基于界面激基复合物主体的WOLED器件光谱性能的研究
Study on Spectral Properties of WOLED Devices Based on Interface-Exciplex Host
DOI: 10.12677/APP.2023.134016, PDF, HTML, XML, 下载: 182  浏览: 290 
作者: 朱鑫宇*, 王彦博:上海理工大学,理学院,上海
关键词: WOLED光谱稳定性界面激基复合物能量传递CRIWOLED Spectral Stability Interface-Exciplex Energy Transfer CRI
摘要: 具有高显色指数(CRI)的白光有机发光二极管(WOLED)在照明应用上有着很大的优势。研究器件CRI随各色光强度的变化,以及提高器件的CRI,对OLED在照明应用上有着不小的帮助。在本文中我们提出了基于界面激基复合物主体系统,利用中间层(mCP)来调节激子能量的策略。在此基础上,我们利用蓝色界面激基复合物(mCP/PO-T2T)、黄色界面激基复合物(TAPC/PO-T2T)、绿色磷光材料(Ir(ppy)3)和红色磷光材料(Ir(piq)2(acac))制备了一系列优异性能的WOLED。研究了磷光材料掺杂的量和mCP中间层的厚度对器件性能的影响。结果显示,最大亮度和CRI分别为4862 cd/m2和95。驱动电压从4 V增加到7 V,CIE坐标偏移量仅为(0.044、0.009)。这种简单的结构为利用多种激基复合物实现高CRI和颜色稳定性提供了一种新的方法。
Abstract: White organic light emitting diode (WOLED) with high color rendering index (CRI) has great advantages in lighting applications. It is of great help for OLED to study the change of CRI of devices with different light intensities and improve the CRI of devices. In this paper, we propose a strategy to adjust exciton energy by using the intermediate layer (mCP) based on the interfacial exciton complex host system. On this basis, we prepared a series of WOLED with excellent properties by using blue interface-exciplex (mCP/PO-T2T), yellow interfacial exciplex (TAPC/PO-T2T), green phosphor (Ir(ppy)3) and red phosphor (Ir(piq)2(acac)). The effects of the doping proportion of phosphorescent materials and the thickness of mCP intermediate layer on the device performance were studied. The results show that the maximum brightness and CRI are 4862 cd/m2 and 95, respectively. The driving voltage is increased from 4 V to 7 V, and the CIE coordinate offset is only (0.044, 0.009). This simple structure provides a new method for realizing high CRI and color stability by using a variety of exciplex complexes.
文章引用:朱鑫宇, 王彦博. 基于界面激基复合物主体的WOLED器件光谱性能的研究[J]. 应用物理, 2023, 13(4): 137-145. https://doi.org/10.12677/APP.2023.134016

1. 引言

拥有着自发光、功耗低、宽视角和响应速度快等优点的有机电致发光器件(OLED),被人们认为是下一代最具潜力的全彩色平板显示和固态照明设备 [1] [2] [3] [4] 。在常规中,通常使用的是白光OLED,除了亮度、稳定性之外还需要具备较高的CRI [4] [5] [6] [7] 。满足日常照明的最低CRI为85,一些特殊的场所对其要求更高,有时候需要超过90。因此对器件CRI的研究在照明领域也是至关重要的。

为了获得更高的CRI,通常需要三种以上的颜色和利用光谱较宽的激基复合物材料。例如,Yao等人利用基于EML中蓝色、绿色、橙色和红色发射器的B-G-O-R和R-O-G-B序列,实现了具有双极间隔层的高CRI (87)的全磷光WOLED [8] 。Ma等人通过在蓝色激基复合物主体系统中插入的绿色和红色两种超薄磷光发射层,制备了三色WOLED,并且成功使器件CRI达到了85左右 [9] 。因为激基复合物较宽的光谱,Chen人们开始研究多种激基复合物发光的器件,以获得较高的CRI。Xiao等人在同一供体层上沉积两种受体材料形成蓝、黄激基复合物制造双色白光OLED器件,但由于蓝色与黄色发光处于同一界面,难以调节各色光强度,使得CRI只有71 [10] 。而Dong等人,提出了一种将黄色激基复合物夹在两个蓝色激基复合物之间,通过简单地改变两侧蓝色激基复合物的厚度或中间黄色激基复合物层的施主和受主的比例实现了高达88的CRI [11] 。然而这种多次掺杂的结构比较复杂,增加了制造过程中的难度。

在本文中,我们利用了激基复合物的长程耦合电子–空穴的辐射形成了蓝色(mCP/PO-T2T) [12] 和黄色(TAPC/PO-T2T) [13] 界面激基复合物系统,其基本结构为TAPC/mCP/PO-T2T/mCP/TAPC。并且在此基础上掺入绿色磷光(Ir(ppy)3)和红色磷光(Ir(piq)2(acac))并通过改变加入的量来调节各光强度,制备了一系列四色WOLED。此外,本实验中所发生的长程耦合电子–空穴的辐射受界面激基复合物中间层(mCP)厚度的影响。因此我们通过改变mCP的厚度来调控长程耦合电子–空穴的辐射效应,从而调节各色光的强度。最终在mCP厚度为2 nm时获得了高达95的器件CRI。

2. 实验简介

所有器件均在具有氧化铟锡(ITO)的方阻为15 Ω/sq的玻璃基板上制造而成。蒸镀操作之前,要对基板进行超声清洗操作。在清洗时分别要用去离子水、异丙醇以及酒精依次超声10 min,清洗以后需对基板进行烘干和冷却各30 min。本实验运用真空蒸镀法,蒸镀过程中真空值应低于5 × 10−4 Pa。所有材料蒸镀时的速率和厚度均由经校准的石英晶体振荡器测得。实验中有机材料沉积速率均在0.1 Å/s~2 Å/s,铝的蒸镀速率为3 Å/s。测量器件的电流密度电压亮度特性、CRI、电致发光光谱、CIE坐标和CCT时使用的是PR655光谱仪和Keithley 2400电源计。

实验中使用Bis(1-phenylisoquinoline)(acetylacetonate) Ir(III) (Ir (piq)2(acac))作为红光客体材料 [14] ;(2-phenylpyridine)iridium(III) (Ir(ppy)3)作为绿光材料 [15] ;和蓝光激基复合(1,3,5-Triazine-2,4,6-triyl)tris (benzene-3,1-diyl)tris(diphenyl-phosphineoxide)和1,3-bis(N-carbazolyl)benzene(PO-T2T:mCP)与,黄光激基复合物1,1’-bis[4-(di-p-tolylamino)phenyl]cy-clohexane和(mCP:TAPC)。本研究中涉及的主要发光层材料的分子结构如图1所示 [16] [17] [18] [19] 。

Figure 1. Molecular structure diagram of main luminescent materials involved in this study

图1. 本文涉及的主要发光材料的分子结构图

3. 结果和讨论

通过利用有机薄膜中的空间分离的电子供体–受体(D-A)的长程电子–空穴耦合形成黄色界面激基复合物(TAPC:PO-T2T)和蓝色界面激基复合物(mCP:PO-T2T)制备了双色白光器件A1,并在此基础上加入了红色和绿色磷光材料获得了四色WOLED,器件结构如图2所示。四色WOLED器件结构为:ITO (100 nm)/HAT-CN (10 nm)/NPB (30 nm)/TAPC (2 nm)/mCP (5 nm)/PO-T2T:Ir (ppy)3:Ir(piq)2(acac) (1%, 1%, 2 nm)/mCP (5 nm)/TAPC (2 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm)。

电子传输材料TmPyPB的电子迁移率是1 × 10−3 cm2/Vs [20] ,而空穴传输材料NPB的空穴迁移率是8.8 × 10−4 cm2/Vs [21] ,因此所有器件的复合区位于空穴传输层一侧的mCP中。器件A1、A2的电致发光光谱如图3(a)、图3(b)所示。图3(a)中可以看出蓝光和黄光两个峰,且随着电压的增加光谱出现了轻微的蓝移的现象,可以确定发生了长程电子–空穴耦合并且形成了黄色激基复合物(TAPC:PO-T2T)。但由于此时蓝光向黄光的能量传递,使得蓝光强度较弱而黄光较强,此时器件最大CRI仅有67。在加入了红光与绿光之后,器件光谱如图3(b)所示,可见磷光材料的加入利用了部分能量,最终使器件CRI达到了79,且效率与亮度也有所提升。亮度与效率的提升主要是因为磷光加入所引起的。

Figure 2. Schematic diagram of device structure

图2. 器件结构示意图

(a) (b)

Figure 3. (a) EL spectra of device A1 at different voltages; (b) EL spectra of device A2 at different voltages

图3. (a) 器件A1在不同电压下的EL光谱;(b) 器件A2在不同电压下的EL光谱

改变各色光的强度,可以得到不同的CRI。在这里我们通过改变磷光材料掺杂的量,来改变其获得的能量,从而改变光谱以得到更高的器件CRI。在这里我们在A2的基础上,通过改变磷光材料的掺杂量设计了一系列器件,结构为:ITO (100 nm)/HAT-CN (10 nm)/NPB (30 nm)/TAPC (2 nm)/mCP (5 nm)/PO-T2T:Ir (ppy)3:Ir(piq)2(acac) (x%, y%, 2 nm)/mCP (5 nm)/TAPC (2 nm)/TmPyPB (40 nm)/Liq (2 nm)/Al (100 nm),其中X = 1,Y = 1;X = 1,Y = 1.5;X = 1.5,Y = 1;X = 1.5,Y = 2分别对应器件A2、B1~B3。

表1显示了器件的各类性能参数,可见器件A2、B1~B3的最大功率效率分别为10.19 lm/W、7.41 lm/W、13.62 lm/W和6.92 lm/W,分别对应于3020 cd/m2、2941 cd/m2、2662 cd/m2和1851 cd/m2的最大亮度。其中,器件B2的效率和亮度都是四个器件中最高的,因为所用红光的量子产率相对较低,当红光加入的量较多时,更多激子会在红光材料部分但只有少部分被利用发光,其余部分激子能量未被有效利用,使得当红光材料加入的量较多时器件效率与亮度相对较低。

Table 1. EL characteristics of devices with different structures

表1. 不同结构器件的电致发光特性

注:表中所显示的电流密度、亮度和效率的数值在器件点亮之后到最大亮度之间的最大值;CCT和CRI的值均在7 V电压下获取。

(a) (b) (c) (d)

Figure 4. (a) EL spectra of devices A2 and B1-B3 at a voltage of 7 V; (b) EL spectra of device B1 at different voltages; (c) EL spectra of device B2 at different voltages; (d) EL spectrum of device B3 at different voltages

图4. (a) 器件A2和B1~B3在7 V电压下的EL光谱;(b) 器件B1在不同电压下的EL光谱;(c) 器件B2在不同电压下的EL光谱;(d) 器件B3在不同电压下的EL光谱

图4(a)~(d)分别显示了7 V时器件A2和B1~B3时的归一化电致发光光谱以及器件B1~B3在不同电压下的归一化电致发光光谱。随着电压的增加四个器件中绿光和黄光的相对强度都在增加,但绿光强度变化的更加明显,一方面绿光位置与激子复合区更近,获得激子能量更加简单,当电压增加时绿光获得更多的能量;另一方面绿光为磷光发光,其发光效率要高与黄光的荧光发光,因此随电压的增加器件光谱呈现图一所示变化。从表1中可以得到,改变器件中磷光的掺杂比例能够提升器件的CRI,此时B2器件在四个器件中有着最高的CRI,大小为81,而且此时器件B2效率以及亮度也是四个器件中最好的。

虽然器件B2的CRI相对于器件A1有了一定的提升,但仍然没有满足日常照明的需求。考虑到长程电子–空穴耦合所形成的激基复合物的量受中间层厚度的影响,我们在B2器件的基础通过改变中间层mCP的厚度设计了如图1所示的器件,z = 5、z = 4、z = 3和z = 2分别对应器件B2、C1~C3。

表1可知,器件C1~C3的最大功率效率分别为12.75 lm/W、9.70 lm/W和8.08 lm/W,分别对应于4563 cd/m2、4082 cd/m2和2504 cd/m2的最大亮度。可见,随着中间层厚度的降低,器件的效率和亮度也在逐渐变低。原因是随着厚度的降低压缩了激子复合区的宽度,使激子聚集造成三重态–三重态湮灭,最终导致器件效率降低。

(a) (b) (c) (d)

Figure 5. (a) EL spectra of devices B2 and C1~C3 at a voltage of 7 V; (b) EL spectra of device C1 at different voltages; (c) EL spectra of device C2 at different voltages; (d) EL spectrum of device C3 at different voltages

图5. (a) 器件B2和C1~C3在7 V电压下的EL光谱;(b) 器件C1在不同电压下的EL光谱;(c) 器件C2在不同电压下的EL光谱;(d) 器件C3在不同电压下的EL光谱

Figure 6. (a) Energy transfer diagram in B2 device; (b) Energy transfer diagram in C1~C3 devices. FRET and DET are energy transfer of Förster and Dexter, respectively

图6. (a) B2器件中能量传递图;(b) C1~C3器件中能量传递图。FRET和DET分别为Förster和Dexter能量传递

器件C1~C3的归一化电致发光光谱如图5所示,图5(a)~(d)分别为7 V时器件B2和C1~C3的归一化电致发光光谱以及C1~C3在不同电压下的归一化电致发光光谱。随着中间层厚度的减少,长程电子–空穴耦合所形成的黄色激基复合物逐渐增多,并且此时逐渐多出绿光与黄光和黄光与红光之间的Dexter能量传递,如图6所示。由于绿光与黄光、黄光与红光之间的能量传递逐渐增强,绿光所获得的能量将减少,而红光所获得的能量会增加,从而使绿光强度减弱而红光强度增强。由于黄色积极复合物的增加,用于黄光发光的激子也随之增加,但黄光有一部分能量将传递给红光,这使得黄光发光所利用的能量变化不大,黄光光谱强度只有很小的变化。所以在归一化电致发光光谱中呈现绿光强度减弱黄光强度增强的趋势,由此可见,通过改变中间层的厚度可以有效的控制各色光的光谱强度。最终,在C2器件中实现了驱动电压在4 V~7 V的范围内很小的CIE变化,仅为(0.044, 0.009),并且在驱动电压在7 V时获得了高达95的CRI。

4. 结论

总之,我们证明了界面激基复合物中长程电子–空穴耦合的存在,并在具有长程电子–空穴耦合的结构中掺入红、绿两种磷光的WOLED器件可以实现高达95的CRI以及在4 V~7 V的范围内很小的CIE变化,仅为(0.044,0.009)。通过分别改变磷光材料掺杂的量和中间层(mCP)的厚度,研究了能量在传递过程中的分布与器件CRI之间的关系。我们发现,一方面相对较多的绿色磷光有利于器件性能的提升。另一方面,降低中间层的厚度不仅可以提高长程电子–空穴耦合中黄色积极符合物的量,还可以降低绿光所获得的激子能量,从而进一步调节光谱中各峰的强度,从而提高器件CRI值。最终我们制备了低成本、结构简单的高CRI器件。

NOTES

*通讯作者。

参考文献

[1] Wu, M.G., Wang, Z.J., Liu, Y.F., et al. (2019) Non-Doped Phosphorescent Organic Light-Emitting Devices with an Exciplex Forming Planar Structure for Efficiency Enhancement. Dyes and Pigments, 164, 119-125.
https://doi.org/10.1016/j.dyepig.2019.01.020
[2] Tang, X., Liu, X.Y., Jiang, Z.Q., et al. (2019) High-Quality White Organic Light-Emitting Diodes Composed of Binary Emitters with Color Rendering Index Exceeding 80 by Utilizing Color Remedy Strategy. Advanced Functional Materials, 29, Article ID: 1807541.
https://doi.org/10.1002/adfm.201807541
[3] Zhao, Y.B., Zhu, L.P., Chen, J.S., et al. (2012) Improving Color Stability of Blue/Orange Complementary White OLEDs by Using Single-Host Double-Emissive Layer Structure: Comprehensive Experimental Investigation into the Device Working Mechanism. Organic Electronics, 13, 1340-1348.
https://doi.org/10.1016/j.orgel.2012.04.015
[4] Xu, T., Zhou, J.G., Huang, C.C., et al. (2017) Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency. ACS Applied Materials & Interfaces, 9, 10955-10962.
https://doi.org/10.1021/acsami.6b16094
[5] Miao, Y.Q., Wang, K.X., Zhao, B., et al. (2017) Manipulation and Exploitation of Singlet and Triplet Excitons for Hybrid White Organic Light-Emitting Diodes with Superior Ef-ficiency/CRI/Color Stability. Journal of Materials Chemistry C, 5, 12474-12482.
https://doi.org/10.1039/C7TC04528J
[6] Miao, Y.Q., Wang, K.X., Zhao, B., et al. (2018) High-Efficiency/CRI/Color Stability Warm White Organic Light-Emitting Diodes by Incorporating Ultrathin Phos-phorescence Layers in a Blue Fluorescence Layer. Nanophotonics, 7, 295-304.
https://doi.org/10.1515/nanoph-2017-0021
[7] Choi, J.M. and Lee, J.Y. (2016) Triplet Emitter Doped Exciton Harvesting Layer for Improved Efficiency and Long Lifetime in Blue Phosphorescent Organic Light-Emitting Diodes. Synthetic Metals, 220, 573-577.
https://doi.org/10.1016/j.synthmet.2016.07.033
[8] Yao, F., Dai, X., Li, J., et al. (2020) Full-Phosphorescence White Organic Light-Emitting Diode with High CRI: The Exploitation of Positive and Reverse Emitter Sequences. Optical and Quantum Electronics, 52, 47.
https://doi.org/10.1007/s11082-019-2146-8
[9] Chen, Y., Wu, Y., Lin, C., et al. (2020) Simultaneous High Efficiency/CRI/Spectral Stability and Low Efficiency Roll-Off Hybrid White Organic Light-Emitting Diodes via Simple Insertion of Ultrathin Red/Green Phosphorescent Emitters in a Blue Exciplex. Journal of Materials Chemistry C, 8, 12450-12456.
https://doi.org/10.1039/D0TC03053H
[10] Wei, X., Gao, L., Miao, Y.Q., et al. (2020) A New Strategy for Structuring White Organic Light-Emitting Diodes by Combining Complementary Emissions in the Same Interface. Journal of Materials Chemistry C, 8, 2772-2779.
https://doi.org/10.1039/C9TC06198C
[11] Dong, B., Yan, J., Li, G., et al. (2022) High Luminance/Efficiency Monochrome and White Organic Light Emitting Diodes Based Pure Exciplex Emission. Organic Electronics, 106, Article ID: 106528.
https://doi.org/10.1016/j.orgel.2022.106528
[12] He, Z.Y., Wang, C.Y., Zhao, J.W., et al. (2019) Blue and White Solution-Processed TADF-OLEDs with over 20% EQE, Low Driving Voltages and Moderate Efficiency Decrease Based on Interfacial Exciplex Hosts. Journal of Materials Chemistry C, 7, 11806-11812.
https://doi.org/10.1039/C9TC03468D
[13] Yuan, P., Guo, X.M., Qiao, X.F., et al. (2019) Improvement of the Electroluminescence Performance of Exciplex-Based OLEDs by Effective Utilization of Long-Range Coupled Electron-Hole Pairs. Advanced Optical Materials, 7, Article ID: 1801648.
https://doi.org/10.1002/adom.201801648
[14] Zhang, T.M., Shi, C.S., Sun, N., et al. (2021) Simplified and High-Efficiency Warm/Cold Phosphorescent White Organic Light-Emitting Diodes Based on Interfacial Exciplex Co-Host. Organic Electronics, 92, Article ID: 106123.
https://doi.org/10.1016/j.orgel.2021.106123
[15] Miao, Y.Q., Wei, X.Z., Gao, L., et al. (2019) Tandem White Organic Light-Emitting Diodes Stacked with Two Symmetrical Emitting Units Simultaneously Achieving Superior Efficiency/CRI/Color Stability. Nanophotonics, 8, 1783-1794.
https://doi.org/10.1515/nanoph-2019-0175
[16] Wang, L.J., Kou, Z.Q., Wang, B.Q., et al. (2021) Realizing High Efficiency/CRI/Color Stability in the Hybrid White Organic Light Emitting Diode by Manipulating Exciton Energy Transfer. Optical Materials, 115, Article ID: 111059.
https://doi.org/10.1016/j.optmat.2021.111059
[17] Wang, B.Q., Kou, Z.Q., Tang, Y., et al. (2019) High CRI and Stable Spectra White Organic Light-Emitting Diodes with Double Doped Blue Emission Layers and Multiple Ultrathin Phosphorescent Emission Layers by Adjusting the Thickness of Spacer Layer. Organic Electronics, 70, 149-154.
https://doi.org/10.1016/j.orgel.2019.04.013
[18] Yao, J., Wang, Z., Qiao, X., et al. (2020) High Ef-ficiency and Long Lifetime Fluorescent Organic Light-Emitting Diodes Based on Cascaded Energy Transfer Pro-cesses to Efficiently Utilize Triplet Excitons via Sensitizer. Organic Electronics, 84, Article ID: 105824.
https://doi.org/10.1016/j.orgel.2020.105824
[19] Chen, K. and Wei, Z. (2022) High-Efficiency Single Emis-sive Layer Color-Tunable All-Fluorescent White Organic Light-Emitting Diodes. Chemical Physics Letters, 786, Article ID: 139145.
https://doi.org/10.1016/j.cplett.2021.139145
[20] Wang, R., Zhang, Y., Yu, F.X., et al. (2020) An Efficient CsPbBr3 Perovskite Light-Emitting Diode by Employing 1,3,5-tri(m-pyrid-3-yl-phenyl) Benzene as a Hole and Exciton Blocking Layer. Journal of Luminescence, 219, Article ID: 116915.
https://doi.org/10.1016/j.jlumin.2019.116915
[21] 李洁. 基于多组分OLED器件插入层的光辐射性能研究[D]: [硕士学位论文]. 南京: 南京邮电大学, 202