Risk of Post-Operative Complications during the 6 Months Following Total Hip Replacement or Total Knee Replacement Sur-gery. Osteoarthritis and Cartilage, 22, 918-927.
https://doi.org/10.1016/j.joca.2014.04.013
[47] Thornqvist, C., et al. (2014) Body Mass Index and Risk of Peri-operative Cardiovascular Adverse Events and Mortality in 34,744 Danish Patients Undergoing Hip or Knee Replacement. Acta Orthopaedica, 85, 456-462.
https://doi.org/10.3109/17453674.2014.934184
[48] Winiarsky, R., Barth, P. and Lotke, P. (1998) Total Knee Arthroplasty in Morbidly Obese Patients. The Journal of Bone & Joint Surgery, 80, 1770-1774.
https://doi.org/10.2106/00004623-199812000-00006
[49] Dowsey, M.M. and Choong, P.F. (2009) Obese Dia-betic Patients are at Substantial Risk for Deep Infection after Primary TKA. Clinical Orthopaedics and Related Research, 467, 1577-1581.
https://doi.org/10.1007/s11999-008-0551-6
[50] Perka, C., Arnold, U. and Buttgereit, F. (2000) Influencing Factors on Perioperative Morbidity in Knee Arthroplasty. Clinical Orthopaedics and Related Research, 378, 183-191.
https://doi.org/10.1097/00003086-200009000-00028
[51] Kremers, H.M., et al. (2014) The Effect of Obesity on Direct Medical Costs in Total Knee Arthroplasty. The Journal of Bone & Joint Surgery, 96, 718-724.
https://doi.org/10.2106/JBJS.M.00819