生物活性肽研究进展
Research Progress of Bioactive Peptides
DOI: 10.12677/OJNS.2023.113047, PDF, HTML, XML, 下载: 404  浏览: 843  科研立项经费支持
作者: 李忻翼, 林格冰, 毛立云, 应益群, 胡 彬, 李佳瑶, 孙坤来, 王玉梅*:浙江海洋大学食品与药学学院,浙江 舟山
关键词: 活性肽提取方法生物活性开发应用Active Peptide Extraction Method Biological Activity Development and Application
摘要: 生物活性肽来源广泛、活性多样,有很大的开发价值和市场前景。本文综述了近年来生物活性肽的提取方法、生物活性的研究进展,以期为生物活性肽的发现和进一步生物活性研究提供借鉴,为生物资源的二次开发利用提供参考。
Abstract: Bioactive peptides come from a wide range of sources and have diverse activities, which have great development values and market prospects. In this paper, the extraction methods of bioactive peptides and the research progress of bioactivities in recent years were reviewed, so as to provide reference for the discovery and further research of bioactive peptides. At the same time, it also provides reference for the secondary development and utilization of biological resources.
文章引用:李忻翼, 林格冰, 毛立云, 应益群, 胡彬, 李佳瑶, 孙坤来, 王玉梅. 生物活性肽研究进展[J]. 自然科学, 2023, 11(3): 392-401. https://doi.org/10.12677/OJNS.2023.113047

1. 引言

生物多肽是蛋白质的水解产物,具有不同排列方法和组成方式 [1] 。其结构方面可能是简单的线形,也有复杂的环形结构,多数具有较显著的生物活性,包括抗氧化、抗血栓形成、抗脂肪形成、抗菌、抗炎、抗癌和免疫调节作用等在内的多种活性 [2] ,在食品和制药行业有很大的潜在应用价值和市场前景。目前已经在食品、美容、医药、农业等多个领域发挥作用 [3] [4] [5] 。本文将对近年来生物活性肽的获取方式及其生物活性研究进展进行综述。

2. 生物活性肽提取方法

2.1. 微生物发酵法

在一定培养条件下,微生物可以通过代谢产生蛋白酶,分解环境中的蛋白质从而获得小分子多肽。粱金钟等 [6] 对菌种LB-05以豆粕及其蛋白为底物,发酵30 h,可以提高肽的提取率。马丽杰等 [7] 用不同微生物菌株组合对鳕鱼皮发酵,发现JFTQ1 + JQJM2对鳕鱼皮的水解度较高,达到42.64%。采用细菌与酵母菌1:1可达最高水解度。刘旺旺等 [8] 从羊胎盘中提取活性蛋白,采用微生物发酵,发现黑曲霉作用下的羊胎盘多肽产物产率最高,为30.9%,活性最好,为83.8%。

2.2. 微波辅助萃取

在过去的几十年中,微波辅助提取已成功应用于从各种自然资源中提取生物活性物质。该技术使用频率范围为300 MHz至300 GHz的电磁辐射来加热与样品接触的溶剂,以从样品基质中分离出目标化合物 [9] 。微波辅助萃取的机理是通过分子间和分子内摩擦,以及大量电荷离子的运动和碰撞,使反应体系迅速升温,导致细胞壁和细胞膜破裂,可以提取鱼类组织、牡蛎等体内及细胞内的活性物质。此外,Popper等 [10] 发现该技术也可降解藻类等特殊生物,它们的细胞被动态、复杂、富含碳水化合物的细胞壁包围,使得细胞壁的破坏尤为重要。此外,Clara等 [11] 发现微波辅助提取技术对硬海绵钙质和硅质骨骼也非常有用。

2.3. 酶解法

选用特定的蛋白酶,进行酶促修饰,将蛋白质酶解为肽或氨基酸,是目前较为常见、容易控制掌握的方法。Rodriguez等 [11] 对蓝鲨皮酶解进行了优化,确定了酶/底物为1.5%时,水解135分钟得最高水解度。Song等 [12] 用不同蛋白酶酶解半翅凤尾鱼,发现胃蛋白酶酶与底物水平1100 μ/g,水与底物4:1时为水解最佳条件,此时抑菌效果最佳。王成成 [13] 以罗非鱼皮为原料,选用5种蛋白酶酶解,发现木瓜蛋白酶作用下酶解肽的抗氧化活性最佳,具有开发价值。

2.4. 有机合成法

以多肽天然产物作为候选药物,通过纯化后产量低,故可以批量合成目标肽。有机合成通常选择固相合成法来获得目标肽,并对粗产物进行质谱鉴定,从而判断理论分子量是否一致。此法耗时、昂贵、不环保。

3. 肽的生物活性

3.1. 抗氧化作用

生命体会自主产生自由基,在正常的生理条件下,生命体抗氧化防御系统可以使用酶和非酶抗氧化剂来去除有害分子对人体的攻击和影响 [14] 。但是,内源性抗氧化剂防御系统与自由基之间一旦产生不平衡,就会引起细胞中的氧化应激,从而对细胞造成损害,引起氧化损伤。氧化损伤可能会引发阿兹海默症,心脏病,糖尿病,关节炎和癌症等许多慢性疾病 [15] 。因此,具有抗氧化作用甚至减少氧化损伤作用的功能性制品的需求不断增加,人们也更多的将关注点看向了天然的动植物多肽 [16] [17] 。

Zhang等 [18] 从金鱼中发现了3种具有高抗氧化活性的新型肽,提高了金鱼加工业的经济价值。Khawaja [19] 等在鲭鱼肌肉蛋白水解物中发现了DPPH自由基(1,1-二苯基-2-三硝基苯肼)清除活性较好的抗氧化肽,可作为抗氧化剂的来源。Hu等 [20] 利用双酶酶解法(中性酶和胰蛋白酶)对圆角鳞茎进行酶解获得了序列为Lys-Gly-Phe-Arg的抗氧化肽。进一步实验得到纯化后的半抑制浓度(IC50)值为0.13 mg/mL,说明得到的多肽有很强的抗氧化活性。Najafian等 [21] 从凤尾鱼发酵提取物中分离得到两个新型肽和Val-Ala-Ala-Gly-Arg-Thr-Asp-Ala-Gly-Val-His和Lue-Asp-Asp-Pro-Val-Phe-Ile-His,具有较高抗氧化活性。Wu等 [22] 从草虾中分离得到抗氧化肽Lys-Met-Asp-Asp-Lys,Lys-Met-Asp-Asp-Gln,Gln-Met-Asp-Asp-Lys和Gln-Met-Asp-Asp-Gln,在凋亡方面也具有活性。Zhang等 [23] 从蛋清蛋白中鉴定处序列为VYLPR,EVYLPR,VEVYLPR和VVEVYLPR的抗氧化肽,对HEK-293具有保护作用。Agrawal等 [24] 从手指粟蛋白水解产物中获得TSSSLNMAVRGGLTR和STTVGLGISMRSASVR两种高活性抗氧化肽。此外,在甲鱼、鲨鱼皮、大黄鱼内脏、鲍鱼等生物及其副产品中也通过实验发现很多具有较强抗氧化活性的多肽 [25] 。

3.2. 抗高血压作用

高血压是一类易发型疾病,不断威胁着人们的健康,此外,多种心脑血管疾病的发生如心肌梗塞、心力衰竭等也和这个相关。但是,在抵抗性高血压的人群中,血压有时会难以得到有效的控制,且降压药可能产生如咳嗽、味觉障碍、血管性水肿等不良作用。因此,需要发现和利用新的安全无毒的降压药和新的治疗方法来控制高血压及其合并症 [26] 。

目前,科学家已经分离得到多种活性较好的ACE (血管紧张素转化酶)抑制肽,也发现了许多来自各种生物的降血压肽。研究表明,Shiozaki等 [27] 以牡蛎为实验对象,分离制得氨基酸序列为Asp-Leu-Thr-Asp-Tyr的多肽,进一步进行活性试验,发现它的降压活性很好。冯立婷 [28] 通过酶解法制备贻贝抗血栓肽,并对其作用机制进行了初步探索,发现其在内源性和外源性途径均具有很好的ACE抑制活性。Liao等 [29] 从中华绒螯蟹的蟹壳中酶解制得水解产物,显示出活性较强的ACE抑制活性,进一步试验发现其氨基酸序列为KRER和LHMFK,测得ACE抑制活性的IC50值分别为324.1和75.6 μM。Wang等 [30] 从钝顶节旋藻中分离得到新型ACE抑制肽PTGNPLSP,其ACE抑制活性的IC50值为1.54 mg/mL。Oh等 [31] 从比目鱼中发现了具有ACE抑制活性的降压肽。Forghani等 [32] 从刺参中发现了降压活性好的多肽CRQNTLGHNTQTSIAQ、VSRHFASYAN和EVSQGRP,其IC50值分别为0.21、0.08和0.05 mM。Rao等 [33] 从鸡蛋清溶菌酶中获得三种ACE抑制肽(MKR、RGY和VAW)。Li等 [34] 从剃刀蛤中分离得到新型ACE抑制肽VQY,为竞争性ACE抑制剂。Khueychai等 [35] 从鸵鸟蛋清的卵清蛋白中获得氨基酸序列为YV的多肽,试验发现为竞争性抑制剂,且均无细胞毒性作用。Toopcham等 [36] 发现新型ACE抑制肽MCS,其IC50值为0.29 µM。Lee等 [37] 从牛肉肌原纤维蛋白获得ACE抑制肽Leu-Ile-Val-Gly-Ile-Ile-Arg-Cys-Val,对自发性高血压大鼠试验中发挥降低收缩压,起到降压作用。Sonklin等 [38] 用菠萝蛋白酶水解绿豆,鉴定出5种降压肽(LPRL, YADLVE, LRLESF, HLNVVHEN和PGSGCAGTDL)。Zhang等 [39] 从小麦面筋中分离得到羧基端含色氨酸的降压肽SAGGYIW和APATPSFW,有很好的抑制活性。Tu等 [40] 从酪蛋白水解产物中获得一种新型ACE抑制肽NMAINPSKENLCSTFCK,有很好的活性。此外,在厚壳贻贝、南极磷虾、小黄鱼、罗非鱼、石鱼也分离得到了具有较好的抑制ACE活性的降压肽,为食源性降压药物的开发提供基础。

3.3. 抗肿瘤作用

肿瘤是我们人类社会现在面临的最难医治的疾病之一,对人类的生命健康产生很大的威迫。目前使用的抗肿瘤药物多为细胞毒类化疗药物,治疗过程中对癌细胞选择性低,靶向性弱,副作用强,通常还会损害机体健康的细胞和组织,导致毒副作用较大。肽已成为治疗许多人类疾病(包括肿瘤)的新颖和有前途的药物。在癌症的治疗中,它们可以直接用作生物活性治疗剂,使得肿瘤生长减少,还可以用作药物递送系统,促进药物通过细胞和组织屏障,提高药物治疗剂对肿瘤细胞的选择性。相对于标准化学治疗剂,肽类药物的优势是多方面的,包括易于合成,作用效果高效,副作用减弱,生产成本低等。不同类型的肽进行的大量临床前评估,结果表明在一些肿瘤模型中发现一些有效的分子,为治疗脑肿瘤和转移瘤开辟了新的前景 [41] 。

Lin [42] 等根据蛋白质组学和生物信息学分析,将CD151 (白细胞分化抗原151)确定为理想的潜在肿瘤相关抗原。其通过激活淋巴细胞和随后的靶向细胞毒性,触发了针对H22肝癌和4T1乳腺癌肺转移的主动抗肿瘤免疫。由此引发的抗肿瘤活性免疫可能是抑制癌症进展的有效且安全的方法。多肽GK-1可促进抗黑素瘤CD8 T细胞反应 [43] ,诱导树突状细胞上程序性死亡受体1和细胞程序性死亡–配体1的表达降低,降低肿瘤负荷,通过该机理对治疗癌症起作用。Gurung等 [44] 研究结果表明多肽CLQKTPKQC和CVRARTR通过增强抗肿瘤免疫力来抑制肿瘤的生长。多肽Arg-Gly-Asp (RGD)可用于肿瘤的靶向治疗。Umayaparvathi等 [45] 通过酶解牡蛎制备出对癌细胞有作用的多肽,能促使癌细胞凋亡,细胞DNA也会因此得到损害,但对正常细胞无毒副作用。此外,鲨鱼角鲨软骨、文蛤、鲟鱼软骨、鲍鱼等都发现了抗肿瘤活性较好的活性多肽 [46] [47] [48] 。

3.4. 抗菌作用

在过去的几十年中,具有独特抗菌机制的肽类抗菌产品引起了人们广泛的关注 [49] 。它们可以有效降低细菌产生耐药性的可能性,并且具有生物相容性,因此具有很大的价值和发展前景。目前来说,抗菌肽可用于抗菌剂,伤口愈合剂,防腐剂,抗菌涂层等 [50] ,提高生物利用度。

Song等从 [51] 咸菜乳酸菌培养物中分离纯化得到新型的抗菌肽NQGPLGNAHR,其IC50值为0.957 mg/mL。Raghavan等 [52] 从海洋烟曲霉BTMF9中纯化出一种称为MFAP9的细胞外热稳定抗菌肽,功能分析显示该肽对圆形芽孢杆菌具有强的抗菌活性,最低抑菌浓度(MIC)和最小杀菌浓度(MBC)值分别为0.525 μg/mL和4.2 μg/mL。Muhialdin等 [53] 从苦豆中发现了EAKPSFYLK、PVNNNAWAYATNFVPGK和AIGIFVKPDTAV这3种肽,在浓度(1000, 500, 250和125 μg/mL)下,发现其对多种病菌表现出抗菌活性,其中包括大肠杆菌,金黄色葡萄球菌。Zhou等 [54] 人从中国的大型黄花鱼(Larimichthys crocea)中提取出Lc-NKlysin-1和Lc-NK-lysin-2这两种肽,都显示出较强的抗菌活性。Li等 [55] 人从硬骨鱼(Plecoglossus altivelis)中发现抗菌肽PaLEAP-2,研究表明其在体外对多种细菌表现出选择性的抗菌活性。刘冬冬等 [56] 从条斑紫菜蛋白酶解产物中得到抑菌肽(Phe-Phe-Asp-Asp),试验发现该肽对金黄色葡萄球菌抑制作用较好,其MIC为0.25 mg/mL。

3.5. 免疫调节作用

免疫系统是机体重要的生理防御系统,免疫系统不平衡会影响机体的免疫应答,从而导致各种疾病的发生。巨噬细胞是生物体中非常重要的免疫细胞,在机体的生命周期中十分重要,具有抗感染、调节组织炎症的发展等作用。目前,临床上使用的免疫调节药物大多为合成品,具有副作用,还可能影响免疫系统,从而增加感染的风险,因此,我们期望能在海洋中寻找具备免疫调节的活性肽。

研究发现,海洋胶原肽能促进T细胞的免疫功能,激活机体免疫功能,给我们带来新的思路 [57] 。Yang等 [58] 从鲑鱼中制备得海洋寡肽(MOP),对小鼠进行试验,发现它能增强淋巴细胞的增殖能力,无吞噬能力的差异,增强小鼠免疫力。Ravallec-Plé等 [59] 从鳕鱼肉中酶解得到具有胃泌素反应性的胶原肽,具有免疫活性。Li等 [60] 从青蛤中得到Arg-Val-Ala-Pro-Glu-Glu-His-Pro-Val-Glu-Gly-Arg-Tyr-Leu-Val多肽(SCSP),该肽可以增强巨噬细胞RAW 264.7的吞噬作用,增加NO (一氧化氮),肿瘤坏死因子-α、白细胞介素6、白细胞介素1β等产生。Wu等 [61] 从小麦胚芽球蛋白中提取到新型肽,纯化得到序列为Glu-Cys-Phe-Ser-Thr-Ala (ECFSTA),对其进行免疫评估,发现其可以激活巨噬细胞,可作为免疫调节剂。Xu等 [62] 从海洋生物中华茅针中发现免疫调节肽Tyr-Val-Met-Arg-Phe (YVMRF),具有免疫调节活性。

3.6. 抑制脂肪酶作用

肥胖和脂肪酸代谢紊乱是全球流行病,并且在成年人群中出现越来越频繁,这是能量摄入和支出长期不平衡所产生。Zlotek等 [63] 发现多肽GQLGEHGGAGM和GEHGGAGMGGGQFQPV有很好的脂肪酶抑制作用。Saito等 [64] 评估鱼皮胶原蛋白对脂质分布的影响,发现给肽组总脂质水平低,说明该胶原肽能影响脂质吸收与代谢,具有脂肪酶抑制作用。

3.7. 降血糖作用

新陈代谢的失调会导致代谢性疾病,我们可以通过限制食品中糖释放来降血糖。Wang等 [65] 从大豆中酶解得到其序列为LLPLPVLK、SWLRL和WLRL的葡糖苷酶抑制肽,具有很好的活性。Berti等 [66] 从大鼠附睾脂肪组织中提取出十种肽,发现可以与特定蛋白结合,促进葡萄糖的摄取,从而发挥降血糖作用。

3.8. 其他活性作用

生物活性肽还有其他多种活性,如抗凝血、免疫调节、降血脂、抗疲劳、防治骨质疏松、抗病毒 [67] [68] [69] [70] [71] 等活性。

4. 生物活性肽的应用

活性肽具有较好的酸、碱热稳定性,具有较强的吸湿、保湿效果,水溶性及粘度随浓度变化迟缓等优点,很多活性肽还具有生理功效,因而易于作为功能因子添加在食品中 [72] 。其中,多肽易消化吸收的特点表明了它能够迅速供给机体能量,促进脂质代谢和恢复体力,故可用于制备运动员用食品,如蚕蛹肽、大豆多肽等 [73] 。生物活性肽安全性高、生理功能多样、生物利用率高的优势,使其在军用功能性食品中具有广阔的应用前景。目前,活性肽已在我军的军用压缩干粮、体力恢复剂、能量棒等产品中得到应用,其功效明显 [74] 。

生物活性肽在饮食中适当添加不仅可以调节生理功能,还可以帮助个体预防疾病,减少对药物治疗的依赖从而降低全球医疗保健成本,因此在特医食品应用领域受到越来越多的关注。如应用在肿瘤特医食品中,可以通过调节癌细胞的释放、氧化应激反应、癌症相关信号通路及其转录因子的表达、调控炎症因子释放及提高体内总蛋白水平等作用机制来发挥抗肿瘤作用。如于凤梅等研究的海洋肽制剂可使患者的TP、Alb、球蛋白等内脏蛋白指标均升高 [75] ;梁江等研究的海洋胶原肽可使小鼠血清超氧化物歧化酶(superoxide dismutase, SOD)和谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)活性增加 [76] ;CAKIR等研究的羊奶乳清蛋白肽制品可调节癌细胞能量代谢机制、氧化应激信号转导机制 [77] 。除此之外,还可以在在胃肠疾病特医食品、糖尿病特医食品、在肌肉衰减综合症特医食品等方面推广应用。

随着医学、药学、医学免疫学以及分子药理学理论及技术的不断发展,人们对多肽类物质的生物活性有了更深刻的认识,发现具有生物活性的多肽类物质可以在保健食品中推广应用。如生物活性肽在抗氧化类保健食品、增强免疫力类保健食品、辅助降血脂、降血糖、降血压类保健食品、增加骨密度保健食品、缓解体力疲劳保健食品、延缓衰老保健品中均有广泛应用 [78] 。

5. 结论与展望

综上所述,生物活性肽的发现开创了一个新研究热潮。尽管目前对生物肽的研究大部分仍处于初级试验阶段,深入系统研究相对较少,但这些相对较少的对生物活性肽的基础性研究已经取得较大进展,也引起越来越多的人重视肽类产品的开发和利用,同时对生物活性肽的吸收、转运、活性机制等的研究也日渐深入。

生物活性肽是功能食品、特医食品、保健食品、药品的一种重要原料,但诸多问题亟待解决。首先,确保多肽进入体内后不被胃肠道蛋白酶分解并在血液中持续存在发挥其生物活性的能力,是研究者最具挑战性的难题;其次,迫切需要更多的体内研究来证明不同肽生物活性的有效性;最后,多肽提纯步骤在工业上用于大规模生产时,需要再完善。另一方面,虽然特医食品的作用和影响深远,但我国公众对特医食品的认知水平仍处于较低状态,绝大多数公民不知道特医食品的存在,只有儿科、营养科和保健科的医生相对熟知。因此,提高产品品质、提高认知、紧密结合临床需求、优化生产工艺流程,寻找更广泛、价格低廉的优质替代源等都至关重要。

总之,生物活性肽的研究与开发将成为各个领域的重点,而且具有十分广阔的发展前景,值得期待。

基金项目

本文由国家大学生创新创业训练计划项目(No. 202110340026 & 202210340028)资助。

NOTES

*通讯作者。

参考文献

[1] Shazly, A.B., He, Z., El-Aziz, M.A., et al. (2017) Fractionation and Identification of Novel Antioxidant Peptides from Buffalo and Bovine Casein Hydrolysates. Food Chemistry, 232, 753-762.
https://doi.org/10.1016/j.foodchem.2017.04.071
[2] Liu, W.-Y., Zhang, J.-T., Miyakawa, T., et al. (2021) Antioxidant Properties and Inhibition of Angiotensin-Converting Enzyme by Highly Active Peptides from Wheat Gluten. Scientific Reports, 11, Article No. 5206.
https://doi.org/10.1038/s41598-021-84820-7
[3] 林梦君, 宋晓艳, 韩江升, 闫华. 生物活性多肽产品开发及应用进展[J]. 山东化工, 2020, 49(20): 53-54.
[4] 聂艳峰, 陈伟, 王娟, 等. 来源于植物复合生物多肽的提取及其护肤功效研究[J]. 广东化工, 2020, 47(20): 27-28.
[5] 王东升, 谢晓艾, 王蓓, 等. 蚓酶多肽抑菌营养液在设施蔬菜上的应用效果[J]. 北方园艺, 2020(18): 58-63.
[6] 梁金钟, 范洪臣, 程丽, 王淑杰. 微生物液态发酵法生产大豆蛋白活性肽的研究[J]. 食品与发酵工业, 2008, 34(1): 88-92.
[7] 马丽杰. 发酵法制备鳕鱼皮胶原多肽及脱腥机理研究[D]: [硕士学位论文]. 烟台: 烟台大学, 2013.
[8] 刘旺旺. 羊胎盘提取残留物高质化利用研究[D]: [硕士学位论文]. 广州: 华南农业大学, 2016.
[9] Routray, W. and Orsat, V. (2012) Microwave-Assisted Extraction of Flavonoids: A Review. Food and Bioprocess Technology, 5, 409-424.
https://doi.org/10.1007/s11947-011-0573-z
[10] Popper, Z.A., Michel, G., Hervé, C., et al. (2010) Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants. Annual Review of Plant Biology, 62, 567-590.
https://doi.org/10.1146/annurev-arplant-042110-103809
[11] Rodríguez-Díaz, J.C., Kurozawa, L.E., Netto, F.M. and Hubinger, M.D. (2011) Optimization of the Enzymatic Hydrolysis of Blue Shark Skin. Journal of Food Science, 76, 938-949.
https://doi.org/10.1111/j.1750-3841.2011.02318.x
[12] Song, R., Wei, R., Zhang, B. and Wang, D. (2012) Optimization of the Antibacterial Activity of Half-Fin Anchovy (Setipinna taty) Hydrolysates. Food and Bioprocess Technology, 5, 1979-1989.
https://doi.org/10.1007/s11947-010-0505-3
[13] 王成成. 罗非鱼皮明胶肽抗氧化活性及对细胞氧化应激的保护作用[D]: [硕士学位论文]. 大连: 大连工业大学, 2017.
[14] Chen, J., Hu, Y., Wang, J., Hu, H. and Cui, H. (2016) Combined Effect of Ozone Treatment and Modified Atmosphere Packaging on Antioxidant Defense System of Fresh-Cut Green Peppers. Journal of Food Processing and Preservation, 40, 1145-1150.
https://doi.org/10.1111/jfpp.12695
[15] Butterfield, D.A., Castegna, A., Pocernich, C.B., et al. (2002) Nutri-tional Approaches to Combat Oxidative Stress in Alzheimer’s Disease. Journal of Nutritional Biochemistry, 13, 444-461.
https://doi.org/10.1016/S0955-2863(02)00205-X
[16] Wen, C., Zhang, J., Zhang, H., Duan, Y. and Ma, H. (2020) Plant Protein-Derived Antioxidant Peptides: Isolation, Identification, Mechanism of Action and Application in Food Systems: A Review. Trends in Food Science & Technology, 105, 308-322.
https://doi.org/10.1016/j.tifs.2020.09.019
[17] Solomon, A.T. and Shimelis, A.E. (2020) Production and Processing of Antioxidant Bioactive Peptides: A Driving Force for the Functional Food Market. Heliyon, 8, e04765.
https://doi.org/10.1016/j.heliyon.2020.e04765
[18] Zhang, J., Du, H,Y., Zhang, G.N., et al. (2020) Identifica-tion and Characterization of Novel Antioxidant Peptides from Crucian Carp (Carassius auratus) Cooking Juice Released in Simulated Gastrointestinal Digestion by UPLC-MS/MS and in Silico Analysis. Journal of Chromatog-raphy B, 1136, Article ID: 121893.
https://doi.org/10.1016/j.jchromb.2019.121893
[19] Bashir, K.M.I., Sohn, J.H., Kim, J.S. and Choi, J.S. (2020) Identification and Characterization of Novel Antioxidant Peptides from Mackerel (Scomber japonicus) Muscle Protein Hydrolysates. Food Chemistry, 323, Article ID: 126809.
https://doi.org/10.1016/j.foodchem.2020.126809
[20] Hu, X., Yang, X.Q., Wang, T.T., et al. (2020) Purifica-tion and Identification of Antioxidant Peptides from Round Scad (Decapterus maruadsi) Hydrolysates by Con-secutive Chromatography and Electrospray Ionization-Mass Spectrometry. Food and Chemical Toxicology, 135, Article ID: 10882.
https://doi.org/10.1016/j.fct.2019.110882
[21] Najafian, L. and Babji, A.S. (2019) Purifi-cation and Identification of Antioxidant Peptides from Fermented Fish Sauce (Budu). Journal of Aquatic Food Product Technology, 28, 14-24.
https://doi.org/10.1080/10498850.2018.1559903
[22] Wu, D., Sun, N., Ding, J., Zhu, B. and Lin, S. (2019) Evaluation and Structure-Activity Relationship Analysis of Antioxidant Shrimp Pep-tides. Food & Function, 10, 5605-5615.
https://doi.org/10.1039/C9FO01280J
[23] Zhang, B., Wang, H., Wang, Y., Yu, Y., Liu, J., Liu, B. and Zhang, T. (2019) Identification of Antioxidant Peptides Derived from Egg-White Protein and Its Protective Effects on H2O2-Induced Cell Damage. International Journal of Food Science & Tech-nology, 54, 2219-2227.
https://doi.org/10.1111/ijfs.14133
[24] Agrawal, H., Robin, J. and Gupta, M. (2019) Purification, Identification and Characterization of Two Novel Antioxidant Peptides from Finger Millet (Eleusine coracana) Protein Hydrolysate. Food Research International, 120, 697-707.
https://doi.org/10.1016/j.foodres.2018.11.028
[25] Wang, N., Wang, W., Sadiq, F.A., et al. (2020) Involve-ment of Nrf2 and Keap1 in the Activation of Antioxidant Responsive Element (ARE) by Chemopreventive Agent Peptides from Soft-Shelled Turtle. Process Biochemistry, 92, 174-181.
https://doi.org/10.1016/j.procbio.2019.12.022
[26] Gao, Q.N., Xu, L. and Cai, J. (2020) New Drug Targets for Hypertension: A Literature Review. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Ar-ticle ID: 166037.
https://doi.org/10.1016/j.bbadis.2020.166037
[27] Shiozaki, K., Shiozaki, M., Masuda, J., et al. (2010) Identification of Oyster-Derived Hypotensive Peptide Acting as Angiotensin-I-Converting Enzyme In-hibitor. Fisheries Science, 76, 865-872.
https://doi.org/10.1007/s12562-010-0264-0
[28] 冯立婷. 酶解制备贻贝抗血栓肽及其作用机制初探[D]. 哈尔滨: 哈尔滨工业大学., 2017.
[29] Liao, P.Y., Lan, X.D., Liao, D.K., et al. (2018) Isolation and Characterization of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from the Enzymatic Hydrolysate of Carapax Tri-onycis (the Shell of the Turtle Pelodiscus sinensis). Journal of Agricultural and Food Chemistry, 66, 7015-7022.
https://doi.org/10.1021/acs.jafc.8b01558
[30] Wang, K., Luo, Q., Hong, H., Liu, H. and Luo, Y. (2020) Novel Antioxidant and ACE Inhibitory Peptide Identified from Arthrospira platensis Protein and Stability against Ther-mal/pH Treatments and Simulated Gastrointestinal Digestion. Food Research International, 139, Article ID: 109908.
https://doi.org/10.1016/j.foodres.2020.109908
[31] Oh, J.-Y., Kim, E.-A., Lee, H., et al. (2019) Antihyper-tensive Effect of Surimi Prepared from Olive Flounder (Paralichthys olivaceus) by Angiotensin-I Converting En-zyme (ACE) Inhibitory Activity and Characterization of Ace Inhibitory Peptides. Process Biochemistry, 80, 164-170.
https://doi.org/10.1016/j.procbio.2019.01.016
[32] Forghani, B., Zarei, M., Ebrahimpour, A., et al. (2016) Purification and Characterization of Angiotensin Converting Enzyme-Inhibitory Peptides Derived from Stichopus horrens: Stability Study against the ACE and Inhibition Kinetics. Journal of Functional Foods, 20, 276-290.
https://doi.org/10.1016/j.jff.2015.10.025
[33] Rao, S.-Q., Ju, T., Sun, J., et al. (2012) Purification and Char-acterization of Angiotensin I-Converting Enzyme Inhibitory Peptides from Enzymatic Hydrolysate of Hen Egg White Lysozyme. Food Research International, 46, 127-134.
https://doi.org/10.1016/j.foodres.2011.12.005
[34] Li, Y., Sadiq, F.A., Fu, L., et al. (2016) Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Enzymatic Hydrolysates of Razor Clam Si-nonovacula constricta. Marine Drugs, 14, 110-125.
https://doi.org/10.3390/md14060110
[35] Khueychai, S., Jangpromma, N., Choowongkomon, K., et al. (2018) A Novel Ace Inhibitory Peptide Derived from Alkaline Hydrolysis of Ostrich (Struthio camelus) Egg White Oval-bumin. Process Biochemistry, 73, 235-245.
https://doi.org/10.1016/j.procbio.2018.07.014
[36] Toopcham, T., Mes, J.J., Wichers, H.J., Roytrakul, S. and Yongsawatdigul, J. (2017) Bioavailability of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides Derived from Virgibacillus halodenitrificans SK1-3-7 Proteinases Hydrolyzed Tilapia Muscle Proteins. Food Chemistry, 220, 190-197.
https://doi.org/10.1016/j.foodchem.2016.09.183
[37] Lee, S.Y. and Hur, S.J. (2019) Purification of Novel Angiotensin Converting Enzyme Inhibitory Peptides from Beef Myofibrillar Proteins and Analysis of Their Effect in Spontaneously Hypertensive Rat Model. Biomedicine & Pharmacotherapy, 116, Article ID: 109046.
https://doi.org/10.1016/j.biopha.2019.109046
[38] Sonklin, C., Alashi, M.A., Laohakunjit, N., Kerdchoechuen, O. and Aluko, R.E. (2019) Identification of Antihypertensive Peptides from Mung Bean Protein Hydrolysate and Their Effects in Spontaneously Hypertensive Rats. Journal of Functional Foods, 64, Article ID: 103635.
https://doi.org/10.1016/j.jff.2019.103635
[39] Zhang, P., Chang, C., Liu, H.J., et al. (2020) Identification of Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Wheat Gluten Hydrolysate by the Protease of Pseudomonas aeruginosa. Journal of Functional Foods, 65, Article ID: 103751.
https://doi.org/10.1016/j.jff.2019.103751
[40] Tu, M., Wang, C., Chen, C., et al. (2018) Identification of a Novel ACE-Inhibitory Peptide from Casein and Evaluation of the Inhibitory Mechanisms. Food Chemistry, 256, 98-104.
https://doi.org/10.1016/j.foodchem.2018.02.107
[41] Guidotti, G., Brambilla, L. and Rossi, D. (2019) Peptides in Clinical Development for the Treatment of Brain Tumors. Current Opinion in Pharmacology, 47, 102-109.
https://doi.org/10.1016/j.coph.2019.02.007
[42] Lin, W.Z., Liu, J., Chen, J.H., et al. (2019) Peptides of Tetraspanin Oncoprotein CD151 Trigger Active Immunity against Primary Tumor and Experimental Lung Me-tastasis. EBioMedicine, 49, 133-144.
https://doi.org/10.1016/j.ebiom.2019.10.025
[43] Rodríguez-Rodríguez, N., Madera-Salcedo, I.K., Buga-rin-Estrada, E., et al. (2020) The Helminth-Derived Peptide GK-1 Induces an Anti-Tumoral CD8 T Cell Response Associated with Downregulation of the PD-1/PD-L1 Pathway. Clinical Immunology, 212, Article ID: 108240.
https://doi.org/10.1016/j.clim.2019.07.006
[44] Gurung, S., Khan, F., Gunassekaran, G.R., et al. (2020) Phage Display-Identified PD-L1-Binding Peptides Reinvigorate T-Cell Activity and Inhibit Tumor Progression. Bio-materials, 247, Article ID: 119984.
https://doi.org/10.1016/j.biomaterials.2020.119984
[45] Umayaparvathi, S., Meenakshi, S., Vimalraj, V., et al. (2014) Antioxidant Activity and Anticancer Effect of Bioactive Peptide from Enzymatic Hydrolysate of Oyster (Saccostrea cucullata). Biomedicine & Preventive Nutrition, 4, 343-353.
https://doi.org/10.1016/j.bionut.2014.04.006
[46] 郑兰红. 鲨鱼软骨抗血管生成多肽的分离纯化及其生物活性[D]: [博士学位论文]. 青岛: 中国科学院研究生院(海洋研究所), 2007.
[47] 武瑞赟, 杜怡丽, 黄雨霞, 等. 鲟鱼软骨酶解条件优化及酶解物的体外抗肿瘤活性[J]. 中国农业大学学报, 2020, 25(1): 131-141.
[48] 魏宁, 林秀坤, 牛荣丽, 李红玉. 文蛤中抗肿瘤活性物质研究概况[J]. 食品与药品, 2007, 9(11): 63-65.
[49] Tong, J.R., Zhang, Z.H., Wu, Q., et al. (2021) Antibacterial Peptides from Seafood: A Promising Weapon to Combat Bacterial Hazards in Food. Food Control, 125, Article ID: 108004.
https://doi.org/10.1016/j.foodcont.2021.108004
[50] 贾艳丽, 仇燕. 抗菌肽的抗菌机制及其在医药中的应用前景[J]. 河北科技大学学报, 2021, 158(1): 71-78.
[51] Song, J.J., Peng, S.G., Yang, J., Zhou, F. and Suo, H.Y. (2021) Isolation and Identification of Novel Antibacterial Peptides Produced by Lactobacillus fermentum SHY10 in Chinese Pickles. Food Chemistry, 348, Ar-ticle ID: 129097.
https://doi.org/10.1016/j.foodchem.2021.129097
[52] Raghavan, R.M.K., Pannippara, M.A., Kesav, S., et al. (2020) MFAP9: Characterization of an Extracellular Thermostable Antibacterial Peptide from Marine Fungus with Biofilm Eradication Potential. Journal of Pharmaceutical and Biomedical Analysis, 194, Article ID: 113808.
https://doi.org/10.1016/j.jpba.2020.113808
[53] Muhialdin, B.J, Rani, N.F.A. and Hussin, A.S.B. (2020) Identification of Antioxidant and Antibacterial Activities for the Bioactive Peptides Generated from Bitter Beans (Parkia speciosa) via Boiling and Fermentation Processes. LWT, 131, Article ID: 109776.
https://doi.org/10.1016/j.lwt.2020.109776
[54] Zhou, Q.-J., Wang, J., Liu, M., et al. (2016) Identification, Expression and Antibacterial Activities of an Antimicrobial Peptide NK-Lysin from a Marine Fish Larimichthys crocea. Fish & Shellfish Immunology, 55, 195-202.
https://doi.org/10.1016/j.fsi.2016.05.035
[55] Li, H.-X., Lu, X.-J., Li, C.-H. and Chen, J. (2015) Molecular Characterization of the Liver-Expressed Antimicrobial Peptide 2 (LEAP-2) in a Teleost Fish, Plecoglossus altivelis: Antimicrobial Activity and Molecular Mechanism. Molecular Immunology, 65, 406-415.
https://doi.org/10.1016/j.molimm.2015.02.022
[56] 刘冬冬, 周锋, 周楠迪, 田亚平. 条斑紫菜蛋白酶解产物中抗菌肽的纯化及特征[J]. 天然产物研究与开发, 2014, 26(12): 1921-1925.
[57] 王宝周. 鱼皮胶原肽的制备及其抗衰老的研究[D]: [硕士学位论文]. 厦门: 集美大学, 2014.
[58] Yang, R.Y., Zhang, Z.F., Pei, X.R., et al. (2009) Immunomodulatory Effects of Marine Oligopeptide Preparation from Chum Salmon (Oncorhynchus keta) in Mice. Food Chemistry, 113, 464-470.
https://doi.org/10.1016/j.foodchem.2008.07.086
[59] Ravallec-Plé, R. and Wormhoudt, A.V. (2003) Secret-agogue Activities in Cod (Gadus morhua) and Shrimp (Penaeus aztecus) Extracts and Alcalase Hydrolysates De-termined in AR4-2J Pancreatic Tumour Cells. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 134, 669-679.
https://doi.org/10.1016/S1096-4959(03)00026-5
[60] Li, W., Ye, S.W., Zhang, Z.W., et al. (2019) Purification and Characterization of a Novel Pentadecapeptide from Protein Hydrolysates of Cyclina sinensis and Its Im-munomodulatory Effects on RAW264.7 Cells. Marine Drugs, 17, 30-46.
https://doi.org/10.3390/md17010030
[61] Wu, W.J., Zhang, M.M., Ren, Y., et al. (2017) Characterization and Immunomodulatory Activity of a Novel Peptide, ECFSTA, from Wheat Germ Globulin. Journal of Agricultural & Food Chemistry, 65, 5561-5569.
https://doi.org/10.1021/acs.jafc.7b01360
[62] Xu, B.G., Ye, L., Tang, Y.P., et al. (2020) Preparation and Pu-rification of an Immunoregulatory Peptide from Stolephorus chinensis of the East Sea of China. Process Bio-chemistry, 98, 151-159.
https://doi.org/10.1016/j.procbio.2020.08.011
[63] Zlotek, U., Jakubczyk, A., Rybczyńska-Tkaczyk, K., et al. (2020) Characteristics of New Peptides GQLGEHGGAGMG, GEHGGAGMGGGQFQPV, EQGFLPGPEESGR, RLARAGLAQ, YGNPVGGVGH, and GNPVGGVGHGTTGT as Inhibitors of Enzymes Involved in Metabolic Syndrome and Antimicrobial Potential. Molecules, 25, Article No. 2492.
https://doi.org/10.3390/molecules25112492
[64] Saito, M., Kiyose, C., Higuchi, T., et al. (2009) Effect of Collagen Hydrolysates from Salmon and Trout Skins on the Lipid Profile in Rats. Journal of Agricultural & Food Chemistry, 57, 10477-10482.
https://doi.org/10.1021/jf902355m
[65] Wang, R.C., Zhao, H.X., Pan, X.X., et al. (2019) Preparation of Bioactive Peptides with Antidiabetic, Antihypertensive, and Antioxidant Activities and Iden-tification of α-Glucosidase Inhibitory Peptides from Soy Protein. Food Science & Nutrition, 7, 1848-1856.
https://doi.org/10.1002/fsn3.1038
[66] Berti, D.A., Russo, L.C., Castro, L.M., et al. (2012) Identification of Intracellular Peptides in Rat Adipose Tissue: Insights into Insulin Resistance. Proteomics, 12, 2668-2681.
https://doi.org/10.1002/pmic.201200051
[67] 熊雅茹, 傅红, 杨方. 阿胶多肽的高分辨质谱鉴定及活性研究[J]. 天然产物研究与开发, 2020, 32(8): 83-91.
[68] Saito, M., Kiyose, C., Higuchi, T., Uchida, N. and Suzuki, H. (2009) Effect of Collagen Hydrolysates from Salmon and Trout Skins on the Lipid Profile in Rats. Journal of Ag-ricultural & Food Chemistry, 57, 10477-10482.
https://doi.org/10.1021/jf902355m
[69] 陈丽丽, 赵利, 白春清, 等. 草鱼多肽的抗氧化活性与抗疲劳作用研究[J]. 河南工业大学学报(自然科学版), 2015, 36(6): 74-82.
[70] Xu, Y.J., Han, X.L. and Yong, L. (2010) Effect of Marine Collagen Peptides on Long Bone Development in Growing Rats. Journal of the Science of Food and Agriculture, 90, 1585-1491.
https://doi.org/10.1002/jsfa.3972
[71] Lalani, S., Gew, L.T. and Poh, C.L. (2021) Antiviral Peptides against Enterovirus A71 Causing Hand, Foot and Mouth Disease. Peptides, 136, Article ID: 170443.
https://doi.org/10.1016/j.peptides.2020.170443
[72] Li-Chan, E.C.Y. (2015) Bioactive Peptides and Protein Hydrolysates: Research Trends and Challenges for Application as Nutraceuticals and Functional Food In-gredients. Current Opinion in Food Science, 1, 28-37.
https://doi.org/10.1016/j.cofs.2014.09.005
[73] Chen, J. (2016) Status Quo and Advances in Sports Food Study and Practice in China. Advance Journal of Food Science and Technology, 10, 451-454.
https://doi.org/10.19026/ajfst.10.2158
[74] Daouda, R., Duboisa, V., Bors-Dodita, L., et al. (2005) New An-tibacterial Peptide Derived from Bovine Hemoglobin. Peptides, 26, 713-719.
https://doi.org/10.1016/j.peptides.2004.12.008
[75] 于凤梅, 饶志勇, 柳园, 等. 海洋肽对恶性肿瘤化学治疗患者营养状况及免疫功能的影响[J]. 华西医学, 2011, 26(8): 1203-1207.
[76] 梁江, 裴新荣, 王楠, 等. 海洋胶原肽长期喂养对SD大鼠自发肿瘤的抑制作用[J]. 食品与发酵工业, 2011, 37(5): 1-6.
[77] Cakir, B. and Tunali-Akbay, T. (2021) Potential Anticarcinogenic Effect of Goat Milk-Derived Bioactive Peptides on HCT-116 Human Colorectal Carcinoma Cell Line. Analytical Biochemistry, 622, Article ID: 114166.
https://doi.org/10.1016/j.ab.2021.114166
[78] 樊蕊, 徐美虹, 王军波, 李勇. 生物活性肽在保健/功能食品中的应用[C]//中国疾病预防控制中心达能营养中心. 营养健康新观察(第四十九期): 肽营养与健康: 2018年卷. 北京: 达能营养中心, 2018: 19-25.