Ce基催化剂在HCl催化氧化中的研究进展
Research Progress of Ce-Based Catalysts in Catalytic Oxidation of HCl
DOI: 10.12677/MS.2023.133025, PDF, HTML, XML, 下载: 177  浏览: 362  科研立项经费支持
作者: 刘佳慧, 董方园, 朱百慧, 傅仰河*:浙江师范大学含氟新材料研究所,先进催化材料教育部重点实验室,浙江 金华
关键词: Deacon反应Ce基催化剂HClCl2 Deacon Reaction Ce-Based Catalyst HCl Cl2
摘要: 氯化学工业过程中会产生大量副产物氯化氢(HCl),虽HCl存在工业用途,但仍供过于求。从HCl中回收氯气(Cl2)既可提高Cl原子的利用率,又可减少HCl对环境的污染。多相催化氧化HCl (Deacon过程)是实现从HCl中回收Cl2最为有效且经济的方法,工业应用中的催化剂以Ru基催化剂居多,但由于Ru稀缺的资源和昂贵的成本,Ce基催化剂成为了可部分替代Ru基催化剂的理想选择。Ce除了具有丰富的矿产资源的优势外,CeO2在Ce3+/Ce4+之间还表现出较好的可逆氧化还原性能,有利于促进催化氧化反应。但是,进一步提高Ce基催化剂的催化活性仍是亟需解决的问题。本文主要综述了Ce基催化剂在HCl催化氧化中的最新研究进展,介绍了如何提高Ce基催化剂的催化性能,同时还阐述了Ce基材料的表面反应机理,对未来Ce催化剂的发展进行了展望。
Abstract: A large number of by-products hy-drogen chloride (HCl) is produced in the process of chlorine chemical industry. Although HCl has industrial uses, it is still in oversupply. Recovering chlorine (Cl2) from HCl can not only improve the utilization rate of Cl atoms, but also relieve the pollution of HCl to the environment. Heterogeneous catalytic oxidation of HCl is the most effective and economical method to recover Cl2 from HCl, and the industrial application of catalysts is mostly based on Ru. However, due to the high cost of Ru, Ce-based catalysts have become an ideal choice to partially replace Ru-based catalysts. Besides its advantage of rich mineral resources, CeO2 shows excellent reversible redox performance between Ce3+ and Ce4+, which is conducive to promoting catalytic oxidation. However, it is still an urgent problem to further improve the catalytic activity of Ce-based catalysts. In this paper, we mainly re-view the latest research progress of Ce-based catalysts in HCl catalytic oxidation, and introduce how to improve the catalytic performance of Ce-based catalysts. At the same time, we expound the sur-face reaction mechanism of Ce-based materials, and the future development of Ce-based catalysts is prospected.
文章引用:刘佳慧, 董方园, 朱百慧, 傅仰河. Ce基催化剂在HCl催化氧化中的研究进展[J]. 材料科学, 2023, 13(3): 213-223. https://doi.org/10.12677/MS.2023.133025

1. 引言

在以氯为基础的化学工业中,大量HCl副产物的处理已经成为一个具有挑战性且亟待解决的问题 [1] [2]。工业中,三分之一的涉氯产品不含氯,例如,聚氨酯和聚碳酸酯是使用氯化学生产的代表性无氯最终材料,其中HCl不可避免地作为副产物产生且对HCl中和对环境和经济没有吸引力,因此回收使其转化为Cl2是利用副产物HCl的可持续策略 [3] [4] [5] [6]。HCl催化氧化为Cl2 (Deacon过程)是一种实现可持续氯循环且环境友好的有效方法。该方法的核心是催化剂的选择,首次运用的催化剂可追溯到1868年负载在沸石上的CuCl2催化剂,但活性相的挥发导致的催化剂快速失活仍然是Cu基催化剂无法克服的问题 [7] [8]。Mitsui Chemical报道了将Cr2O3/SiO2催化剂(MT-工艺)应用于HCl氧化的进一步进展,然而此过程会导致有害Cr(VI)化合物的释放 [9]。

迄今为止,负载在金红石型TiO2和SnO2上的贵金属氧化物RuO2催化剂已分别由住友和拜耳在工业上应用 [5] [6]。此外,IrO2/TiO2-金红石在该反应中也表现出了中等的催化性能 [9]。然而,Ru和Ir的价格昂贵且波动大,阻碍了它们在工业中的广泛应用 [4]。因此,开发非贵金属氧化物催化剂使其部分替代Ru基催化剂的努力从未停止,例如CuO [10] [11] [12] 、CeO2 [13] [14] [15] 、CuCrO2 [16] 和ZnCr2O4 [17]。其中,最近开发的Ce基催化剂引起了广泛的研究兴趣,由于丰富的矿产资源、较低的成本且在Ce3+/Ce4+之间表现出较好的可逆氧化还原性能 [18] [19],Ce基催化剂成为了部分替代Ru基催化剂的理想选择 [20] [21] [22] [23]。

本文主要综述了Ce基催化剂在HCl催化氧化中的最新研究进展,介绍了如何提高Ce基催化剂的催化性能,同时还阐述了Ce基材料的表面反应机理,对未来Ce催化剂的发展进行了展望。

2. Ce基催化剂的最新研究进展

2.1. 形貌对Ce基催化剂的影响

2012年,Amrute等 [24] 结合催化剂活性测试、稳态动力学、表征和密度泛函理论(DFT)模拟,证实了HCl在块状CeO2上(图1)氧化的可行性。由于其显著的活性和稳定性,CeO2可成为Ru基催化剂的部分替代品,用于工业氯循环中回收HCl。对于已报道的CuO和MnO2催化剂,其暴露于富O2进料(O2/HCl = 2)时会发生大量氯化 [25] [26],而CeO2暴露于富含O2进料(O2/HCl ≥ 0.75)后不会发生大量氯化且只在最外层含有氯,在化学计量或亚化学计量进料中才会形成氯化相(O2/HCl ≤ 0.25)。DFT模拟显示,尽管Cl和O对可用活性位点的竞争可能使再氧化成为速率决定步骤,但从空位到表面Ce原子的氯活化仍是最需要能量的步骤。目前的研究集中在开发一种合适的策略,使活性相在合适的载体上保持大块CeO2的催化性能,进而使CeO2获得更佳的活性与稳定性。

Figure 1. TEM: (a) fresh CeO2, (b) and (c) CeO2 after being treated for 3 h in the atmosphere of O2/HCl = 2 (molar ratio) and O2/HCl = 0 [24]

图1. TEM:(a) 新鲜CeO2,(b) (c) 分别经过O2/HCl = 2 (摩尔比)、O2/HCl = 0的气氛处理3 h后的CeO2 [24]

李等 [27] 合成了如图2所示的具有择优取向面((100)、(111)、(110))的形状受控CeO2纳米颗粒(立方体、八面体、棒),研究了在两种反应条件下(苛刻:Ar:HCl:O2 = 6:2:2,温和:Ar:HCl:O2 = 7:1:2)的活性与稳定性。在催化研究中使用形状可控的CeO2纳米粒子,可以将活性(以及稳定性)与特定的表面结构相关联。实验结果显示,活性和稳定性都是结构敏感的,且Ce基催化剂的稳定性受到整体氯化作用的影响 [24] [28]。就时空产率(STY)而言,CeO2纳米棒的活性最佳,其次是立方体,最后是八面体。这一趋势与完全储氧能力(OSCc)相一致 [29] [30] [31] [32],表明观察到的活性STY与OSCc之间的相关性。在温和的反应条件下,三种形貌稳定性均较好;在苛刻的反应条件下棒状仍然稳定,而立方体和八面体因形成水合CeCl3都不稳定。因此,形状受控CeO2颗粒的稳定性也与暴露的晶面相关:暴露(110)晶面的CeO2纳米棒比分别具有(111)和(100)晶面的八面体和立方体稳定得多。该课题组还研究了在形状可控的纳米CeO2上HCl氧化反应的动力学。三种形貌CeO2在O2中的反应级数皆为正:棒状(0.26)、立方体(0.27)和八面体(0.32)。CeO2立方体和棒状材料的表观活化能约为50~52 kJ/mol,而八面体的表观活化能要高得多(65 kJ/mol),进一步证实了具有八面体形貌的CeO2催化活性较差。

基于以上报道可以发现,催化剂的形貌对其催化性能至关重要。具有特定晶面暴露的催化剂,可能

Figure 2. SEM images (A, D, G), TEM images (B, E, H) and high-resolution TEM images (C, F, I) of the shape controlled CeO2 particles: (A + B + C) cubes; (D + E + F) octahedrons; (G + H + I) rods. Inset of (C + F + I): fast fourier transformation (FFT) pattern of the particle [27]

图2. 形状受控的CeO2颗粒的SEM图像(A, D, G)、TEM图像(B, E, H)和高分辨率TEM图像(C, F, I):(A + B + C)立方体;(D + E + F)八面体;(G + H + I)棒。(C + F + I)插图:粒子的快速傅立叶变换(FFT)图像 [27]

更利于催化反应的发生。对于八面体状的CeO2,其表观活化能均高于棒状与立方体的CeO2,这是其具有较差催化活性的原因之一。众所周知,催化剂的氧储存能力对其催化活性的影响很大,在棒状、八面体、立方体、无定型的CeO2中,棒状CeO2由于具有最高的氧储存能力,因此其催化氧化HCl的过程也具有最高的Cl2时空收率。

2.2. 载体对Ce基催化剂的影响

在用于催化反应的材料中,ZrO2、Al2O3和TiO2常被用作合适的金属或金属氧化物活性中心的载体,以提高活性中心的分散度,进而提高其催化性能 [33] - [39]。Moser等 [21] 将CeO2负载至TiO2、Al2O3和ZrO2上,探究载体种类对CeO2催化活性的影响。通过将具有最优活性组分含量的CeO2/ZrO2催化剂用于中试测试,证明了其长期稳定性。其中,CeO2/Al2O3活性中等,CeO2/TiO2活性较差。对于CeO2/ZrO2,CeO2和Ce-Zr混合氧化物相的纳米结构的共同存在提供了高分散性、增强的氧化性能和减少的氯化,这是CeO2/ZrO2优异性能的关键 [40]。尽管CeO2以纳米颗粒的形式高度分散在Al2O3上,但Cl可能更强地结合到Al2O3上,并且没有与载体相关的电子效应,使得该催化剂催化的活性较差。对于CeO2/TiO2,在浸渍态催化剂的热活化过程中,载体以大颗粒的形式出现且因其剧烈烧结而阻碍了活性相的有效沉积 [41]。基于这些结果,CeO2/ZrO2是一种具有成本效益、环境友好和工业相关性的氯再循环催化剂,可能成为目前用于大规模氯回收的RuO2基催化剂的一种稳健且具有成本效益的替代物。

对于以ZrO2为载体的负载型Ce基催化剂的进一步研究,孙等 [42] 将CeO2干浸渍在ZrO2颗粒上(CeO2@ZrO2)并在600℃下煅烧5 h,产生具有丰富的Ce3+浓度和催化活性的CeO2高度分散层(图3)。CeO2@ZrO2的核壳形貌是HCl催化氧化反应中高(比)活性的原因。其中,在苛刻的Deacon反应条件下,900℃煅烧的催化剂在固体界面会形成ZrO2和CeO2的固溶体,而600℃煅烧的CeO2@ZrO2催化剂性质比900℃煅烧的更稳定,这归因于在CeO2@ZrO2表面上形成的1~2 nm厚CeO2润湿层。根据稳定性测试,该课题组推断附着在ZrO2上的CeO2层比混合的CexZr1-xO2层或附着在CexZr1-xO2界面上的CeO2层更稳定,且这种CeO2壳附着在ZrO2核上的核壳形态(CeO2@ZrO2)作为载体或活性组分对其他催化氧化反应可能同样有益 [43]。

Figure 3. Aberration-corrected high resolution TEM images (a) and HAADF-STEM image (b) of 20 CeO2@ZrO2-600. (c) XEDS maps of overlap of Ce (blue) and Zr (green) [42]

图3. 20 CeO2@ZrO2-600的像差校正的高分辨率TEM图像(a)和HAADF-STEM图像(b)。(c) Ce(蓝)和Zr(绿)重叠的XEDS图 [42]

期间,陈等 [44] 发现,通过自发沉积策略将CeO2纳米点嵌入多孔SiO2基质中(CeO2@SiO2)也是一种提高CeO2分散性和催化性能的理想选择。SiO2基质中的CeO2纳米点表现出显著的“尺寸效应”,具有相当高的Ce3+浓度、高比例的氧空位和显著增强的氧还原性。其中,Ce3+的存在会造成电荷不平衡,导致催化剂表面产生氧空位和不饱和化学键,这进一步增加了氧吸附量,影响氧活化和表面Cl脱附,进而促进催化活性 [45] [46] [47]。通过100小时的连续反应,在CeO2@SiO2催化剂上仅观察到约5%的初始反应活性损失,而在CeO2上发现近50%的初始反应活性损失(图4)。CeO2@SiO2催化剂表现出优异的活性和良好的稳定性,原因在于通过SiO2基质隔离细小的CeO2纳米点可极大程度上抑制CeO2

Figure 4. Catalyst durability tests on CeO2@SiO2 and CeO2. Reaction conditions: Tbed = 703 K, O2/HCl = 2:1 (v / v) and Wcat./FHCl = 0.0313 g∙min−1∙ml−1 [44]

图4. CeO2@SiO2和CeO2催化剂耐久性试验。反应条件:Tbed = 703 K,O2/HCl = 2:1 (v/v) and Wcat./FHCl = 0.0313 g∙min−1∙ml−1 [44]

的本体烧结。

综上所述,选择合适的载体以提高催化剂的比活性并降低其成本,一直以来都是研究者们目标之一。对于Ce基催化剂,在以ZrO2、TiO2、Al2O3、SiO2为载体或与其形成核壳结构时,TiO2因其在高温下易烧结不考虑其为有效载体,而尽管CeO2可以高度分散在Al2O3上,但Cl更倾向于与Al2O3结合而不是CeO2,因此Al2O3也不能成为CeO2的有效载体。然而,当CeO2以ZrO2或SiO2为载体或与其形成核壳结构时,大大提高了活性中心的分散度,增加了反应气体的吸附面积,进而提高其比活性与稳定性。

2.3. 金属掺杂对Ce基催化剂的影响

在上一小节中阐述了通过选择合适的载体以提高CeO2的催化活性,除此之外,通过对活性中心掺杂改性也可改善催化剂的催化性能 [12] [48]。Cop等 [49] 报道了同价/异价金属对CeO2的掺杂:Ce0.9M0.1O2 (M = Zr, Gd, Pr, Tb),这些材料具有相近的介孔尺寸、形貌和比表面积,以研究不同掺杂剂对OSC以及催化活性/稳定性的影响。由于许多催化研究将CeO2基材料的催化性能归因于OSC [50] [51] [52],因此该课题组选择适当的模型系统,所有样品均为具有3D网络的介孔CeO2粉末。通过掺入Gd3+、Zr4+、Pr3+/4+和Tb3+/4+掺杂剂来控制氧空位的类型和数量,当主要针对表面氧空位时,氧的交换量被量化为动态OSC,如果涉及表面和体氧空位,则被量化为OSCc [53]。结果表明,Pr掺杂的CeO2与Tb和Gd掺杂的样品在HCl氧化中均表现出最高的储氧能力,但获得了最低的催化活性/稳定性。相比之下,Zr掺杂的介孔CeO2粉末在所有样品的HCl氧化中表现出最高的催化性能和稳定性,但OSC较低。OSC/OSCc取决于氧空位形成能以及氧空位和氧迁移到表面的量,而这些参数通过三价金属离子的掺杂得到增强。当通过XRD显示Pr和Tb以三价氧化态存在时,观察到深度氯化。因此,尽管掺Pr样品的OSC(c)较高,但过量氧空位会导致催化剂失活,因此时空产率在几个小时内就下降到几乎为零。最近对CeO2薄膜的研究表明,氯可以占据表面的氧空位,这可能是CeCl3形成和催化剂失活的决定性因素。总之,该研究证实,通过使用Zr4+作为掺杂剂可以提高CeO2的稳定性,提供更好的CeO2还原性,而不会在系统中引入电荷补偿和过量的氧空位,从而提高Cl物种在本体中的迁移率。

李等 [54] 对Zr掺杂CeO2作了进一步研究,该课题组合成了不同Zr掺杂量的Ce1-xZrxO2纳米棒,在430℃的反应温度下将其暴露于具有高HCl浓度的Deacon反应混合物。对于反应混合物HCl:O2 > 2,纯CeO2纳米棒被大量氯化(CeCl3-x∙6H2O) [27] [55],伴随着较大的活性损失。而对于HCl:O2 = 2.5:1的反应混合物,5%的Zr掺杂已经足以使Ce1-xZrxO2纳米棒保持稳定,从而防止CeO2大量氯化,即含5% Zr的CeO2催化剂的失活时间比纯CeO2的失活时间长得多(图5)。尽管ZrCl4在330℃以上是挥发性的,但是只要在XRD中没有观察到Ce1-xZrxO2催化剂以CeCl3形式的严重本体氯化,就不会遇到Zr从固定床反应器中排出的情况。对于更苛刻的反应条件(HCl:O2 = 3:1),所有Ce1-xZrxO2纳米棒在430℃的反应温度下均不稳定,但将反应温度提高到500℃后,即使是纯的CeO2纳米棒也能在如此苛刻的反应条件下保持稳定。在苛刻的条件下由于本体氯化的腐蚀过程,Ce1-xZrxO2的纳米棒被破坏,并形成具有低催化活性的结晶CeCl3-x∙6H2O。然而,在HCl:O2 = 2.5:1的反应条件下,即使是稳定的Ce1-xZrxO2催化剂也显示出增强的表面氯化和纳米棒直径的增加。通过Cl 2p XPS,证实了Cl结合到Ce1-xZrxO2的近表面区域的更深层中。因此,表面富含氯的Ce1-xZrxO2可以被认为是迪肯反应中的催化活性相。

迄今为止,在以离子掺杂的形式提高CeO2催化活性的方法中,Zr作为最理想的掺杂剂(表1),使CeO2在苛刻的反应条件下仍能保持优异的活性与稳定性。而Gd3+、Pr3+/4+和Tb3+/4+的掺杂或是过度增加了CeO2的氧空位,使其在催化反应中与大量的氯结合导致催化剂失活;或是降低了CeO2的比表面积,使其获得较差的稳定性。对于Zr4+的掺杂,使CeO2的氧化还原性能得以增强,且不会引入电荷补偿和过量的氧空位,从而提高Cl物种在本体中的迁移率,改善CeO2在苛刻条件下的稳定性。

Figure 5. Space-time yield (STY) per kilogram of catalyst in the HCl oxidation for the Ce1-xZrxO2 nano-rods (x = 0.02~0.2). Reaction condition: Ar:HCl:O2 = 7:2:1 (A), Ar:HCl:O2 = 6.5:2.5:1 (B), a total flow rate of 15 mL/min was applied [54]

图5. Ce1-xZrxO2纳米棒(x = 0.02~0.2)在HCl氧化中每千克催化剂的时空产率(STY)。反应条件:Ar:HCl:O2 = 7:2:1 (A),Ar:HCl:O2 = 6.5:2.5:1 (B),总流速为15 mL/min [54]

Table 1. Impact of Aliovalent/Isovalent Ions on the catalytic activity of CeO2 in the HCl oxidation reaction. Reaction condition: Ar: HCl:O2 = 6.5:2.5:1, T = 430℃, a total flow rate of 15 mL/min was applied

表1. 同价/异价离子掺杂对CeO2催化活性的影响。反应条件:Ar:HCl:O2 = 6.5:2.5:1,T = 430℃,总流速为15 mL/min

3. CeO2上的HCl催化氧化反应机理

CeO2上的Deacon反应机理在2012年被Amrute [24] 首次提出,如图6所示。1) HCl中的氢被碱性表面氧原子夺取形成羟基,而氯原子则被留在表面;2) 继续吸附HCl,其中的氢与羟基在表明重组形成水;3) 水的脱附;4) CeO2再氧化;5) 氯原子重组形成分子氯。

Deacon反应开始于HCl在表面碱性中心(晶格氧原子)的吸附(OlatH),若存在表面空位,其可以容纳氯原子,有利于反应的进行。在第一步过程中,HCl吸附放热2.84 eV并产生OHlat和表面空位处的氯原子。在过渡态中,Cl-H和Olat-H的距离分别为3.590和2.121 Å,第二个HCl吸附后产生一个水分子并在表面留下一个氯原子(Cl*),该过程放热0.29 eV。表面的Cl*可促进H2Olat的脱附,产生的空位被Cl*占据,形成Cl□ (□表示氧空位)。然而,次表面层的氧原子向表面扩散,将Cl□推向CeO2的表面形成Cl*,该过程需要2.15 eV的能量。上一过程空出的次表面氧空位(□ss)被氧原子重新占据后,形成晶格氧,该过程释放3.4 eV。最后,催化剂表面的两个Cl*重组形成Cl2,脱附需1.42 eV。从图6可看出,状态A和G是CeO2的活性状态,因此催化循环在A和G中发生。

Figure 6. Reaction energy profile for the Deacon process on CeO2(1 1 1) [24]

图6. CeO2(1 1 1)上Deacon过程的反应能量分布 [24]

4. 总结与展望

HCl的催化氧化可大规模实现从工业副产物HCl中回收Cl2,是一种高效率且环境友好的方法。对于矿产丰富、价格低廉的Ce基催化剂,可实现部分替代高成本的Ru基催化剂,是一种用于HCl氧化的有前途的催化剂材料。CeO2在Ce3+和Ce4+之间表现出较好的可逆氧化还原性能,而Ce3+的存在会使电荷不平衡,导致催化剂表面产生氧空位和不饱和化学键,这进一步增加了氧吸附量,从而有效促进催化氧化反应。温和的反应条件下Ce催化剂可稳定存在,而在富含HCl的反应条件下,CeO2很容易发生整体氯化从而转化为CeCl3-x∙6H2O,影响其催化活性。将CeO2负载在合适的载体上或者通过Zr的掺杂可在较大程度上提高CeO2的稳定性和抗本体氯化能力。然而,尽管通过一系列途径使得CeO2的抗氯化能力得以提升,但其反应温度过高,从热力学角度来说不利于HCl氧化反应的进行,且催化活性低于Ru基催化剂,因此,未来可通过加入助催化剂或实现负载与掺杂相结合的方法来进一步提高Ce基催化剂的催化性能,开发出在低温下具有高活性的新型Ce基催化剂。

基金项目

浙江省重点研发计划项目(2019C03118)。

参考文献

[1] Hammes, M., Valtchev, M., Roth, M.B., Stöwe, K. and Maier, W.F. (2013) A Search for Alternative Deacon Catalysts. Applied Catalysis B: Environmental, 132-133, 389-400.
https://doi.org/10.1016/j.apcatb.2012.11.034
[2] Seki, K. (2010) Development of RuO2/Rutile-TiO2 Catalyst for Industrial HCl Oxidation Process. Catalysis Surveys from Asia, 14, 168-175.
https://doi.org/10.1007/s10563-010-9091-7
[3] Hisham, M.W.M. and Benson, S.W. (1995) Ther-mochemistry of the Deacon Process. The Journal of Physical Chemistry, 99, 6194-6198.
https://doi.org/10.1021/j100016a065
[4] Pérez-Ramírez, J., Mondelli, C., Schmidt, T., Schlüter, O.F.-K., Wolf, A., Mleczko, L. and Dreier, T. (2011) Sustainable Chlorine Recycling via Catalysed HCl Oxidation: From Fundamentals to Implementation. Energy & Environmental Science, 4, 4786-4799.
https://doi.org/10.1039/c1ee02190g
[5] Liu, Y.P., Li, S.Y., Lu, X.Q., Ma, R., Fu, Y.H., Wang, S.H., Zhou, L.Y. and Zhu, W.D. (2021) Insights into the Sintering Resistance of RuO2/TiO2-SiO2 in the Deacon Process: Role of SiO2. Catalysis Science & Technology, 11, 5460- 5466.
https://doi.org/10.1039/D1CY01023A
[6] Li, S.Y., Xu, B.W., Wang, Y.X., Liu, Y.P., Lu, X.Q., Ma, R., Fu, Y.H., Wang, S.H., Zhou, L.Y. and Zhu, W.D. (2022) Insight into the Effects of Calcination Temperature on the Structure and Performance of RuO2/TiO2 in the Deacon Process. Catalysis Science & Technology, 12, 5257-5264.
https://doi.org/10.1039/D2CY00812B
[7] Wattimena, F. and Sachtler, W.M.H. (1981) Catalyst Research for the Shell Chlorine Process. Studies in Surface Science and Catalysis, 7, 816-827.
https://doi.org/10.1016/S0167-2991(08)64695-9
[8] Pan, H.Y., Minet, R.G., Benson, S.W. and Tsotsis, T.T. (1994) Process for Converting Hydrogen Chloride to Chlorine. Industrial & Engineering Chemistry Research, 33, 2996-3003.
https://doi.org/10.1021/ie00036a014
[9] Amrute, A.P., Mondelli, C. and Pérez-Ramírez, J. (2012) Kinetic Aspects and Deactivation Behaviour of Chromia-Based Catalysts in Hydrogen Chloride Oxidation. Catalysis Science & Technology, 2, 257-265.
https://doi.org/10.1039/c2cy20185b
[10] Feng, K.K., Li, C.W., Guo, Y.L., Zhan, W.C., Ma, B.Q., Chen, B.W., Yuan, M.Q. and Lu, G.Z. (2015) An Efficient Cu-K-La/γ-Al2O3 Catalyst for Catalytic Oxidation of Hydrogen Chloride to Chlorine. Applied Catalysis B: Environmental, 164, 483-487.
https://doi.org/10.1016/j.apcatb.2014.09.063
[11] Sun, Y., Li, C.W., Guo, Y.L., Zhan, W.C., Guo, Y., Wang, L., Wang, Y.S. and Lu, G.Z. (2018) Catalytic Oxidation of Hydrogen Chloride to Chlorine over Cu-K-Sm/γ-Al2O3 Catalyst with Excellent Catalytic Performance. Catalysis Today, 307, 286-292.
https://doi.org/10.1016/j.cattod.2017.04.014
[12] Fei, Z.Y., Liu, H.Y., Dai, Y., Ji, W.J., Chen, X., Tang, J.H., Cui, M.F. and Qiao, X. (2014) Efficient Catalytic Oxidation of HCl to Recycle Cl2 over the CuO-CeO2 Composite Oxide Supported On Y Type Zeolite. Chemical Engineering Journal, 257, 273-280.
https://doi.org/10.1016/j.cej.2014.07.033
[13] Fei, Z.Y., Xie, X.X., Dai, Y., Liu, H.Y., Chen, X., Tang, J.H., Cui, M.F. and Qiao, X. (2014) HCl Oxidation for Sustainable Cl2 Recycle over the CexZr1-xO2 Catalysts: Effects of Ce/Zr Ratio on Activity and Stability. Industrial & Engineering Chemistry Research, 53, 19438-19445.
https://doi.org/10.1021/ie503297k
[14] Möller, M., Tarabanko, N., Wessel, C., Ellinghaus, R., Over, H. and Smarsly, B.M. (2018) Electrospinning of CeO2 Nanoparticle Dispersions into Mesoporous Fibers: On the Interplay of Stability and Activity in the HCl Oxidation Reaction. RSC Advances, 8, 132-144.
https://doi.org/10.1039/C7RA03020G
[15] Li, C.W., Hess, F., Djerdj, I., Chai, G.T., Sun, Y., Guo, Y.L., Smarsly, B.M. and Over, H. (2018) The Stabilizing Effect of Water and High Reaction Temperatures On the CeO2-Catalyst in the Harsh HCl Oxidation Reaction. Journal of Catalysis, 357, 257-262.
https://doi.org/10.1016/j.jcat.2017.11.019
[16] Amrute, A.P., Larrazábal, G.O., Mondelli, C. and Pérez-Ramírez, J. (2013) CuCrO2 Delafossite: A Stable Copper Catalyst for Chlorine Production. Angewandte Chemie International Edi-tion, 52, 9772-9775.
https://doi.org/10.1002/anie.201304254
[17] Tian, X., Guo, C., Zhong, H., Zhou, Y.H. and Xiao, J.P. (2019) Ex-ceptional Stability and Chemical Mechanism over Spinel ZnCr2O4 Catalyst for HCl Oxidation to Cl2. Molecular Catalysis, 470, 82-88.
https://doi.org/10.1016/j.mcat.2019.03.025
[18] Matthias, S., Zichittella, G., Paunović, V. and Pérez-Ramírez, J. (2020) Ceria in Halogen Hhemistry. Chinese Journal of Catalysis, 41, 915-927.
https://doi.org/10.1016/S1872-2067(19)63528-X
[19] Yao, X.J., Chen, L., Cao, J., Yao, F.M., Tan, W. and Dong, L. (2018) Morphology and Crystal-Plane Effects of CeO2 on TiO2/CeO2Catalysts during NH3-SCR Reaction. Industrial & Engineering Chemistry Research, 57, 12407-12419.
https://doi.org/10.1021/acs.iecr.8b02830
[20] Farra, R., Eichelbaum, M., Schlögl, R., Szentmiklósi, L., Schmidt, T., Amrute, A.P., Mondelli, C., Pérez-Ramírez, J. and Teschner, D. (2013) Do Observations on Surface Coverage-Reactivity Correlations Always Describe the True Catalytic Process? A Case Study on Ceria. Journal of Catalysis, 297, 119-127.
https://doi.org/10.1016/j.jcat.2012.09.024
[21] Moser, M., Mondelli, C., Schmidt, T., Girgsdies, F., Schuster, M.E., Farra, R., Szentmiklósi, L., Teschner, D. and Pérez-Ramírez, J. (2013) Supported CeO2 Catalysts in Technical Form for Sustainable Chlorine Production. Applied Catalysis B: Environmental, 132-133, 123-131.
https://doi.org/10.1016/j.apcatb.2012.11.024
[22] Tian, X., Lin, B.N., Li, Y.P., Wang, S., Zhou, Y.H. and Zhou, H. (2020) CeO2-MnOx Composite Loaded on Al2O3 as a Catalyst for HCl Oxidation. Catalysis Science & Technology, 10, 4553-4561.
https://doi.org/10.1039/D0CY00849D
[23] Tian, X., Li, Y.P., Lin, B.N., Wang, S., Zhou, Y.H. and Zhou, H. (2021) Molecular Catalysis, Improved Cl2 Yield and Stability of CeO2-MnOx/Al2O3 Catalyst for HCl Oxi-dation to Cl2 at Higher Reaction Temperature. Molecular Catalysis, 506, Article ID: 111563.
https://doi.org/10.1016/j.mcat.2021.111563
[24] Amrute, A.P., Mondelli, C., Moser, M., Novell-Leruth, G., López, N., Rosenthal, D., Farra, R., Schuster, M.E., Teschner, D., Schmidt, T. and Pérez-Ramírez, J. (2012) Performance, Structure, and Mechanism of CeO2 in HCl Oxidation to Cl2. Journal of Catalysis, 286, 287-297.
https://doi.org/10.1016/j.jcat.2011.11.016
[25] Amrute, A.P., Mondelli, C., Hevia, M.A.G. and Pérez-Ramírez, J. (2011) Temporal Analysis of Products Study of HCl Oxidation on Copper- and Ruthenium-Based Catalysts. The Journal of Physical Chemistry C, 115, 1056-1063.
https://doi.org/10.1021/jp1058319
[26] Amrute, A.P., Mondelli, C., Hevia, M.A.G. and Pérez-Ramírez, J. (2011) Mechanism-Performance Relationships of Metal Oxides in Catalyzed HCl Oxidation. ACS Catalysis, 1, 583-590.
https://doi.org/10.1021/cs200075j
[27] Li, C.W., Sun, Y., Djerdj, I., Voepel, P., Sack, C., Weller, T., Ellinghaus, R., Sann, J., Guo, Y.L., Smarsly, B.M. and Over, H. (2017) Shape-Controlled CeO2 Nanoparticles: Stability and Activity in the Catalyzed HCl Oxidation Reaction. ACS Catalysis, 7, 6453-6463.
https://doi.org/10.1021/acscatal.7b01618
[28] Möller, M., Over, H., Smarsly, B., Tarabanko, N. and Urban, S. (2015) Electrospun Ceria-Based Nanofibers for the Facile Assessment of Catalyst Morphological Stability under Harsh HCl Oxidation Reaction Conditions. Catalysis Today, 253, 207-218.
https://doi.org/10.1016/j.cattod.2015.02.027
[29] Capdevila-Cortada, M., Vilé, G., Teschner, D., Pérez-Ramírez, J. and López, N. (2016) Reactivity Descriptors for Ceria in Catalysis. Applied Catalysis B: Environmental, 197, 299-312.
https://doi.org/10.1016/j.apcatb.2016.02.035
[30] Montini, T., Melchionna, M., Monai, M. and Fornasiero, P. (2016) Fundamentals and Catalytic Applications of CeO2- Based Materials. Chemical Reviews, 116, 5987-6041.
https://doi.org/10.1021/acs.chemrev.5b00603
[31] Campbell, C.T. and Peden, C.H.F. (2005) Oxygen Vacancies and Catalysis on Ceria Surfaces. Science, 309, 713-714.
https://doi.org/10.1126/science.1113955
[32] Sun, Y., Li, C.W., Djerdj, I., Khalid, O., Cop, P., Sann, J., Weber, T., Werner, S., Turek, K., Guo, Y.L., Smarsly, B.M. and Over, H. (2019) Oxygen Storage Capacity versus Catalytic Activi-ty of Ceria-Zirconia Solid Solutions in CO and HCl Oxidation. Catalysis Science & Technology, 9, 2631-2172.
https://doi.org/10.1039/C9CY00222G
[33] Trovarelli, A., de Leitenburg, C., Boaro, M. and Dolcetti, G. (1999) The Utilization of Ceria in Industrial Catalysis. Catalysis Today, 50, 353-367.
https://doi.org/10.1016/S0920-5861(98)00515-X
[34] Saqer, S.M., Kondarides, D.I. and Verykios, X.E. (2011) Catalytic Oxidation of Toluene over Binary Mixtures of Copper, Manganese and Cerium Oxides Supported On γ-Al2O3. Applied Catalysis B: Environmental, 103, 275-286.
https://doi.org/10.1016/j.apcatb.2011.01.001
[35] Yu, M.-F., Lin, X.-Q., Yan, M., Li, X.-D., Chen, T. and Yan, J.-H. (2016) Low Temperature Destruction of PCDD/Fs over V2O5-CeO2/TiO2 Catalyst with Ozone. Environmental Science and Pollution Research, 23, 17563-17570.
https://doi.org/10.1007/s11356-016-6955-z
[36] Han, Z.T., Li, X.D., Wang, X., Gao, Y., Yang, S.L., Song, L.G., Dong, J.M. and Pan, X.X. (2022) Insight Into the Promoting Effect of Support Pretreatment with Sulfate Acid on Selec-tive Catalytic Reduction Performance of CeO2/ ZrO2 Catalysts. Journal of Colloid and Interface Science, 608, 2718-2729.
https://doi.org/10.1016/j.jcis.2021.10.191
[37] Green, I.X., Tang, W.J., Neurock, M. and Yates Jr., J.T. (2006) Low-Temperature Catalytic H2 Oxidation over Au Nanoparticle/TiO2 Dual Perimeter Sites. Angewandte Chemie Interna-tional Edition, 50, 10186-10189.
https://doi.org/10.1002/anie.201101612
[38] Enache, D.I., Edwards, J.K., Landon, P., Solsona-Espriu, B., Carley, A.F., Herzing, A.A., Watanabe, M., Kiely, C.J., Knight, D.W. and Hutchings, G.J. (2006) Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science, 311, 362-365.
https://doi.org/10.1126/science.1120560
[39] Hu, C., Peng, T.W., Hu, X.X., Nie, Y.L., Zhou, X.F., Qu, J.H. and He, H. (2010) Plasmon-Induced Photodegradation of Toxic Pollutants with Ag-AgI/Al2O3 under Visible-Light Irradia-tion. Journal of the American Chemical Society, 132, 857-862.
https://doi.org/10.1021/ja907792d
[40] Postole, G., Chowdhury, B., Karmakar, B., Pinki, K., Banerji, J. and Auroux, A. (2010) Knoevenagel Condensation Reaction over Acid-Base Bifunctional Nanocrystalline CexZr1-xO2 Solid Solutions. Journal of Catalysis, 269, 110-121.
https://doi.org/10.1016/j.jcat.2009.10.022
[41] Hanaor, D.A.H. and Sorrell, C.C. (2011) Review of the Anatase to Rutile Phase Transformation. Journal of Materials Science, 46, 855-874.
https://doi.org/10.1007/s10853-010-5113-0
[42] Sun, Y., Cop, P., Djerdj, I., Guo, X.H., Weber, T., Khalid, O., Guo, Y.L., Smarsly, B.M. and Over, H. (2019) CeO2 Wetting Layer on ZrO2 Particle with Sharp Solid Interface as Highly Active and Stable Catalyst for HCl Oxidation Reaction. ACS Catalysis, 9, 10680-10693.
https://doi.org/10.1021/acscatal.9b03482
[43] Velasquez Ochoa, J., Farci, E., Cavani, F., Sinisi, F., Artiglia, L., Agnoli, S., Granozzi, G., Paganini, M.C. and Malfatti, L. (2019) CeOx /TiO2 (Rutile) Nanocomposites for the Low-Temperature Dehydrogenation of Ethanol to Acetaldehyde: A Diffuse Reflectance Infrared Fourier Transform Spectroscopy-Mass Spectrometry Study. ACS Applied Nano Materials, 2, 3434-3443.
https://doi.org/10.1021/acsanm.9b00366
[44] Chen, X., Xu, X.H., Fei, Z.Y., Xie, X.X., Lou, J.W., Tang, J.H., Cui, M.F. and Qiao, X. (2016) CeO2 Nanodots Embedded in a Porous Silica Matrix as an Active Yet Durable Catalyst for HCl Oxidation. Catalysis Science & Technology, 6, 5116-5123.
https://doi.org/10.1039/C5CY02300A
[45] Zhang, Y., Yuwono, A.H., Wang, J. and Li, J. (2009) Enhanced Photocatalysis by Doping Cerium into Mesoporous Titania Thin Films. The Journal of Physical Chemistry C, 113, 21406-21412.
https://doi.org/10.1021/jp907901k
[46] Chen, L., Li, J.H. and Ge, M. (2009) Promotional Effect of Ce-Doped V2O5-WO3/TiO2 with Low Vanadium Loadings for Se-lective Catalytic Reduction of NOx by NH3. The Journal of Physical Chemistry C, 113, 21177-21184.
https://doi.org/10.1021/jp907109e
[47] Moser, M., Vilé, G., Colussi, S., Krumeich, F., Teschner, D., Szentmiklósi, L., Trovarelli, A. and Pérez-Ramírez, J. (2015) Structure and Reactivity of Ceria-Zirconia Catalysts for Bromine and Chlorine Production via the Oxidation of Hydrogen Halides. Journal of Catalysis, 331, 128-137.
https://doi.org/10.1016/j.jcat.2015.08.024
[48] Kehoe, A.B., Scanlon, D.O. and Watson, G.W. (2011) Role of Lat-tice Distortions in the Oxygen Storage Capacity of Divalently Doped CeO2. Chemistry of Materials, 23, 4464-4468.
https://doi.org/10.1021/cm201617d
[49] Cop, P., Maile, R., Sun, Y., Khalid, O., Djerdj, I., Esch, P., Heiles, S., Over, H. and Smarsly, B.M. (2020) Impact of Aliovalent/Isovalent Ions (Gd, Zr, Pr, and Tb) on the Catalytic Stability of Mesoporous Ceria in the HCl Oxidation Reaction. ACS Applied Nano Materials, 3, 7406-7419.
https://doi.org/10.1021/acsanm.0c00994
[50] Lucid, A.K., Keating, P.R.L., Allen, J.P. and Watson, G.W. (2016) Structure and Reducibility of CeO2 Doped with Trivalent Cations. The Journal of Physical Chemistry C, 120, 23430-23440.
https://doi.org/10.1021/acs.jpcc.6b08118
[51] Li, P., Chen, X.Y., Li, Y.D. and Schwank, J.W. (2019) A Review on Oxygen Storage Capacity of CeO2-Based Materials: Influence Factors, Measurement Techniques, and Applications in Reactions Related to Catalytic Automotive Emissions Control. Catalysis Today, 327, 90-115.
https://doi.org/10.1016/j.cattod.2018.05.059
[52] Neto, R.C.R. and Schmal, M. (2013) Synthesis of CeO2 and CeZrO2 Mixed Oxide Nanostructured Catalysts for the Iso-Syntheses Reaction. Applied Catalysis A: General, 450, 131-142.
https://doi.org/10.1016/j.apcata.2012.10.002
[53] Masahiro, S. (2003) Oxygen Storage Materials for Au-tomotive Catalysts: Ceria-Zirconia Solid Solutions. Catalysis Surveys from Asia, 7, 77-87.
https://doi.org/10.1023/A:1023488709527
[54] Li, C.W., Sun, Y., Hess, F., Djerdj, I., Sann, J., Voepel, P., Cop, P., Guo, Y.L., Smarsly, B.M. and Over, H. (2018) Catalytic HCl Oxidation Reaction: Stabilizing Effect of Zr-Doping on CeO2 Nano-Rods. Applied Catalysis B: Environmental, 239, 628-635.
https://doi.org/10.1016/j.apcatb.2018.08.047
[55] Sun, Y., Hess, F. Dijerdj, I., Wang, Z., Weber, T., Guo, Y.L., Smarsly, B.M. and Over, H. (2020) sReactivation of CeO2-Based Catalysts in the HCl Oxidation Reaction: In Situ Quan-tification of the Degree of Chlorination and Kinetic Modeling. ChemCatChem, 12, 5511-5522.
https://doi.org/10.1002/cctc.202000907