自身免疫性脑炎相关痫性发作研究进展
Research Progress in Epileptic Seizures Associated with Autoimmune Encephalitis
DOI: 10.12677/ACM.2023.1351111, PDF, HTML, XML, 下载: 223  浏览: 301 
作者: 崔绿芳:青海大学研究生院,青海 西宁;王兰桂*:青海大学附属医院神经内科,青海 西宁
关键词: 自身免疫性脑炎痫性发作发病机制临床特征Autoimmune Encephalitis Epileptic Seizure Pathogenesis Clinical Features
摘要: 癫痫的发病原因复杂,包括遗传、中毒、代谢、感染、以及结构的改变,其中自身免疫性是最常见的原因之一。近年来随着对自身免疫性脑炎认识的加深,临床上越来越多的患者被明确诊断。通常伴有严重的癫痫发作和癫痫持续状态。本文就抗NMDAR、LGI1和GABABR脑炎等临床常见的自身免疫性脑炎相关痫性发作的发病机制和临床特征研究进展进行综述,提高对自身免疫性脑炎相关痫性发作疾病的认识,为临床医生诊断和治疗提供参考价值。
Abstract: The causes of epilepsy are complex, including genetics, poisoning, metabolism, infection, and struc-tural changes, among which autoimmune is one of the most common causes. In recent years, with the deepening of the understanding of autoimmune encephalitis, more and more patients have been diagnosed clinically. It is usually accompanied by severe seizures and continued seizures. This article reviews the progress in the pathogenesis and clinical features of anti-epileptic seizures asso-ciated with autoimmune encephalitis, such as NMDAR, LGI1and GABABR encephalitis, to improve the understanding of epileptic seizures associated with autoimmune encephalitis and provide ref-erence for the diagnosis and treatment of clinicians.
文章引用:崔绿芳, 王兰桂. 自身免疫性脑炎相关痫性发作研究进展[J]. 临床医学进展, 2023, 13(5): 7939-7944. https://doi.org/10.12677/ACM.2023.1351111

1. 抗NMDAR抗体相关痫性发作

1.1. 抗NMDAR脑炎相关痫性发作的发病机制

抗N-甲基-D-天冬氨酸受体(N-methyl-D-aspartate receptor, NMDAR)脑炎是一种严重的、具有潜在致命性但对免疫治疗明显有效的脑炎,该病与NMDAR自身抗体相关 [1] 。患者的NMDAR抗体通过交联和内化机制致使与其抗体滴度相关NMDAR的表面密度和突触定位的选择性和可逆性下降,从而使得NMDAR介导的突触功能减弱 [2] 。Hughes等 [2] 通过对大鼠海马组织的实验研究发现,抗NMDAR脑炎患者的抗体导致NMDAR的特异性、滴度依赖性以及可逆性丢失的细胞机制,认为谷氨酸受体亚型的缺失会降低NMDAR介导的突触功能,从而导致抗NMDAR脑炎患者的学习、记忆和其他行为障碍。NMDAR是兴奋性神经递质谷氨酸激活的阳离子通道,在中枢神经系统的兴奋性突触传递、可塑性以及兴奋毒性的过程中起重要作用 [3] 。NMDAR通常是一个双异四聚体或三异四聚体通道,主要是由与甘氨酸相结合的NR1亚基和与谷氨酸相结合的NR2亚基组成,在突触传递和重塑、树突出芽以及海马长时程增强(一种记忆形成和学习机制)过程中起重要作用。由此可见NMDAR的亚基突变与癫痫发作密切相关 [4] 。

1.2. 抗NMDAR脑炎相关痫性发作的临床特征

抗NMDAR脑炎是一种与自身免疫性疾病相关的副肿瘤性边缘系统脑炎,在自身免疫性脑炎(autoimmune encephalitis, AE)患者中发病率高达80%,常见于儿童和青壮年,发病率约为5~8/10万,女性发病率是男性的4倍 [5] 。除了病毒感染,畸胎瘤是一个重要的致病因素。抗NMDAR脑炎常伴有潜在的恶性肿瘤,其中大多数是卵巢畸胎瘤,其次是卵巢外畸胎瘤以及其他肿瘤 [6] 。据研究表明,18~45岁抗NMDA脑炎女性患者中,近60%患有卵巢畸胎瘤 [7] 。诊断患有抗NMDAR脑炎的患者中大约有70%表现出神经精神症状和运动障碍,多数患者在精神症状最初发作后的几周内具有更为严重的临床特征,包括痫性发作、不自主运动、意识障碍、自主神经紊乱或中枢性换气不足等,若不提供及时有效的干预,严重时可导致死亡 [8] 。其中最常见的运动障碍是颜面部的运动障碍、肌张力障碍以及舞蹈症,其次是意识和自主神经功能的障碍 [6] 。抗NMDAR脑炎通常影响年轻女性,临床症状的发作伴有精神障碍,如幻觉、妄想、激越和怪异行为等 [9] 。患者可能最终发展为癫痫发作,并伴有运动障碍、肌张力障碍、和舞蹈徐动症,还可能存在自主神经功能障碍等 [10] 。NMDAR是一种兴奋性受体,介导某些重要的神经功能,如兴奋传导的长时程增强和突触的可塑性,然而NMDAR的过度激活可能导致癫痫发作 [11] 。癫痫发作通常出现在NMDAR抗体脑炎的发病阶段,包括复杂部分性和继发性全身性强直–阵挛发作,这些在发病时可能发生的频率很高,患者可能出现癫痫持续状态(status epilepticus, SE) [11] 。其中有16%的女性可能出现局灶性的痫性发作,男性则更高约34%,也可能出现难治性SE [6] 。癫痫发作可以在疾病期间的任何时候发生,但在疾病早期阶段占主导地位 [12] 。Wang等 [13] 对7例抗NMDAR脑炎癫痫发作的临床特征进行分析:其中5例出现癫痫发作,发病率为71%;发作形式表现为三种:2例局灶性意识性发作(focal aware seizures, FAS) (40%),1例局灶性意识障碍性发作(focal impaired awareness seizures, FIAS) (20%),5例全身强直阵挛性发作(generalized tonic-clonic seizures, GTCS) (100%),2例SE (40%)。

2. 抗LGI1抗体相关痫性发作

2.1. 抗LGI1脑炎相关痫性发作的发病机制

富亮氨酸胶质瘤失活1蛋白(Leucine-rich gliomainactivated1, LGI1)是一种由神经元分泌的可溶性糖蛋白,在中枢神经系统中,尤其是海马中高度表达 [14] 。人类LGI1蛋白的基因破坏导致常染色体显性侧颞叶癫痫 [15] 。LGI1缺乏的动物模型表现为自发性癫痫发作。Fukata等 [16] 通过对小鼠的实验研究显示,小鼠LGI1的缺失导致致死性癫痫,LGI1的基因杂合突变降低小鼠的癫痫阈值。LGI1连接大脑中两个与癫痫相关的受体包括ADAM22和ADAM23,从而构成了跨突触蛋白复合体,包括突触前后的钾离子通道以及AMPA受体,因此LGI1的丢失会导致这种突触蛋白的连接受到破坏,进而减少了海马组织中AMPA受体所介导的神经元间突触传递,导致异常突触传递和癫痫发作;因此,认为LGI1是一种抗癫痫分泌蛋白,它连接突触前和突触后的蛋白复合物,精细的调节突触传递 [16] 。另有研究也证实,LGI1是由神经细胞分泌的特异蛋白,在突触前蛋白ADAM11、ADAM23以及突触后蛋白ADAM22之间起到黏联作用,从而形成突触间复合物,进而参与神经冲动在神经细胞间的高效传递 [17] [18] 。Ohkawa等 [19] 研究发现,在ADAM22的胞外区,通过阻断LGI1-ADAM22的相互作用,从而导致大鼠海马组织神经元中突触后抑制性神经元AMPA受体减少(对照组23.7% ± 1.92%;p = 0.027;n = 3);并且发现在LGI1基因敲除的小鼠海马齿状回中,通过免疫组织化学染色观察到AMPA受体水平显著降低。因此LGI1-ADAM22相互作用的遗传性或获得性丢失,降低了AMPA受体的功能,从而导致患者出现兴奋性增加以及癫痫发作。这些结果表明,通过精细调控突触AMPA受体,LGI1-ADAM22相互作用在维持大脑正常兴奋中起重要作用。Seagar等 [20] 的研究表明,抗LGI1抗体在轴突起始段表达,能够降低钾离子通道(voltage-gated potassium channel, VGKC)的密度,LGI1缺乏导致谷氨酸释放增加,从而导致癫痫发作。LGI1主要是一种中枢神经系统的突触蛋白,与中枢神经系统疾病有关,LGI1抗体可能通过阻止LGI1与其调节的受体结合或是间接地通过阻断LGI1介导的这些蛋白质的调节,或者直接通过破坏整个蛋白质复合体,从而导致可逆性中枢神经系统突触功能障碍 [21] 。

2.2. 抗LGI1脑炎临床特征

抗LGI1脑炎是继抗NMDAR脑炎之后的AE第二常见原因。边缘性脑炎的最常见病因是抗LGI1脑炎,其临床症状主要表现为癫痫发作、认知障碍以及相关的精神行为异常;脑部核磁共振显示,这种自身免疫性疾病主要累及中颞叶和海马 [22] 。LGI1脑炎通常发生在60岁以上的男性患者,其特征是重复、短暂的面臂张力障碍性癫痫发作以及行为改变和定向障碍 [9] [23] [24] [25] 。此类型的肌张力障碍,局灶性运动发作主要影响手臂和同侧面部,其临床表现常被误诊为心因性障碍或各种运动障碍 [9] 。一半的患者出现面臂张力障碍性癫痫发作,其特征是手臂的短暂单侧收缩(通常发展为同侧的脸或腿),短于3秒,一天发生数次;三分之二的患者在内侧颞叶出现脑MRI异常信号 [6] 。如果没有早期识别和及时开始免疫治疗,患者会遗留认知功能障碍和行为改变的症状 [24] [25] 。Wang等 [13] 实验研究的9例LGI1 AE患者均有癫痫发作,发生率为100%。研究表明有三种发作类型,分别表现为:颞叶间叶癫痫发作(mesial temporal lobe epilepsy, MTLE) (66.7%)、面臂肌张力障碍发作(faciobrachial dystonic seizure, FBDS) (44.4%)和局灶起源并继发双侧全面性发作(focal to bilateral tonic-clonic seizure, FBTCS) (77.8%)。FBDS被认为是抗LGI1脑炎的特征性发作 [23] 。

3. 抗GABABR抗体相关痫性发作

3.1. 抗GABABR脑炎相关痫性发作的发病机制

γ-氨基丁酸受体B (γ-aminobutyric acid receptor B, GABABR)是一种G蛋白耦联受体,它是由两个亚单位(GABAB1和GABAB2)构成。GABABR通过两种以上的机制,从而介导突触前的抑制:激活G蛋白偶联的内向钾离子通道以及抑制相关的钙离子通道,这些受体同时减弱了突触前神经元的电活动;同时GABABR也可通过类似的相关机制,从而诱导抑制性突触后电位,进而导致突触后神经元的抑制。其中特异性抗体识别的抗原GABAB1亚基,是GABA结合相关受体所必不可少的,并且GABAB2亚基,是受体定植于细胞膜的特定区域以及相关的G蛋白偶联所必不可少的。有研究表明GABABR广泛分布在中枢神经系统(大脑和脊髓),在大脑皮层、丘脑中产生电活动,传导神经冲动,将原始信息传递到脊髓和大脑,从而调节神经冲动在大脑皮层神经突触间的传递,并且可通过影响中枢神经系统多巴胺能以及其他单胺能神经元突触间的电活动,进而影响神经元间的信息传递 [26] 。Brown等 [27] 研究表明,GABABR广泛分布在大脑和脊髓中,其中在海马、丘脑和小脑中发现了高水平的GABAB受体;GABABR功能主要有:减少神经元网络中过度兴奋神经元的持续时间,抑制神经元的过度兴奋同步电活动,促进新的刺激破坏神经元的同步电活动,因此当GABABR受到损害时,神经系统出现异常放电,导致癫痫发作。

3.2. 抗GABABR脑炎临床特征

除了NMDAR和LGI1脑炎,GABABR脑炎是第三种常见的AE类型。由GABABR抗体介导的AE,常累及边缘系统,多见于中老年男性患者,突然发病,部分患者发病前可出现发热及非特异性的呼吸道感染症状,主要表现为癫痫频发、认知功能障碍、精神行为异常,MRI和PET-CT分别显示颞叶异常信号和局部代谢异常,该病与小细胞肺癌关系密切,需要长期随访观察 [28] 。在临床上,癫痫、认知功能障碍和精神行为异常是该病的主要表现,而癫痫往往是首发症状 [29] 。也可能出现共济失调、脑干脑炎和视阵挛–肌阵挛综合征 [30] 。有研究表明,GABABR患者中有三分之一患有小细胞肺癌(年龄53~70岁,均为吸烟者) [31] 。GABABR因遗传或药物破坏,导致癫痫发作以及认知障碍 [32] 。癫痫发作的类型可为复杂部分性或继发性全身性发作,或癫痫发作可演变为SE [9] 。GABABR脑炎的特征常常是以难治性癫痫发作为初始症状,主要GTCS或MTLE样癫痫发作 [13] 。

4. 展望

本文就常见的AE相关痫性发作进行综述,随着医学检测技术的不断发展,将来会有更多的抗神经元抗体得以明确。随着对AE相关痫性发作的发病机制及临床表现越来越深入的研究,相关文献越来越多,为以后AE的临床治疗提供更多的选择方法,使AE患者得到更多获益。

NOTES

*通讯作者。

参考文献

[1] Moscato, E.H., Peng, X., Jain, A., et al. (2014) Acute Mechanisms Underlying Antibody Effects in An-ti-N-methyl-D-aspartate Receptor Encephalitis. Annals of Neurology, 76, 108-119.
https://doi.org/10.1002/ana.24195
[2] Hughes, E.G., Peng, X., Gleichman, A.J., et al. (2010) Cellular and Synap-tic Mechanisms of Anti-NMDA Receptor Encephalitis. Journal of Neuroscience, 30, 5866-5875.
https://doi.org/10.1523/JNEUROSCI.0167-10.2010
[3] Cull-Candy, S., Brickley, S. and Farrant, M. (2001) NMDA Receptor Subunits: Diversity, Development and Disease. Current Opinion in Neurobiology, 11, 327-335.
https://doi.org/10.1016/S0959-4388(00)00215-4
[4] Wei, F., Yan, L.M., Su, T., et al. (2017) Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neuroscience Bulletin, 33, 455-477.
https://doi.org/10.1007/s12264-017-0134-1
[5] Patel, K.H., Chowdhury, Y., Shetty, M., et al. (2020) Anti-N-methyl-d-aspartate Receptor Encephalitis Related Sinus Node Dysfunction and the Lock-Step Phenomenon. American Journal of Medical Case Reports, 8, 503-507.
https://doi.org/10.12691/ajmcr-8-12-20
[6] Dutra, L.A., Abrantes, F., Toso, F.F., et al. (2018) Autoimmune En-cephalitis: A Review of Diagnosis and Treatment. Arquivos de Neuro-Psiquiatria, 76, 41-49.
https://doi.org/10.1590/0004-282x20170176
[7] Dalmau, J., Geis, C. and Graus, F. (2017) Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System. Physi-ological Reviews, 97, 839-887.
https://doi.org/10.1152/physrev.00010.2016
[8] Titulaer, M.J., Mccracken, L., Gabilondo, I., et al. (2013) Treat-ment and Prognostic Factors for Long-Term Outcome in Patients with Anti-NMDA Receptor Encephalitis: An Observa-tional Cohort Study. The Lancet Neurology, 12, 157-165.
https://doi.org/10.1016/S1474-4422(12)70310-1
[9] Chen, T.S., Lai, M.C., Huang, H.I., et al. (2022) Immunity, Ion Channels and Epilepsy. International Journal of Molecular Sciences, 23, Article No. 6446.
https://doi.org/10.3390/ijms23126446
[10] Britton, J. (2016) Chapter 13-Autoimmune Epilepsy. In: Pittock, S.J. and Vincent, A., Eds., Handbook of Clinical Neurology, Vol. 133, 219-245.
https://doi.org/10.1016/B978-0-444-63432-0.00013-X
[11] Britton, J. (2016) Autoimmune Epilepsy. In: Hand-book of Clinical Neurology, Vol. 133, Elsevier, Amsterdam, 219-245.
https://doi.org/10.1016/B978-0-444-63432-0.00013-X
[12] Van Sonderen, A., Petit-Pedrol, M., Dalmau, J., et al. (2017) The Value of LGI1, Caspr2 and Voltage-Gated Potassium Channel Antibodies in Encephalitis. Nature Reviews Neurology, 13, 290-301.
https://doi.org/10.1038/nrneurol.2017.43
[13] Wang, Y., Yu, Y., Hu, Y., et al. (2020) Clinical and Electroencephalographic Features of the Seizures in Neuronal Surface Antibody-Associated Autoimmune Encephalitis. Frontiers in Neurology, 11, Article No. 280.
https://doi.org/10.3389/fneur.2020.00280
[14] Sagane, K., Ishihama, Y. and Sugimoto, H. (2008) LGI1 and LGI4 Bind to ADAM22, ADAM23 and ADAM11. International Journal of Biological Sciences, 4, 387-396.
https://doi.org/10.7150/ijbs.4.387
[15] Lancaster, E., Huijbers, M.G., Bar, V., et al. (2011) Investigations of caspr2, an Autoantigen of Encephalitis and Neuromyotonia. Annals of Neurology, 69, 303-311.
https://doi.org/10.1002/ana.22297
[16] Fukata, Y., Lovero, K.L., Iwanaga, T., et al. (2010) Disruption of LGI1-Linked Synaptic Complex Causes Abnormal Synaptic Transmission and Epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 107, 3799-3804.
https://doi.org/10.1073/pnas.0914537107
[17] Gaspard, N. (2016) Autoimmune Epilepsy. Continuum (Minneap Minn), 22, 227-245.
https://doi.org/10.1212/CON.0000000000000272
[18] Zhou, Y.D., Lee, S., Jin, Z., et al. (2009) Arrested Matura-tion of Excitatory Synapses in Autosomal Dominant Lateral Temporal Lobe Epilepsy. Nature Medicine, 15, 1208-1214.
https://doi.org/10.1038/nm.2019
[19] Ohkawa, T., Fukata, Y., Yamasaki, M., et al. (2013) Autoantibodies to Epi-lepsy-Related LGI1 in Limbic Encephalitis Neutralize LGI1-ADAM22 Interaction and Reduce Synaptic AMPA Recep-tors. Journal of Neuroscience, 33, 18161-1874.
https://doi.org/10.1523/JNEUROSCI.3506-13.2013
[20] Seagar, M., Russier, M., Caillard, O., et al. (2017) LGI1 Tunes Intrinsic Excitability by Regulating the Density of Axonal Kv1 Channels. Proceedings of the National Academy of Sciences of the United States of America, 114, 7719-7724.
https://doi.org/10.1073/pnas.1618656114
[21] Lancaster, E. and Dalmau, J. (2012) Neuronal Autoantigens—Pathogenesis, Associated Disorders and Antibody Testing. Nature Reviews Neurology, 8, 380-390.
https://doi.org/10.1038/nrneurol.2012.99
[22] Wang, M., Cao, X., Liu, Q., et al. (2017) Clinical Features of Limbic Encephalitis with LGI1 Antibody. Neuropsychiatric Disease and Treatment, 13, 1589-1596.
https://doi.org/10.2147/NDT.S136723
[23] Irani, S.R., Michell, A.W., Lang, B., et al. (2011) Faci-obrachial Dystonic Seizures Precede LGI1 Antibody Limbic Encephalitis. Annals of Neurology, 69, 892-900.
https://doi.org/10.1002/ana.22307
[24] Irani, S.R., Stagg, C.J., Schott, J.M., et al. (2013) Faciobrachial Dystonic Seizures: The Influence of Immunotherapy on Seizure Control and Prevention of Cognitive Impairment in a Broadening Phenotype. Brain, 136, 3151-3162.
https://doi.org/10.1093/brain/awt212
[25] Van Sonderen, A., Thijs, R.D., Coenders, E.C., et al. (2016) Anti-LGI1 Encephalitis: Clinical Syndrome and Long-Term Follow-Up. Neurology, 87, 1449-1456.
https://doi.org/10.1212/WNL.0000000000003173
[26] Benarroch, E.E. (2012) GABAB Receptors: Structure, Functions, and Clinical Implications. Neurology, 78, 578-584.
https://doi.org/10.1212/WNL.0b013e318247cd03
[27] Brown, J.T., Davies, C.H. and Randall, A.D. (2007) Syn-aptic Activation of GABA(B) Receptors Regulates Neuronal Network Activity and Entrainment. European Journal of Neuroscience, 25, 2982-2990.
https://doi.org/10.1111/j.1460-9568.2007.05544.x
[28] Beghi, E., Giussani, G. and Sander, J.W. (2015) The Natu-ral History and Prognosis of Epilepsy. Epileptic Disorders, 17, 243-253.
https://doi.org/10.1684/epd.2015.0751
[29] Mckay, J.H., Dimberg, E.L. and Lopez Chiriboga, A.S. (2019) A Sys-tematic Review of Gamma-Aminobutyric Acid Receptor Type B Autoimmunity. Neurologia i Neurochirurgia Polska, 53, 1-7.
https://doi.org/10.5603/PJNNS.a2018.0005
[30] Hoftberger, R., Titulaer, M.J., Sabater, L., et al. (2013) Encephali-tis and GABAB Receptor Antibodies: Novel Findings in a New Case Series of 20 Patients. Neurology, 81, 1500-1506.
https://doi.org/10.1212/WNL.0b013e3182a9585f
[31] Lancaster, E., Lai, M., Peng, X., et al. (2010) Antibodies to the GABA(B) Receptor in Limbic Encephalitis with Seizures: Case Series and Characterisation of the Antigen. The Lan-cet Neurology, 9, 67-76.
https://doi.org/10.1016/S1474-4422(09)70324-2
[32] Bettler, B., Kaupmann, K., Mosbacher, J. and Gassmann, M. (2004) Molecular Structure and Physiological Functions of GABAB Receptors. Physiological Reviews, 84, 835-867.
https://doi.org/10.1152/physrev.00036.2003