Nell-1在脊柱融合中的实验研究进展
Experimental Research Progress of Nell-1 in Spinal Fusion
DOI: 10.12677/ACM.2023.1351021, PDF, HTML, XML, 下载: 186  浏览: 277  科研立项经费支持
作者: 侯 森*, 韩林辰, 吴 杰:哈尔滨医科大学第一临床医学院,黑龙江 哈尔滨
关键词: 脊柱融合Nell-1动物实验模型支架协同作用Spinal Fusion Nell-1 Animal Experimental Model Bracket Synergies
摘要: 背景:随着再生医学的发展,自体骨移植、异体骨移植、骨形态发生蛋白(Bone morphogenetic protein, BMPS)等现有的骨移植物应用于脊柱融合越来越普遍,对不良反应少的新型骨诱导因子的需求也日益增加。Nel样分子(Nel-like Molecular type I, Nell-1)是一种新型骨诱导生长因子,在骨骼的生长发育中起到重要作用。与BMPS相比,Nell-1尽管不能在成纤维细胞中成骨,但可以在小鼠肌肉模型中诱导骨髓基质细胞(Mesenchymal stem cells, BMSC)形成骨,并且能够逆转BMPs所产生的异位骨、脂肪生成等不良反应,表明Nell-1蛋白更具有特异性。Nell-1作为一种新型骨诱导生长因子有望在脊柱融合中表现出巨大的优势。方法:由第一作者检索百度学术、PubMed、Web of Science及中国知网收录的相关文献,中文检索词为“脊柱融合;Nell-1;动物实验模型;支架;协同作用”,英文检索词为“Spinal fusion; Nell-1; Animal experimental model; Bracket; Synergies”,最后纳入45篇文献进行综述。总结和结论:通过对关于Nell-1对脊柱融合的实验研究进行相关总结分析,发现Nell-1有促进脊柱融合的潜力,但仍然存在缺乏最佳给药途径、分子机制不完全清楚、是否存在与应用相关的不良反应等不足之处,但其具有促进成骨细胞分化、血管生成等特点,相信以后随着技术的发展进一步研究分子机制、优化剂量和方案、探索与其他成骨生长因子及干细胞的联合应用,有望将Nell-1促进脊柱融合的潜力实现大型动物模型成熟化,进而转向临床实践。
Abstract: With the development of regenerative medicine, existing bone grafts such as autologous bone transplantation, allogeneic bone transplantation, and bone morphogenetic protein (BMPS) are in-creasingly used in spinal fusion, and the demand for new bone inducing factors with fewer adverse reactions is also increasing. Nel-like Molecular Type I (Nell-1) is a novel bone inducing growth factor that plays an important role in the growth and development of bones. Compared with BMPS, alt-hough Nell-1 cannot form bone in fibroblasts, it can induce bone formation by bone marrow stromal cells (BMSC) in a mouse muscle model, and can reverse adverse reactions such as ectopic bone and adipogenesis produced by BMPs, indicating that Nell-1 protein is more specific. Nell-1, as a novel bone inducing growth factor, is expected to exhibit significant advantages in spinal fusion. Methods: The first author searched the relevant literature collected by Baidu Academic, PubMed, Web of Science, and CNKI. The Chinese key words were “Spinal fusion; Nell-1; Animal experimental model; Stents; Synergies”, and the English key words were “Spinal fusion; Nell-1; Animal experimental model; Brackets; Synergies”. Finally, 45 articles were included for review. Summary and Conclusion: Based on the summary and analysis of experimental studies on Nell-1 for spinal fusion, it is found that Nell-1 has the potential to promote spinal fusion, but there are still shortcomings such as the lack of optimal drug delivery routes, unclear molecular mechanisms, and whether there are ad-verse reactions related to application. However, it has the characteristics of promoting osteoblast differentiation and angiogenesis. It is believed that with the development of technology in the fu-ture, further research on molecular mechanisms, optimization of doses and protocols, and explora-tion of joint applications with other osteogenic growth factors and stem cells are expected to mature the potential of Nell-1 to promote spinal fusion in large animal models, and then turn to clinical practice.
文章引用:侯森, 韩林辰, 吴杰. Nell-1在脊柱融合中的实验研究进展[J]. 临床医学进展, 2023, 13(5): 7304-7311. https://doi.org/10.12677/ACM.2023.1351021

1. 引言

脊柱融合是是一种常见的外科手术,不能完全融合导致失败越来越多 [1] 。自体骨移植、外来植入物的移植和异体骨移植等是促进脊柱融合手术后骨再生的方法,达到充分的骨愈合和椎骨融合的目的 [2] 。其中自体骨移植是骨移植界的“金标准” [3] ,由于取骨来源的局限性、手术时间延长等不利因素。同种异体移植物、脱矿质基质(Decalcified bone matrix, DBM)、间充质干细胞(mesenchymal stem cells, MSCs)和合成骨移植物(陶瓷)等材料起到重要作用 [4] [5] ,但其成骨效果远不及自体髂骨移植 [6] 。因此人们把目标转向了生长因子,BMPs是一种蛋白激酶,属于转化生长因子β (Transforming Growth Factor, TGF-β)超家族的一员,能够促进骨形成 [7] 。于2004年批准rhBMP-2用于腰椎融合术,但超生理剂量的BMP-2会引起异位骨化、脂肪生成等副作用 [8] [9] 。新型生长因子进一步研究弥补了这一缺陷,Nel样分子是一种新发现的特异性表达于成骨细胞表面的特殊蛋白,通过与细胞膜表面的受体结合后,可以特异性地促进成骨细胞增殖和分化 [10] 。其诱导的骨形成效果可与BMP-2和自体骨融合相当 [11] 。本篇综述主要探讨Nell-1蛋白及联合其他药物在脊柱融合中的使用现状和展望。

2. Nel样分子I型蛋白应用发展概述

在1995年,S. Matshuhashi等人从鸡胚胎中分离出一个编码835个氨基酸的蛋白基因,该基因被命名为Nel [12] 。次年,Watanabe等从人类胎儿脑cDNA库中,分离出两个编码与Nell同源的表皮生长因子(Epidermal growth factor, EFG)-Like重复序列的新基因,故分别命名为Nell-1和Nell-2 [13] 。直到1999年,Ting等在人的单侧冠状缝畸形手术中,才发现Nell-1与鸡Nel基因有61%的同源性的蛋白表达上调,而这种畸形是由于人类的颅缝早闭导致的 [14] 。mRNA-blotting分析表明,Nell-1只在胚胎期的大脑中有特异性的表达,而在某些组织中,如肺、肾、肝等均没有检测到。这说明了颅缝早闭的出现,与Nell-1基因局部的表达有着很大的关系,并且Nell-1蛋白对向成骨分化也有一定的影响。

3. Nell-1蛋白的结构和功能认识

3.1. Nell-1蛋白的结构

自从Nell-1基因在鸡胚胎和脑cDNA库中被发现以来,前10年的工作研究主要体现在:Nell-1的成骨特性、应用于骨再生、以及Nell-1介导的丝裂原活化蛋白激酶(Mitogen-activated protein kinase, MAPK)信号通路 [15] [16] 。近20年来有关Nell-1调节骨骼生长发育以及促进骨软骨组织再生方面的功能和机制研究得到了较大的发展 [17] 。Nell-1是由六个表皮生长因子样结构域、四个血管性血管因子C型(von Willebrand factor C, VWC)结构、一个分泌信号肽分子和一个NH2末端血小板反应蛋白样(TSPN)基序组成 [18] 。Nell-1-ΔE缺乏钙结合的EGF结构域,Nell-1短亚型,也称为Nell-1570,是一种N-末端截短的Nell-1亚型,CC区域结合低聚物的形成。EGF结构域可以与蛋白激酶结合CβI (PKCβI),而第二和第三EGF结构域也可以结合Robo2。最后2个vWC结构域可以与整合素α3β1结合 [19] 如图1

Figure 1. Structural domains of Nell-1 and Nell-1 subtypes

图1. Nell-1和Nell-1亚型的结构域

3.2. Nell-1蛋白功能认识

Nell-1是与颅缝过早融合有关的一种新型分泌细胞成骨因子,通过不同信号途径促进骨再生 [20] ,其主要诱导成骨可概括为:① Nell-1能促进干细胞向成骨细胞的分化,并表达相应的成骨性标志物 [21] 。② Nell-1可将祖细胞聚集到缺损部位促进前成骨细胞分化的能力,且具有特异性 [22] 。③ Nell-1对软骨细胞和软骨组织的作用是促进更多II型胶原的形成,而软骨细胞基质主要成分为II型胶原 [23] 。④ Nell-1能够使外周细胞分泌一些细胞和细胞因子,血管内皮生长因子和血管干细胞起到决定性作用,能促进血管生成 [24] 。Zhang等人在体内多次强效诱导骨的形成,从啮齿动物到临床大型动物的模型中成功的诱导出新骨 [16] ,从2007年开始,Nell-1在许多成熟的实验中被证明是可以用于脊柱融合的,而且Nell-1蛋白在脊柱融合中诱导的新骨质量与自然骨相当 [9] 。

4. 动物实验模型–非人灵长类动物腰椎融合术的应用

在进行临床试验前,经常会使用动物模型来检验和规划是否可行,而动物试验的可行性则可以为Nell-1蛋白在脊柱融合试验中的应用奠定基础,从而降低临床试验中患者所面对的风险,并节省资源。每一次实验的成功,都需要研究者对材料进行深入的刨析,Nell-1的功能也在研究范围内 [25] 。腰椎融合术主要包括后外侧融合术和椎间融合术两种手术方式,后外侧脊柱融合术是在棘突两侧横突或椎板间放置骨移植物,保持椎间盘保的完整性,椎间融合术,首先切除椎间盘,然后在两个椎体之间放置植骨,通过椎弓根螺钉和椎弓根棒稳定椎体。每种手术方式依据解剖部位、组织结构、血液供应等从而导致脊柱融合后的骨再生情况不同。椎间融合是脊柱融合的常见手术方法,因为它可以提供丰富的血液供应、良好的融合,但操作空间有限;而横突间及椎板移植物所在的区域相对较大,但移植区域的血液供应和空间相对较小。

4.1. Nell-1应用于后外侧脊柱融合

4.1.1. Nell-1与DBM载体复合物

脱钙骨基质(demineralized bone matrix, DBM)是一种天然骨移植材料,能够诱导骨形成,并且塑造物质的形态和防止扩散的能力在临床上广泛应用 [26] 。Fahmy-Garcia等 [27] 人的体内研究表明,Nell-1必须在脱钙骨基质载体作用下才能诱导脊柱融合。在2007年,Steven等 [28] 人首次将Nell-1用于后侧向横突融合,并在大鼠模型中植入DBM载体,6周后,发现直接使用Nell-1得到的脊椎融合率显著高于细菌β-半乳糖苷酶基因于(bacterial beta-galactosidase gene, LacZ)组;通过手动触诊判定Nell-1组有60%融合率,LacZ组有20%得融合率;通而过三维微计算机重建和组织学评估,Nell-1和LacZ的融合率分别为70%和20%,而且前者比后者有更多的成熟骨组织、更高骨质量。Yuan等 [11] 人通过在雄性大鼠后侧面腰椎模型上进行试验,从而对Nell-1的影响进行了研究,DBM与Nell-1 (10或50 μg)充分复合后,将其置于脊柱缺损处,手术结束1月后研究结果表明脊柱融合率达到100%,使用无细胞胶原海绵和BMP-2 (90微克)同样为100%,磷酸缓冲溶液组的融合率为20%,而自体骨未融合。这与James等 [29] 人的研究是矛盾的,他们团队研究了含Nell-1的聚乳酸–羟基乙酸共聚物(polylactic-co-glycolic acid, PLGA)支架在促进颅骨骨再生的作用,结果显示:经Nell-1处理的缺损部位骨密度达到90%,矿化程度与BMP-2大致相当,因此Nell-1在载体DBM下的作用需要进一步研究。

如上所述两位学者都通过含DBM和Nell-1的复合体促进了脊柱融合,但融合的效果不同,造成这个结果的原因,可能由于Nell-1的剂量、研究周期不同,所导致成骨量不同,例如Li [30] 等人在大鼠的股骨缺损模型上,研究了不同剂量、不同时间段对成骨区域矿化度的影响,结果显示:在第8周时低浓度的Nell-1矿化度(2.75 ± 0.89),高浓度的Nell-1矿化度(3.125 ± 0.76)。低浓度的Nell-1在6、8、10周时矿化度分别为(2.625 ± 1.06, 2.75 ± 0.89, 2.875 ± 0.83)。这些结果提示,Nell-1在促进骨生长方面可能是一种有效的新型细胞因子。

4.1.2. Nell-1/生物陶瓷载体复合物

我们在前期工作中发现,支架材料可能会影响椎体的融合速率,进而抑制新骨的形成。因此,在接下来的实验中,研究者们加入了有机生物陶瓷载体,生物陶瓷是当前应用最广泛的骨移植载体,生物陶瓷与人体骨骼的组成非常相似,除了具有生物活性、骨导导性等基本特点之外,它还具有易塑形、理化特性和力学强度优良的特点 [31] 。所以,大部分的学者都会把它应用到临床研究中,关于融合率的实验表明,在这样的载体的控制下,可以形成大量的成骨,而且还拥有更高的骨质量 [32] 。在此基础之上,2009年,Li等 [33] 人成功构建了一种新型的可用于大鼠脊髓后外侧横突融合的β-磷酸三钙陶瓷生物支架。当磷酸钙混合物被手术部位周围的组织代谢时,保持了永久释放并减少了最初的爆裂,术后四周,经Nell-1处理的大鼠脊柱模型超过3/4实现了融合,未植入Nell-1药物的动物只有1/4实现了脊柱融合。Lee等 [34] 人研究了Nell-1对脊柱融合的影响,他们把移植物放入在雄性无胸腺大鼠的后外侧腰椎模型(L4-L5)中,实验发现,重组人Nell-1 (rhNell-1)冻干到磷灰石包被的藻酸盐/壳聚糖微粒上并与脱矿质骨基质(DBM)混合,采用微型计算机CT和在3名不知情助手触摸脊柱判断是否融合,结果显示,手术4周后,治疗组的融合率达到60%,而对照组未出现骨性融合,组织学结果:Nell-1有较强的成骨诱导能力,且在植入部位未见显著的毒副作用。不同载体支架可以通过控制药物缓慢的释放,减少治疗量同样能提高脊柱融合率,建立一种用于脊椎融合的新材料(4D打印骨组织工程材料支架) [35] 将是下一步研究重点。这些结果表明新型生长因子Nell-1在其支架上显著提高了大鼠的脊柱融合率。

4.2. 椎体间脊柱融合

基于大鼠模型中Nell-1应用于脊柱融合已得到验证,未来的研究将评估这种与人类脊柱相似的系统发育高级动物模型中的成骨能力。如绵羊和非人灵长类动物,Siu等 [36] 人首次报道了使用含Nell-1的椎间融合器进行脊柱融合的动物实验,他们使用绵羊作为动物模型,通过腹膜后腹外侧斜腹入路进入L3/L4和L5/L6,然后通过横突腹侧平面进行椎体间融合,植入Nell-1联合脱矿质骨基质(DBM),椎骨之间实现了完全的骨融合,新骨的成熟度和小梁化与相邻的天然骨相似,骨体积和矿物质密度都能有效的增加,能更早到达100%融合率,实验结果显示的脊柱融合融合率与已报告的BMP-2促进脊柱融合或绵羊自体移植应用于脊柱融合的疗效相当,且并发症少。这是一次里程碑式的试验,因为啮齿动物骨髓基质细胞和人骨髓基质细胞的成骨性有根本的区别,这项研究支持了之前在大鼠模型中Nell-1药物对脊柱融合的治疗。

随后人们把研究方向转向了非人类灵长动物,探讨在恒河猴的腰椎椎间建立脊柱融合模型,研究Nell-1对脊柱融合的影响效果。James等 [37] 人将rhNell-1冻干到磷灰石涂层的β-磷酸三钙(β-calcium phosphate, β-TCP)颗粒上和椎间融合器植入到恒河猴腰4/5、腰5/6,术后3个月对各组进行CT检查,结果显示对照治疗组和低剂量经重组人rhNell-1处理的脊柱融合节段显示融为25%,而高剂量rhNell-1为100%的融合。组织学表明rhNell-1处理的样品显示:骨基质碎片的新层状骨连接,以及相关的骨髓元素和血管形成显着增加,免疫荧光染色也得到了同样的结果。椎体间融合是一种常见的而又复杂的技术,能够实现高融合率,这也是一项开创性的研究,因为这是首次在证实Nell-1对于非人灵长类动物模型中的脊椎融合具有良好的治疗效果。

4.3. Nell-1蛋白和其他细胞因子联合应用于脊柱融合

上述动物实验研究表明Nell-1蛋白可促进脊柱融合术后骨组织再生,Nell-1联合给药在大多数动物实验模型中是有效的,包括颅骨缺损 [38] 、兔胫骨快速牵引成骨模型 [39] 等骨再生,接下来证明了在脊柱融合中Nell-1也可以和其他物质联合用于骨再生。Lee S等 [40] 人首次清楚地证明,人类血管周围干细胞(Human perivascular stem cells, HPSCS)和Nell-1的组合可以促进骨质疏松大鼠的脊柱融合,他们在体外实验测试了HPSCS中有无添加Nell-1蛋白的成骨分化能力,结果表明,Nell-1显著提高了骨质疏松和非骨质疏松供体中HPSCS的成骨潜力,随后在卵巢切除的大鼠中使用常规剂量的HPSCS或Nell-1仅达到20%~37.5%的融合率,联合组在高剂量的情况下,高达约83.3%,显微计算机断层扫描成像和定量进一步证实了高剂量hPSCs + Nell-1的实性骨融合,总之,HPSCS与Nell-1联合使用可协同增强骨质疏松症大鼠的脊柱融合,并具有作为骨质疏松症患者新治疗策略的巨大潜力。Liu等 [41] 对Nell-1与超低浓度BMP-2单独或联合使用的骨诱导效应进行了研究,通过茜素红染色、µ-CT析和组织学评估后外侧的骨形成,单独使用时成骨不理想,脊柱融合率低,不良反应多,而联合使用后结果显示:骨缺损部位钙沉积及矿化增强,骨形成增多,融合率高。在增加生物力学检测结果提示:由于BMP-2的大剂量应用所产生的异位成骨和成脂的现象被显著地减少 [42] 。

一项未公开发表的文献表示,在大鼠脊髓后外侧融合模型和猪椎体间融合模型中,评估Nell-1和低剂量双重给药的融合效果,研究证明在大鼠的模型中Nell-1和超低剂量BMP-2的双重传递单独治疗都具有更高的融合率、更好的骨质量和更强的生物力学性能,并避免了异位骨和脂肪组织的形成。然而,在猪体间脊柱融合术中骨形成有限。猪脊柱融合术融合率低的结果提示:在大动物负重模型中还需要进一步优化生长因子联合之间的功能。以上实验证明Nell-1联合用药治疗,与单独治疗相比生成骨组织的速率更高、骨质量更好,组织的微观结构亦优于其他组。总之,Nell-1联合骨形态发生蛋白-2的作用显著,可以作为当前BMP-2的一种较好的椎体融合替代疗法,联合治疗组合为脊柱融合后骨再生提供了新的研究方法。

5. 问题与展望

基于动物模型试验,Nell-1的成骨诱导作用为脊柱融合术后骨再生提供了理论依据,但目前还有许多不足之处:① Nell-1在脊柱融合中给药的剂量和途径、支架的机械性能和实验研究周期对脊柱融合的影响还不清楚。② 国内外Nell-1在脊柱融合中多以小型动物为基础及动物实验研究较少。③ Nell-1诱导骨形成的精确机制及对脊柱融合影响的研究尚属初步,不良反应也不明确 [43] 。④ 对椎体内骨缺损的修复及不良反应的防治是椎体内融合治疗的基础性工作,而对椎体内神经、血管等组织的影响及相关机制的探讨,是椎体内融合治疗中亟待解决的科学问题。这些问题是推动生长因子研究的动力,解决这些问题Nell-1蛋白才能快速发展,有望实现大型动物模型成熟化,进而转向临床实践。

致谢

感谢李伟明教授的博士后基金资助,特别感谢我的论文指导者李伟明教授提出设计思路及宝贵的建议,以及我的合作伙伴的支持和帮助,还要感谢给予转载和引用权的文献、图片、资料所有者。

基金项目

黑龙江省博士后科研启动金(LBH-Q20044)。

参考文献

[1] Shin, M., Arguelles, G.R., Cahill, P.J., et al. (2021) Complications, Reoperations, and Mid-Term Outcomes Following Anterior Vertebral Body Tethering Versus Posterior Spinal Fusion: A Meta-Analysis. JBJS Open Access, 6, e21.00002.
https://doi.org/10.2106/JBJS.OA.21.00002
[2] Gillman, C.E. and Jayasuriya, A.C. (2021) FDAApproved Bone Grafts and Bone Graft Substitute Devices in Bone Regeneration. Materials Science and Engineering: C, 130, Article ID: 112466.
https://doi.org/10.1016/j.msec.2021.112466
[3] Robinson, P.G., Abrams, G.D., Sherman, S.L., Safran, M.R. and Murray, I.R. (2020) Autologous Bone Grafting. Operative Techniques in Sports Medicine, 28, Article ID: 150780.
https://doi.org/10.1016/j.otsm.2020.150780
[4] Feng, J.-T., Yang, X.-G., Wang, F., He, X. and Hu, Y.-C. (2020) Efficacy and Safety of Bone Substitutes in Lumbar Spinal Fusion: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. European Spine Journal, 29, 1261-1276.
https://doi.org/10.1007/s00586-019-06257-x
[5] Salamanna, F., Tschon, M., Borsari, V., et al. (2020) Spinal Fu-sion Procedures in the Adult and Young Population: A Systematic Review on Allogenic Bone and Synthetic Grafts When Compared to Autologous Bone. Journal of Materials Science: Materials in Medicine, 31, Article No. 51.
https://doi.org/10.1007/s10856-020-06389-3
[6] De Frutos, A.G., González-Tartière, P., Bonet, R.C., et al. (2020) Randomized Clinical Trial: Expanded Autologous Bone Marrow Mesenchymal Cells Combined with Allogeneic Bone Tissue, Compared with Autologous Iliac Crest Graft in Lumbar Fusion Surgery. The Spine Journal, 20, 1899-1910.
https://doi.org/10.1016/j.spinee.2020.07.014
[7] Zimmermann, L.-M.A., Correns, A., Furlan, A.G., Spanou, C.E.S. and Sengle, G. (2021) Controlling BMP Growth Factor Bioavailability: The Extracellular Matrix as Multi Skilled Platform. Cellular Signalling, 85, Article ID: 110071.
https://doi.org/10.1016/j.cellsig.2021.110071
[8] Wen, Y.-D., Jiang, W.-M., Yang, H.-L. and Shi, J.-H. (2020) Exploratory Meta-Analysis on Dose-Related Efficacy and Complications of Rhbmp-2 in Anterior Cervical Discectomy and Fusion: 1,539,021 Cases from 2003 to 2017 Studies. Journal of Orthopaedic Translation, 24, 166-174.
https://doi.org/10.1016/j.jot.2020.01.002
[9] Toombs, C.S. and Whang, P.G. (2022) Acute Postoperative Neuro-logical Complications after Spine Surgery. Seminars in Spine Surgery, 34, Article ID: 100927.
https://doi.org/10.1016/j.semss.2022.100927
[10] Kuroda, S., Oyasu, M., Kawakami, M., et al. (1999) Biochemical Characterization and Expression Analysis of Neural Thrombospondin-1-Like Proteins NELL1 and NELL2. Biochemical and Biophysical Research Communications, 265, 79-86.
https://doi.org/10.1006/bbrc.1999.1638
[11] Dong, J., Yuan, W., Shen, J., et al. (2013) NELL-1 Based Demineralized Bone Graft Promotes Rat Spine Fusion as Compared to Commercially Available BMP-2 Product. Journal of Orthopaedic Science, 18, 646-657.
https://doi.org/10.1007/s00776-013-0390-5
[12] Matshuhashi, S., Noji, S., Koyama, E., Myokai, F., Ohuchi, H., Taniguchi, S. and Hori, K. (1995) New Gene, Nel, Encoding a Mr 93 K Protein with EGF-Like Repeats Is Strongly Ex-pressed in Neural Tissues of Early Stage Chick Embryos. Developmental Dynamics, 203, 212-222.
https://doi.org/10.1002/aja.1002030209
[13] Watanabe, T.K., Katagiri, T., Suzuki, M., et al. (1996) Cloning and Characterization of Two Novel Human cDNAs (NELL1 and NELL2) Encoding Proteins with Six EGF-Like Repeats. Genomics, 38, 273-276.
https://doi.org/10.1006/geno.1996.0628
[14] Ting, K., Vastardis, H., Mulliken, J.B., et al. (1999) Human NELL-1 Expressed in Unilateral Coronal Synostosis. Journal of Bone and Mineral Research, 14, 80-89.
https://doi.org/10.1359/jbmr.1999.14.1.80
[15] Bokui, N., Otani, T., Igarashi, K., et al. (2008) Involvement of MAPK Signaling Molecules and Runx2 in the NELL1-Induced Osteoblastic Differentiation. FEBS Letters, 582, 365-371.
https://doi.org/10.1016/j.febslet.2007.12.006
[16] Zhang, X., Zara, J., Siu, R.K., Ting, K. and Soo, C. (2010) The Role of NELL-1, a Growth Factor Associated with Craniosynostosis, in Promoting Bone Regeneration. Journal of Den-tal Research, 89, 865-878.
https://doi.org/10.1177/0022034510376401
[17] Li, C., Zhang, X., Zheng, Z., et al. (2019) Nell-1 Is a Key Func-tional Modulator in Osteochondrogenesis and Beyond. Journal of Dental Research, 98, 1458-1468.
https://doi.org/10.1177/0022034519882000
[18] Nakamura, Y., Hasebe, A., Takahashi, K., Iijima, M., et al. (2014) Oligomerization-induced Conformational Change in the C-terminal Region of Nel-like Molecule 1 (NELL1) Protein Is Necessary for the Efficient Mediation of Murine MC3T3-E1 Cell Adhesion and Spreading. Journal of Biological Chem-istry, 289, 9781-9794.
https://doi.org/10.1074/jbc.M113.507020
[19] Zhao, H., Qin, X., Zhang, Q., et al. (2018) Nell-1-δE, a Novel Transcript of Nell-1, Inhibits Cell Migration by Interacting with Enolase-1. Journal of Cellular Biochemistry, 119, 5725-5733.
https://doi.org/10.1002/jcb.26756
[20] Pakvasa, M., Alverdy, A., Mostafa, S., et al. (2017) Neural EGF-Like Protein 1 (NELL-1): Signaling Crosstalk in Mesenchymal Stem Cells and Applications in Regenerative Medi-cine. Genes & Diseases, 4, 127-137.
https://doi.org/10.1016/j.gendis.2017.07.006
[21] Li, M., Wang, Q., Han, Q., et al. (2021) Novel Molecule Nell-1 Promotes the Angiogenic Differentiation of Dental Pulp Stem Cells. Frontiers in Physiology, 12, Article 703593.
https://doi.org/10.3389/fphys.2021.703593
[22] Lee, J.-H., Song, Y.-M., Min, S.-K., et al. (2021) NELL-1 In-creased the Osteogenic Differentiation and mRNA Expression of Spheroids Composed of Stem Cells. Medicina, 57, Ar-ticle No. 586.
https://doi.org/10.3390/medicina57060586
[23] Wang, C., Wang, Y., Wang, C., et al. (2021) Therapeutic Applica-tion of 3B-PEG Injectable Hydrogel/Nell-1 Composite System to Temporomandibular Joint Osteoarthritis. Biomedical Materials, 17, Article ID: 015004.
https://doi.org/10.1088/1748-605X/ac367f
[24] An, H.-J., Ko, K.R., Baek, M., et al. (2021) Pro-Angiogenic and Osteogenic Effects of Adipose Tissue-Derived Pericytes Synergistically Enhanced by Nel-Like Protein-1. Cells, 10, Arti-cle No. 2244.
https://doi.org/10.3390/cells10092244
[25] Prokić, M.D., Gavrilović, B.R., Radovanović, T.B., et al. (2021) Stud-ying Microplastics: Lessons from Evaluated Literature on Animal Model Organisms and Experimental Approaches. Journal of Hazardous Materials, 414, Article ID: 125476.
https://doi.org/10.1016/j.jhazmat.2021.125476
[26] Hao, J., Bai, B., Ci, Z., et al. (2022) Large-Sized Bone Defect Repair by Combining a Decalcified Bone Matrix Framework and Bone Regeneration Units Based on Photo-Crosslinkable Osteogenic Microgels. Bioactive Materials, 14, 97-109.
https://doi.org/10.1016/j.bioactmat.2021.12.013
[27] Fahmy-Garcia, S., Van Driel, M., Witte-Buoma, J., et al. (2018) NELL-1, HMGB1, and CCN2 Enhance Migration and Vasculogenesis, But Not Osteogenic Differentiation Compared to BMP2. Tissue Engineering Part A, 24, 207-218.
https://doi.org/10.1089/ten.tea.2016.0537
[28] Lu, S.S., Zhang, X., Soo, C., et al. (2007) The Osteoinductive Properties of Nell-1 in a Rat Spinal Fusion Model. The Spine Journal, 7, 50-60.
https://doi.org/10.1016/j.spinee.2006.04.020
[29] James, A.W., Lachaud, G., Shen, J., et al. (2016) A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Engineering Part B: Reviews, 22, 284-297.
https://doi.org/10.1089/ten.teb.2015.0357
[30] Li, W., Zara, J.N., Siu, R.K., et al. (2011) Nell-1 Enhances Bone Regeneration in a Rat Critical-Sized Femoral Segmental Defect Model. Plastic and Reconstructive Surgery, 127, 580-587.
https://doi.org/10.1097/PRS.0b013e3181fed5ae
[31] Deng, L., Huang, L., Pan, H., et al. (2023) 3D Printed Stron-tium-Zinc-Phosphate Bioceramic Scaffolds with Multiple Biological Functions for Bone Tissue Regeneration. Journal of Materials Chemistry B.
https://doi.org/10.1039/D2TB02614G
[32] Cui, L.H., Xiang, S.Y., Chen, D.C., et al. (2021) A Novel Tis-sue-Engineered Bone Graft Composed of Silicon-Substituted Calcium Phosphate, Autogenous Fine Particulate Bone Powder and BMSCs Promotes Posterolateral Spinal Fusion in Rabbits. Journal of Orthopaedic Translation, 26, 151-161.
https://doi.org/10.1016/j.jot.2020.06.003
[33] Li, W., Lee, M., Whang, J., et al. (2010) Delivery of Lyophilized Nell-1 in a Rat Spinal Fusion Model. Tissue Engineering Part A, 16, 2861-2870.
https://doi.org/10.1089/ten.tea.2009.0550
[34] Lee, Mi., Li, W., Siu, R.K., et al. (2009) Biomimetic Apatite-Coated Alginate/Chitosan Microparticles as Osteogenic Protein Carriers. Biomaterials, 30, 6094-6101.
https://doi.org/10.1016/j.biomaterials.2009.07.046
[35] Hwangbo, H., Lee, H., Roh, E.J., et al. (2021) Bone Tissue Engineering via Application of a Collagen/Hydroxyapatite 4D-Printed Biomimetic Scaffold for Spinal Fusion. Applied Physics Reviews, 8, Article ID: 021403.
https://doi.org/10.1063/5.0035601
[36] Siu, R.K., Lu, S.S., Li, W., et al. (2011) Nell-1 Protein Promotes Bone Formation in a Sheep Spinal Fusion Model. Tissue Engineering Part A, 17, 1123-1135.
https://doi.org/10.1089/ten.tea.2010.0486
[37] James, A.W., Shen, J., Tsuei, R., et al. (2017) NELL-1 Induces Sca-1+ Mesenchymal Progenitor Cell Expansion in Models of Bone Maintenance and Repair. JCI Insight, 2, e92573.
https://doi.org/10.1172/jci.insight.92573
[38] Aghaloo, T., Cowan, C.M., Zhang, X., et al. (2010) The Effect of NELL1 and Bone Morphogenetic Protein-2 on Calvarial Bone Regeneration. Journal of Oral and Maxillofacial Surgery, 68, 300-308.
https://doi.org/10.1016/j.joms.2009.03.066
[39] Zhu, S., Song, D., Jiang, X., Zhou, H. and Hu, J. (2011) Com-bined Effects of Recombinant Human BMP-2 and Nell-1 on Bone Regeneration in Rapid Distraction Osteogenesis of Rabbit Tibia. Injury, 42, 1467-1473.
https://doi.org/10.1016/j.injury.2011.05.040
[40] Lee, S., Zhang, X., Shen, J., et al. (2015) Brief Report: Human Perivascular Stem Cells and Nel-Like Protein-1 Synergistically Enhance Spinal Fusion in Osteoporotic Rats. Stem Cells, 33, 3158-3163.
https://doi.org/10.1002/stem.2103
[41] Liu, L., Lam, W.M.R., Naidu, M., et al. (2019) Synergistic Effect of NELL-1 and an Ultra-Low Dose of BMP-2 on Spinal Fusion. Tissue Engineering Part A, 25, 1677-1689.
https://doi.org/10.1089/ten.tea.2019.0124
[42] Cheng, X., Shi, J., Jia, Z., et al. (2022) NELL-1 in Genome-Wide Association Studies across Human Diseases. The American Journal of Pathology, 192, 395-405.
https://doi.org/10.1016/j.ajpath.2021.11.006
[43] Duan, C. and Townley, H.E. (2022) Isolation of NELL 1 Ap-tamers for Rhabdomyosarcoma Targeting. Bioengineering, 9, Article No. 174.
https://doi.org/10.3390/bioengineering9040174