抗转铁蛋白受体抗体跨血脑屏障改造策略
Modification Strategies of Anti-Transferrin Receptor Antibody across the Blood-Brain Barrier
DOI: 10.12677/PI.2023.123019, PDF, HTML, XML, 下载: 252  浏览: 922 
作者: 瞿 成, 刘 煜*:中国药科大学,生命科学与技术学院,江苏 南京
关键词: 血脑屏障中枢神经系统疾病转铁蛋白受体1抗体改造Blood-Brain Barrier Central Nervous System Diseases Transferrin Receptor 1 Antibody Modification
摘要: 实现有效的跨血脑屏障递送是开发治疗中枢神经系统疾病药物的关键一步,特别是近几年发展迅速的生物药物,如抗体、核酸药物和酶等,在给药以后,这些生物大分子基本上无法进入大脑,需要开发高效的跨脑转运系统。研究人员发现脑毛细血管内皮细胞上的一些转运蛋白具有药物递送的潜力,转铁蛋白受体1(Transferrin receptor 1, TfR1)就是其中之一,多家医药公司或研究机构基于TfR1的跨BBB递送平台开发出了中枢神经系统疾病的治疗药物已经被批准上市或正在进行临床实验,这激发了脑部靶向药物的研发。本文旨在讨论具有跨BBB递送的TfR1抗体的改造,从而为高脑转运效率的TfR1抗体递送平台的开发提供理论基础。
Abstract: Effective delivery across the blood-brain barrier is a key step in the development of drugs for the treatment of central nervous system diseases. In particular, as the rapid development of biologic drugs in recent years, such as antibodies, nucleic acid drugs and enzymes, after administration, these biomacromolecules are basically unable to enter the brain, so it is necessary to develop an efficient trans-brain transport system. Researchers have found that some transporters on brain capillary endothelial cells have drug delivery potential, and transferrin receptor 1 (Transferrin receptor 1, TfR1) is one of them. Several pharmaceutical companies or research institutions have developed drugs for the treatment of central nervous system diseases based on the trans-BBB delivery platform of TfR1, which have been approved or are undergoing clinical trials. This has spurred the development of targeted drugs for the brain. This paper aims to discuss the modification of TfR1 antibodies with trans-BBB delivery, so as to provide a theoretical basis for the development of a TfR1 antibody delivery platform with high brain transport efficiency.
文章引用:瞿成, 刘煜. 抗转铁蛋白受体抗体跨血脑屏障改造策略[J]. 药物资讯, 2023, 12(3): 157-166. https://doi.org/10.12677/PI.2023.123019

1. 血脑屏障与转铁蛋白/转铁蛋白受体1转胞吞系统

血脑屏障(The blood-brain barrier, BBB)是一种特殊的结构、生理和生化屏障,它是中枢神经系统(central nervous system, CNS)中变化的血液环境与细胞外液间的第一层分界 [1] [2] [3] ,血脑屏障主要由脑毛细血管内皮细胞(Brain capillary endothelial cells, BECEs)组成,由细胞旁蛋白将毛细血管内皮细胞紧密连接在一起,并通过周细胞和胶质细胞相互作用维持这种紧密结构 [4] ,这种紧密结构阻断了任何形式的细胞旁路运输 [5] ,脑血管内皮细胞胞饮作用极弱 [5] ,因此跨血脑屏障非特异性转运极少。脑毛细血管被星形胶质细胞的足端包围,这些胶质细胞参与调节离子浓度和清除神经递质的过程 [6] 。周细胞是位于内皮细胞外腔的血管壁细胞 [7] ,星形胶质细胞终足包裹周细胞层 [8] [9] ,通过控制毛细血管直径来调节血流 [10] [11] [12] 。其他细胞成分如神经元和小胶质细胞也参与了血脑屏障的形成 [13] 。此外,BBB上还存在多种外排转运蛋白,例如P-糖蛋白(P-gp)、乳腺癌耐药蛋白(BCRP)和多药耐药蛋白-1 (MRP-1)等外排泵识别许多亲脂性化合物,并将其外排回血液中 [14] 。

血液中的分子只能通过自由扩散或者受体/转运体介导的运输才能通过血脑屏障 [15] ,小分子的自由扩散同时受到其极性和分子量的限制 [16] ,基本上血脑屏障只允许<400 Da的亲脂性小分子通过,而其他物质,如氨基酸、多肽和核苷可能通过载体介导的转运、受体介导的胞吞作用和/或吸附介导的胞吞作用进入大脑。血脑屏障通过严格限制物质的进出来维持中枢神经系统的稳态,它只允许选择性转运对大脑功能至关重要的分子,具体来说,98%以上的小分子药物和几乎100%的大分子药物都不能进入大脑 [17] ,注射治疗性抗体后,其在大脑中的水平仅相当于血浆水平的0.01~0.1% [18] [19] 。在过去的几十年中,生物药物如单克隆抗体等已成为药物研发领域极为重要的一部分,2022年全球十大畅销药物中,有6个属于生物药物 [20] ,包括辉瑞和BioNtech共同开发的新冠mRNA疫苗Comirnaty和Moderna开发的新冠mRNA疫苗Spikevax以及ABBVie公司的Humira、Merck & Co.公司的Keytruda、Bayer/Regeneron公司的Eylea和Johnson & Johnson公司的Stelara共4种抗体药物和抗体相关重组蛋白,但是这些药物没有一个是针对中枢神经系统疾病,需要高效的递送技术将生物药物应用到中枢神经系统疾病的治疗中,因此许多脑部输送技术已经被开发出来,并在临床前或临床水平中进行了研究,包括纳米颗粒 [21] 、脂质体 [22] 、囊泡 [23] 、肽缀合物 [24] 、病毒 [25] 和抗体等,其中属于非侵入性的转铁蛋白/转铁蛋白受体1 (Transferrin/Transferrin receptor 1, Tf/TfR1)转胞吞系统已经被研究了很长时间。

TfR1是一种Ⅱ型跨膜糖蛋白,主要与细胞铁的摄取有关,由两个90 kd的亚单位通过二硫键连接而成,每个亚单位可以结合一个Tf分子,Tf与其受体之间的结合反应是可逆的、依赖于pH值并受Tf中铁含量的影响:在细胞外生理pH下,TfR1对单铁Tf (monoferric)的亲和力低于对双铁Tf (diferric)的亲和力,对无铁Tf (apo-Tf)亲和力甚至更低,随着pH的降低,TfR1对apo-Tf的亲和力增加,在pH值为5~6时,与对diferricTf的亲和力一样高,因此,在细胞内的偏酸性部位,apo-Tf仍然与受体结合 [26] 。TfR1在脑微血管内皮细胞和神经元细胞表面均高度表达 [27] [28] ,据估计,人脑中几乎每个神经元都有自己的毛细血管 [29] ,人脑中毛细血管的总长度约为643.7公里,可用于分子运输的毛细血管表面积约为20平方米 [30] ,研究证明,结合TfR1的抗体能够以与Tf类似的转运过程被受体内吞转运,而且抗体可以从TfR1解离而释放到脑实质,说明TfR1介导的转胞吞系统具有跨血脑屏障运输的潜力,可能是通过血脑屏障向大脑输送药物最有效的方式之一。

2. TfR1抗体改造策略

在靶向CNS药物递送方面,TfR1抗体递送平台一直是当下的研究热点,已经有多款治疗亨特综合征(也称为粘多糖贮积症II型)、阿尔茨海默症、帕金森症或中风等疾病的药物获批上市或正在处于临床实验当中,而TfR1抗体无一例外地发挥着非常重要的跨BBB递送作用:2021年日本厚生劳动省批准了由JCR Pharmaceuticals (Ashiya,日本)基于J-Brain Cargo®平台开发的idursulfase beta (JR-141)上市,用于治疗亨特综合征;美国生物制药公司Denali Therapeutics基于Transport Vehicle (TV)平台开发的DNL310 [31] (或称ETV:IDS,是一种重组的艾杜糖-2-硫酸酯酶(IDS酶),其Fc区可结合TfR1,介导药物穿过血脑屏障,代替行使IDS酶功能)已进入临床实验阶段(NCT05371613);Hoffmann-La Roche公司在Gantenerumab的基础上使用Brainshuttle技术将结合人TfR1的Fab片段连接到抗体的Fc结构域,开发的RO7126209 [32] 属于Gantenerumab的加强版,RO7126209与构成血脑屏障的微血管内皮细胞上的TfR1结合,导致其内吞并释放到脑实质中,该药正在进行一项Ib/IIa期临床实验(NCT04639050)。

通过对TfR1介导的转胞吞机制的研究,提示研究人员在开发TfR1受体介导的脑部递送技术时需要注意几个关键点:1) TfR1是具有正常生理功能的一类受体,靶向TfR1的抗体的结合位点必须远离受体和天然配体结合位点,如TfR1的顶端结构域(apical domain);2) 抗体的亲和力必须有利于转运过程的顺利完成,即抗体能有效结合细胞膜上的受体,并在胞内顺利的从受体上解离,亲和力过低或者过高会导致抗体无法结合受体或者无法正常从受体上解离下来,从而影响转胞吞效率;3) 抗体结合TfR1受体后膜凹陷形成内吞小体,内体在胞内逐渐酸化,抗体应该具有一定的pH敏感性,保证在低pH值(pH 5.5)时能顺利从受体上解离,以此显著增强转胞吞作用;4) 根据递送药物的构型和大小合理选用不同构型的TfR1抗体(scFv、Fab或全抗等);5) 合理选择TfR1抗体的效价,单价和双价的抗体对受体亲和力、分子量和清除速率等均有一定差异,需要根据TfR1抗体的性质合理选择价态,以达到更高的转运效率,更合适的血浆半衰期;6) 考虑到TfR1广泛表达在多种细胞表面,如何降低由药物载体引起的副作用是药物开发必须解决的问题。结合已发表的研究结果,本文将具体阐述TfR1抗体的改造策略。

2.1. 抗体亲和力的调整

TfR1抗体亲和力和效价可以改变细胞内TfR1运输 [33] :高亲和力的二价TfR1抗体可导致抗体-TfR1复合物被转运到溶酶体中,导致复合物被降解和脑转运水平降低,而最佳亲和力和/或单价TfR1抗体具有更高的大脑转运效率。为了获得最高的转运效率,必须对TfR1抗体的亲和力进行一定调整,过高或过低的亲和力都不利于药物的转运。

早期研究发现,靶向TfR1的抗体及其偶联药物可集中分布到脑微血管内皮细胞血液侧,但抗体能否跨越血脑屏障仍是不确定的,YU YJ等人发现低或高剂量给药的高亲和力抗体在脑部富集,但无法有效进入到脑实质中,通过对抗体CDR区部分氨基酸进行丙氨酸突变以降低其亲和力,发现在治疗剂量(20 mg/kg)下,低亲和力抗体更容易穿越BBB进入到脑实质中,可能是因为低亲和力抗体比高亲和力抗体更容易与TfR1解离被释放到脑实质中 [33] 。Nga Bien-Ly等人研究了高亲和力抗体脑转运过程,发现高亲和力的TfR1抗体结合受体后改变了TfR1的细胞内运输命运,使得TfR1抗体–受体复合物被运送到溶酶体降解,降低了脑部TfR1的水平,并影响了其在BBB的转运能力,首次阐明了亲和力如何在细胞水平影响到转运过程 [34] ,这也能在一定水平上解释低亲和力抗体的高脑转运效率:低亲和力抗体易于从TfR1上解离并通过胞吐被输送到脑实质一侧,TfR1得以重新回到血液侧的细胞膜上开始下一轮转运,同时也使得抗体–受体复合物能更少地被运输到溶酶体,保证了脑部TfR1水平不受影响。在小鼠脑中,二价的抗TfR1单克隆抗体最高转胞吞效率的最佳亲和力为111 nM (IC50),剂量为20 mg/kg [33] ,但是最佳结合亲和力可能是呈现剂量依赖性的:在较高剂量(50 mg/kg)时,IC50值可能会更高(约588 nM) [34] [35] 。在50 mg/kg剂量时,单价抗人TfR单克隆抗体显示了类似的最佳亲和力范围(KD = ~270 nM),可在人TfR1转基因小鼠的大脑中实现高效率的转胞吞作用 [36] 。

抗体亲和力除了与CDR区具体氨基酸序列直接相关外,还与抗体价态有关,抗体价态越高,表现出的亲和力就越高,考虑到TfR1抗体在药物组成中主要发挥着转运的功能,其价态选择相较于治疗部更加灵活,scFv或者Fab等抗体片段表现出的亲和力均低于二价的全抗。此外,二价抗体能够交联细胞表面的多个TfR1二聚体,这可能会导致内体被分选到溶酶体降解途径,而不是通过胞饮进入大脑 [37] ,所以改善亲和力的第二种方法就是选择合适的抗原结合价。抗Aβ单克隆抗体Lecanemab [38] (BAN2401)由Eisai根据BioArctic (前身为BioArctic Neuroscience)的全球许可证与Biogen合作开发,用于治疗阿尔茨海默病,并于2023年1月6日在美国加速批准途径首次批准该适应症。RmAb158的是BAN2401重组鼠源前体,Greta Hultqvist [39] 等人将抗小鼠TfR1抗体8D3单链可变区片段(scFv8D3)连接于RmAb158两条轻链的C-末端,用一个短的接头(APGSYTGSAPG)在空间上阻碍二价结合TfR1二聚体,构建出一种双特异性融合蛋白,连接到RmAb158的两个scFv8D3将使TfR1的可用结合位点数量加倍,但仍能维持TfR的单价结合,与未经过改造的RmAb158相比,在治疗剂量(10 mg/kg)下RmAb158-scFv8D3的脑摄取增加了10倍。但这种改造还是有部分抗体表现出二价结合的性质,所以Greta Hultqvist等人对抗体进行了进一步的改造 [40] ,研究人员首先通过P(G4S)3接头将Fc(鼠IgG2c)的两个CH2-CH3结构域(包括铰链区)连接起来形成了单链可结晶片段(Single-Chain fragment crystallizable, scFc),再使用一个短接头(APGSGGGSAPG)连接scFv8D3构建出了纯单价TfR1结合蛋白scFc-scFv8D3,其血脑屏障渗透效率显著高于部分单价TfR1结合蛋白RmAb158-scFv8D3。将Aβ降解酶之一的Neprilysin (NEP)连接到scFcCH3的C末端,构建出的sNEP-scFc-scFv8D3 [41] 脑渗透能力是未经改造的Neprilysin的20倍,并且能显著降低了tg-ArcSwe小鼠(AD的转基因小鼠模型)血液中聚集的Aβ和在大脑中的单体和寡聚Aβ水平。Annie Arguello等人的研究也证明了IDS酶与中等亲和力的单价TfR1转运载体(ETV:IDS)融合后,显著提高MPS II小鼠模型的脑暴露水平、实质细胞内化和中枢神经系统中底物水平显著降低。相比之下,与高亲和力二价抗体(IgG:IDS)融合的IDS脑摄取较低,脑实质分布较低以及脑组织底物小部分被酶还原 [42] 。

考虑到一部分TfR1抗体可能是非人源的,为降低药物整体免疫原性,可以选择对TfR1抗体部分进行人源化,抗体人源化技术包括CDR移植技术(CDR grafted)、特异性决定簇残基移植(specifity determining residue, SDR)、抗原表位定向选择和表面重塑等,其中CDR移植是应用最广泛的技术。通过CDR移植或SDR移植技术可以在降低抗体免疫原性,伴随着抗体亲和力一定程度的下降 [43] ,这种人源化带来的亲和力降低在其他抗体改造过程中可能是不利的,但对于TfR1抗体的改造可能是一个双赢的结果:既降低了抗体序列的免疫原性,又在一定程度上降低了抗体亲和力。

需要注意的是,高亲和力的TfR1抗体血脑屏障透过能力并非一直都很低,在示踪剂量下,抗体亲和力大小与脑渗透能力呈正相关 [33] ,可能是由于低剂量下体内的TfR1无法被抗体饱和,所以亲和力越高的抗体越容易结合脑微血管内皮细胞表面的TfR1,相较于中等或者低亲和力的抗体有更高的脑暴露 [44] ,而脑部示踪剂(显影剂)的使用剂量一般都很低 [45] ,所以这些非治疗性蛋白可以选择亲和力较高的TfR1抗体片段,以追求低剂量给药浓度下的高脑转运效率。Gillian Bonvicini等人将靶向大鼠TfR1的抗体OX26和其突变体通过化学偶联的方法与抗Aβ抗体bapineuzumab (Bapi)的F(ab′)2片段结合,设计出了OX265 -F(ab′)2-Bapi和OX2676-F(ab′)2-Bapi两种双特异性融合蛋白,再使用124I标记两种蛋白,制成了高低两种亲和力的PET探针,研究发现由TfR介导转运的immunoPET放射性配体能够在AD大鼠模型中对脑Aβ病理进行灵敏的成像,并且高亲和力的OX265-F(ab′)2-Bapi显示出更高的脑部穿透能力 [46] 。

2.2. 抗体pH敏感性改造

在抗体和TfR1结合时,网格蛋白介导的胞转作用(clathrin-mediated transcytosis, CMT)开始于网格蛋白包裹的小窝形成,然后被胞吞并与早期内体融合,早期内体是内吞途径中的主要分选室,是除CMT之外的其他主要内吞途径的受体囊泡 [47] ,细胞膜来源的分子在复杂的早期内体中被分选,并且内体形成后,由H+-ATPase驱动的内体酸化立即开始,并持续促进内体–溶酶体的成熟。在pH逐渐降低的过程中,TfR1抗体与受体解离(pH 5.5),然后抗体在空间上被隔离并分选,随后可被胞吐至脑实质一侧,而早期内体则持续酸化成晚期内体,最终成为pH 4.5的溶酶体,所有伴随的物质均将在此被降解,所以TfR1抗体还需具备pH敏感性,才能使得药物在正确的时机从TfR1上解离而免于被溶酶体降解,调整TfR1抗体的pH敏感性是增加抗体脑转运效率的另一个改造思路。

在抗体筛选阶段,通过噬菌体展示,酵母展示技术和pH依赖性筛选策略定向筛选pH敏感性抗体 [48] [49] ,例如可在pH 7.4的条件下将展示文库与TfR1蛋白进行孵育,用pH 7.4的缓冲液进行洗脱,去除此条件下亲和力弱的抗体,然后用pH 5.5的缓冲液洗脱,此时解离的抗体可初步认定为具有合适的pH敏感性。Ximing Liu等人 [50] 将非免疫噬菌体展示人scFv抗体文库(文库大小:1.1*1010)与含有hEGFR胞外区蛋白的pH 6.0的缓冲液孵育,洗去未结合抗体,然后用pH 7.4的缓冲液洗脱,随机挑选单克隆,排除不符合要求的抗体后成功筛选到了14C07和11A10两株有效的pH依赖性抗体,在pH 6.0时对hEGFR的结合亲和力明显高于pH 7.4,说明这种定向筛选策略可被用来筛选符合要求的TfR1抗体。

对于一些pH敏感性较差的抗体,可以通过CDR序列突变来改善。研究表明,抗体CDR中的组氨酸残基的质子化可能有助于pH依赖的靶点结合 [51] [52] [53] [54] ,抗体–抗原结合界面上的单个组氨酸也能促成pH依赖性结合,在抗体和抗原之间特异性地引入组氨酸–天冬氨酸/谷氨酸相互作用可以有效地调节结合的pH依赖性 [50] 。Yulu Li等人 [55] 通过噬菌体展示和pH依赖性筛选策略筛选到了pH敏感性抗CD47抗体BC2和BC27,再向轻链和重链CDR3中引入随机突变构建了噬菌体展示子库,再次筛选得到了pH依赖性显著提升的BC31M4,研究人员对抗体和CD47复合物晶体结构进行解析后发现BC31M4的三个组氨酸残基(H38、H55和H107)位于轻链可变区(VL)的CDRs内,通过定点诱变发现H38和H107直接参与BC31M4和CD47之间的pH依赖性结合,而H55对pH依赖性结合的贡献最小,显然是间接促进作用。几项研究表明 [56] [57] [58] [59] [60] ,通过将组氨酸引入相应亲本抗体的可变区可产生“逆转的”pH依赖性抗体,即在生理pH下以较高亲和力结合抗原,但在酸性pH下以低亲和力结合。使用单残基组氨酸诱变扫描技术可初步筛选出pH依赖性突变体,通过酸性氨基酸取代可鉴定出pH敏感性抗体的可电离敏感性热点残基(ionizable sensitive hot-spot residues) [61] ,根据结构解析向热点残基位置引入组氨酸可改善抗体的pH敏感性。

2.3. 选择合适的抗体构型

TfR1抗体部分主要发挥着跨血脑屏障递送的作用,其分子构型可以是多样的,根据需要递送的药物合理选择不同构型的TfR1抗体,如scFv、Fab或全抗等。本文2.1部分已经部分阐述了分子构型与亲和力之间的关系,在此不再过多讨论,本部分主要讨论根据需要递送的药物合理选择TfR抗体构型。

保留完整的TfR1抗体形式,将药物连接到抗体轻重链末端,IDUA、IDS、ASA、SGSH、NAGLU、PPT1和GLB1等酶在细胞内形成同源二聚体发挥生物学功能,因此可以将这些酶融合到重链C端以复制酶的同源二聚体构型;一些溶酶体酶,如HEXA或ASM通过与其他胞内激活蛋白形成异源二聚体发挥作用(HEXA与GM2激活蛋白,ASM与saposin C蛋白),因此可以将这些酶融合到轻链的C末端;还可以将蛋白融合到抗体重链的N端,空间位阻会干扰CDR与受体结合,在一定程度上可降低抗体亲和力 [62] 。值得注意的是,一些蛋白质可能需要经过一定的切割才能发挥正确的生物学功能,这种切割过程可能会将酶等蛋白质从抗体上释放出来 [63] [64] ,无法将蛋白有效递送到脑部,所以需要根据需要转运蛋白的具体特性合理选择融合位点。

对抗体Fc片段进行改造,使得Fc有结合TfR1的能力,这种改造是产生多特异性抗体的另一个思路。美国Denali Therapeutics公司构建了一种BBB运输工具,将IgG CH3结构域几个连续区域替换成经过酵母展示文库筛选的氨基酸片段,使Fc对TfR1具有亲和力,可发挥与传统TfR1抗体相同的转胞吞作用 [65] 。还可以使用由Hiroaki Suga等人 [66] 开发的LassoGraft Technology®将经过随机非标准肽整合发现(RaPID)系统 [67] 筛选得到的大环肽替换抗体Fc区的loop环 [68] ,使得Fc能够结合TfR发挥转运作用。

2.4. 降低TfR1抗体引起的副作用

高表达TfR1的正常细胞也可能成为抗TfR1抗体的目标,如造血祖细胞,从而导致不必要的毒性。研究发现C57BL/6小鼠静脉注射超过1 mg/kg的抗体后,在给药后5分钟内,一些动物的网织红细胞数量减少、极度嗜睡以及偶尔的肢体和全身痉挛 [35] ,20分钟后,小鼠不再昏睡,而是出现驼背,一些小鼠产生红棕色尿液,与溶血和血红蛋白尿的症状一致,部分归因于抗体介导的ADCC和/或CDC效应 [69] ,消除这两种效应有利于降低TfR1抗体引起的副作用。值得注意的是,抗体对新生儿Fc受体(Neonatal Fc receptor, FcRn)的结合能力需要保留,FcRn可以和IgG的Fc部分结合,阻止IgG分子被溶酶体降解,可以增长IgG体内半衰期,参与IgG的体内转运、维持和分布代谢 [70] 。还可以向TfR抗体部分引入多个硫酸乙酰肝素(HS)的结合位点,这种改造并不影响抗体的转胞吞过程,经过HS改造后的抗体可明显降低其肾脏排泄,可延长药物在循环系统中的维持时间 [71] 。

3. 总结与展望

与外周治疗性抗体相比,高脑转运效率的抗体往往对亲和力、构型、pH敏感性等性质有着特殊的要求,经过杂交瘤或噬菌体展示等抗体发现技术得到的原始抗体可能无法满足这些要求,需要研究人员对抗体加以改造优化。本文阐述了近年来TfR1抗体跨BBB转运改造策略,为TfR1跨脑递送平台的建立提供了部分参考。

由于BBB的存在,绝大部分药物无法进入到脑实质发挥治疗作用,尤其是现在蓬勃发展的生物大分子药物,急需开发出新的跨脑递送平台,属于非侵入性的TfR1转胞吞递送技术是最有希望的药物递送技术之一,各大公司及研究机构都建立起了自己的TfR介导的转胞吞递送平台,如ArmaGen、JCR Pharmaceuticals、Genentech (双特异性抗体)、Roche (TfR1sFab抗体)、Denali Therapeutics、Ossianix (TfR1VNAR抗体) [72] 和AbbVie (TfR1 DVD-Ig) [73] 等。2021年日本批准上市的JR-141也证明了TfR1转胞吞系统的潜力,此外基于TfR1抗体开发的脑部探针也进一步证明了其在脑部疾病诊断领域的潜力。继续优化TfR1转胞吞递送平台,有助于研究人员早日开发出更多更有效治疗CNS疾病的药物。

NOTES

*通讯作者。

参考文献

[1] Zlokovic, B.V. and Apuzzo, M.L. (1998) Strategies to Circumvent Vascular Barriers of the Central Nervous System. Neurosurgery, 43, 877-878.
https://doi.org/10.1097/00006123-199810000-00089
[2] Terstappen, G.C., Meyer, A.H., Bell, R.D., et al. (2021) Strategies for Delivering Therapeutics across the Blood-Brain Barrier. Nature Reviews Drug Discovery, 20, 362-383.
https://doi.org/10.1038/s41573-021-00139-y
[3] Redzic, Z. (2011) Molecular Bi-ology of the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers: Similarities and Differences. Fluids and Barriers of the CNS, 8, Article No. 3.
https://doi.org/10.1186/2045-8118-8-3
[4] Zlokovic, B.V. (2008) The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron, 57, 178-201.
https://doi.org/10.1016/j.neuron.2008.01.003
[5] Brightman, M.W. (1969) Junctions between Intimately Apposed Cell Membranes in the Vertebrate Brain. Journal of Cell Biology, 40, 648-677.
https://doi.org/10.1083/jcb.40.3.648
[6] Volterra, A. and Meldolesi, J. (2005) Astrocytes, from Brain Glue to Communication Elements: The Revolution Continues. Nature Reviews Neuroscience, 6, 626-640.
https://doi.org/10.1038/nrn1722
[7] Winkler, E.A., Bell, R.D. and Zlokovic, B.V. (2011) Central Nervous System Pericytes in Health and Disease. Nature Neuroscience, 14, 1398-1405.
https://doi.org/10.1038/nn.2946
[8] Abbott, N.J. (2002) Astrocyte—Endothelial Interactions and Blood-Brain Barrier Permeability. Journal of Anatomy, 200, 629-638.
https://doi.org/10.1046/j.1469-7580.2002.00064.x
[9] Abbott, N.J., Ronnback, L. and Hansson, E. (2006) Astrocyte—Endothelial Interactions at the Blood-Brain Barrier. Nature Reviews Neuroscience, 7, 41-53.
https://doi.org/10.1038/nrn1824
[10] Zonta, M., Angulo, M.C., Gobbo, S., et al. (2003) Neuron-to-Astrocyte Sig-naling Is Central to the Dynamic Control of Brain Microcirculation. Nature Neuroscience, 6, 43-50.
https://doi.org/10.1038/nn980
[11] Iadecola, C. (2004) Neurovascular Regulation in the Normal Brain and in Alz-heimer’s Disease. Nature Reviews Neuroscience, 5, 347-360.
https://doi.org/10.1038/nrn1387
[12] Iadecola, C. and Nedergaard, M. (2007) Glial Regulation of the Cerebral Microvasculature. Nature Neuroscience, 10, 1369-1376.
https://doi.org/10.1038/nn2003
[13] Hawkins, B.T. and Davis, T.P. (2005) The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews, 57, 173-185.
https://doi.org/10.1124/pr.57.2.4
[14] Begley, D.J. (2004) ABC Transporters and the Blood-Brain Barrier. Current Pharmaceutical Design, 10, 1295-312.
https://doi.org/10.2174/1381612043384844
[15] Wong, K., Riaz, M., Xie, Y., et al. (2019) Review of Current Strategies for Delivering Alzheimer’s Disease Drugs across the Blood-Brain Barrier. International Journal of Molecular Sciences, 20, Article 381.
https://doi.org/10.3390/ijms20020381
[16] Pardridge, W.M. (2020) Treatment of Alzheimer’s Disease and Blood—Brain Barrier Drug Delivery. Pharmaceuticals, 13, Article 394.
https://doi.org/10.3390/ph13110394
[17] Pardridge, W.M. (2005) The Blood-Brain Barrier: Bottleneck in Brain Drug Development. NeuroRX, 2, 3-14.
https://doi.org/10.1602/neurorx.2.1.3
[18] Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., et al. (2010) Structure and Function of the Blood—Brain Barrier. Neurobiology of Disease, 37, 13-25.
https://doi.org/10.1016/j.nbd.2009.07.030
[19] St-Amour, I., Paré, I., Alata, W., et al. (2013) Brain Bioavailability of Human Intravenous Immunoglobulin and Its Transport through the Murine Blood–Brain Barrier. Journal of Cerebral Blood Flow & Metabolism, 33, 1983-1992.
https://doi.org/10.1038/jcbfm.2013.160
[20] Urquhart, L. (2023) Top Companies and Drugs by Sales in 2022. Na-ture Reviews Drug Discovery, 22, 260.
https://doi.org/10.1038/d41573-023-00039-3
[21] Thomsen, M.S., Johnsen, K.B., Kucharz, K., et al. (2022) Blood—Brain Barrier Transport of Transferrin Receptor-Targeted Nanoparticles. Pharmaceutics, 14, Article 2237.
https://doi.org/10.3390/pharmaceutics14102237
[22] Maussang, D., Rip, J., Van Kregten, J., et al. (2016) Gluta-thione Conjugation Dose-Dependently Increases Brain-Specific Liposomal Drug Delivery in Vitro and in Vivo. Drug Discovery Today: Technologies, 20, 59-69.
https://doi.org/10.1016/j.ddtec.2016.09.003
[23] Wiklander, O.P., Nordin, J.Z., O’loughlin, A., et al. (2015) Ex-tracellular Vesicle in Vivo Biodistribution Is Determined by Cell Source, Route of Administration and Targeting. Journal of Extracellular Vesicles, 4, Article ID: 26316.
https://doi.org/10.3402/jev.v4.26316
[24] Sharma, G., Lakkadwala, S., Modgil, A. and Singh, J. (2016) The Role of Cell-Penetrating Peptide and Transferrin on Enhanced Delivery of Drug to Brain. International Journal of Molecular Sciences, 17, Article 806.
https://doi.org/10.3390/ijms17060806
[25] Rastall, D.P. and Amalfitano, A. (2015) Recent Advances in Gene Therapy for Lysosomal Storage Disorders. The Application of Clinical Genetics, 8, 157-169.
https://doi.org/10.2147/TACG.S57682
[26] Moos, T. and Morgan, E.H. (2000) Transferrin and Transferrin Re-ceptor Function in Brain Barrier Systems. Cellular and Molecular Neurobiology, 20, 77-95.
https://doi.org/10.1023/A:1006948027674
[27] Zhou, X., Smith, Q.R. and Liu, X. (2021) Brain Penetrating Pep-tides and Peptide—Drug Conjugates to Overcome the Blood—Brain Barrier and Target CNS Diseases. WIREs Nano-medicine and Nanobiotechnology, 13, e1695.
https://doi.org/10.1002/wnan.1695
[28] Moos, T., Oates, P.S. and Morgan, E.H. (1998) Expression of the Neu-ronal Transferrin Receptor Is Age Dependent and Susceptible. Journal of Comparative Neurology, 398, 420-430.
https://doi.org/10.1002/(SICI)1096-9861(19980831)398:3<420::AID-CNE8>3.0.CO;2-1
[29] Zlokovic, B.V. (2005) Neurovascular Mechanisms of Alzheimer’s Neurodegeneration. Trendsin Neurosciences, 28, 202-208.
https://doi.org/10.1016/j.tins.2005.02.001
[30] Begley, D.J. and Brightman, M.W. (2003) Structural and Functional Aspects of the Blood-Brain Barrier. Progress in Drug Research, 61, 39-78.
https://doi.org/10.1007/978-3-0348-8049-7_2
[31] Ullman, J.C., Arguello, A., Getz, J.A., et al. (2020) Brain De-livery and Activity of a Lysosomal Enzyme using A Blood-Brain Barrier Transport Vehicle in Mice. Science Transla-tional Medicine, 12, eaay1163.
https://doi.org/10.1126/scitranslmed.aay1163
[32] Cummings, J., Lee, G., Zhong, K., Fonseca, J. and Taghva, K. (2021) Alzheimer’s Disease Drug Development Pipeline: 2021. Alzheimer’s & Dementia, 7, e12179.
https://doi.org/10.1002/trc2.12179
[33] Yu, Y.J., Zhang, Y., Kenrick, M., et al. (2011) Boosting Brain Uptake of a Therapeutic Antibody by Reducing Its Affinity for a Transcytosis Target. Science Translational Medicine, 3, 84ra44.
https://doi.org/10.1126/scitranslmed.3002230
[34] Bien-Ly, N., Yu, Y.J., Bumbaca, D., et al. (2014) Transferrin Receptor (TfR) Trafficking Determines Brain Uptake of TfR Antibody Affinity Variants. Journal of Experimental Medi-cine, 211, 233-244.
https://doi.org/10.1084/jem.20131660
[35] Couch, J.A., Yu, Y.J., Zhang, Y., et al. (2013) Addressing Safety Lia-bilities of TfR Bispecific Antibodies that Cross the Blood-Brain Barrier. Science Translational Medicine, 5, 183ra57.
https://doi.org/10.1126/scitranslmed.3005338
[36] Yu, Y.J., Atwal, J.K., Zhang, Y., et al. (2014) Therapeutic Bispecific Antibodies cross the Blood-Brain Barrier in Nonhuman Primates. Science Translational Medicine, 5, 261ra154.
https://doi.org/10.1126/scitranslmed.3009835
[37] Moody, P.R., Sayers, E.J., Magnusson, J.P., Alexander, C., Borri, P., Watson, P. and Jones, A.T. (2015) Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor: Ligand Complexes. Molecular Therapy, 23, 1888-1898.
https://doi.org/10.1038/mt.2015.178
[38] Hoy, S.M. (2023) Lecanemab: First Approval. Drugs, 83, 359-365.
https://doi.org/10.1007/s40265-023-01851-2
[39] Hultqvist, G., Syvanen, S., Fang, X.T., et al. (2017) Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor. Theranostics, 7, 308-318.
https://doi.org/10.7150/thno.17155
[40] Morrison, J.I., Metzendorf, N.G., Rofo, F., Petrovic, A. and Hultqvist, G. (2023) A Single-Chain Fragment Constant Design Enables Easy Production of a Monovalent Blood-Brain Barrier Transporter and Provides an Improved Brain Uptake at Elevated Doses. Journal of Neurochemistry, 165, 413-425.
https://doi.org/10.1111/jnc.15768
[41] Rofo, F., Metzendorf, N.G., Saubi, C., et al. (2022) Blood-Brain Barrier Penetrating Neprilysin Degrades Monomeric Amyloid-Beta in a Mouse Model of Alzheimer’s Disease. Alzheimer's Re-search & Therapy, 14, Article No. 180.
https://doi.org/10.1186/s13195-022-01132-2
[42] Arguello, A., Mahon, C.S., Calvert, M.E.K., et al. (2022) Mo-lecular Architecture Determines Brain Delivery of a Transferrin Receptor-Targeted Lysosomal Enzyme. Journal of Ex-perimental Medicine, 219, e20211057.
https://doi.org/10.1084/jem.20211057
[43] 陈志南. 抗体药物研发[M]. 上海: 上海交通大学出版社, 2020: 48-50.
[44] Przybilla, M.J., Stewart, C., Carlson, T.W., et al. (2021) Examination of a Blood-Brain Barrier Targeting Beta-Galactosidase-Monoclonal Antibody Fusion Protein in a Murine Model of GM1-Gangliosidosis. Molecular Genet-ics and Metabolism Reports, 27, Article ID: 100748.
https://doi.org/10.1084/jem.20211057
[45] Roshanbin, S., Xiong, M., Hultqvist, G., et al. (2022) In Vivo Imaging of Alpha-Synuclein with Antibody-Based PET. Neuropharma-cology, 208, Article ID: 108985.
https://doi.org/10.1016/j.neuropharm.2022.108985
[46] Bonvicini, G., Syvanen, S., Andersson, K.G., Haaparanta-Solin, M., López-Picón, F. and Sehlin, D. (2022) ImmunoPET Imaging of Amy-loid-Beta in a Rat Model of Alzheimer’s Disease with a Bispecific, Brain-Penetrating Fusion Protein. Translational Neurodegeneration, 11, Article No. 55.
https://doi.org/10.1186/s40035-022-00324-y
[47] Mayor, S. and Pagano, R.E. (2007) Pathways of Clathrin-Independent Endocytosis. Nature Reviews Molecular Cell Biology, 8, 603-612.
https://doi.org/10.1038/nrm2216
[48] Tian, X., Liu, X., Ding, J., et al. (2023) An Anti-CD98 Antibody Displaying pH-Dependent Fc-Mediated Tumour-Specific Activity against Multiple Cancers in CD98-Humanized Mice. Nature Bio-medical Engineering, 7, 8-23.
https://doi.org/10.1038/s41551-022-00956-5
[49] Bogen, J.P., Hinz, S.C., Grzeschik, J., et al. (2019) Dual Func-tion pH Responsive Bispecific Antibodies for Tumor Targeting and Antigen Depletion in Plasma. Frontiers in Immu-nology, 10, Article 1892.
https://doi.org/10.3389/fimmu.2019.01892
[50] Liu, X., Tian, X., Hao, X., et al. (2022) A Cross-Reactive pH-Dependent EGFR Antibody with Improved Tumor Selectivity and Penetration Obtained by Structure-Guided Engi-neering. Molecular Therapy-Oncolytics, 27, 256-269.
https://doi.org/10.1016/j.omto.2022.11.001
[51] Sade, H., Baumgartner, C., Hugenmatter, A., Moessner, E., Freskgård, P.-O. and Niewoehner, J. (2014) A Human Blood-Brain Barrier Transcytosis Assay Reveals Antibody Transcytosis Influenced by pH-Dependent Receptor Binding. PLOS ONE, 9, e96340.
https://doi.org/10.1371/journal.pone.0096340
[52] Watkins, J.M. and Watkins, J.D. (2022) An Engineered Mono-valent Anti-TNF-α Antibody with pH-Sensitive Binding Abrogates Immunogenicity in Mice following a Single Intrave-nous Dose. The Journal of Immunology, 209, 829-839.
https://doi.org/10.4049/jimmunol.2101180
[53] Zhang, Y., Du, X., Liu, M., et al. (2019) Hijacking Anti-body-Induced CTLA-4 Lysosomal Degradation for Safer and More Effective Cancer Immunotherapy. Cell Research, 29, 609-627.
https://doi.org/10.1038/s41422-019-0184-1
[54] Lee, P.S., Macdonald, K.G., Massi, E., et al. (2022) Im-proved Therapeutic Index of an Acidic pH-Selective Antibody. mAbs, 14, Article ID: 2024642.
https://doi.org/10.1080/19420862.2021.2024642
[55] Li, Y., Liu, J., Chen, W., et al. (2023) A pH-Dependent An-ti-CD47 Antibody that Selectively Targets Solid Tumors and Improves Therapeutic Efficacy and Safety. Journal of He-matology & Oncology, 16, Article No. 2.
https://doi.org/10.1186/s13045-023-01399-4
[56] Igawa, T., Ishii, S., Tachibana, T., et al. (2010) Antibody Recy-cling by Engineered pH-Dependent Antigen Binding Improves the Duration of Antigen Neutralization. Nature Biotech-nology, 28, 1203-1207.
https://doi.org/10.1038/nbt.1691
[57] Sheridan, D., Yu, Z.X., Zhang, Y., et al. (2018) Design and Preclinical Characterization of ALXN1210: A Novel Anti-C5 Antibody with Extended Duration of Action. PLOS ONE, 13, e0195909.
https://doi.org/10.1371/journal.pone.0195909
[58] Sulea, T., Rohani, N., Baardsnes, J., et al. (2020) Struc-ture-Based Engineering of pH-Dependent Antibody Binding for Selective Targeting of Solid-Tumor Microenvironment. mAbs, 12, Article ID: 1682866.
https://doi.org/10.1080/19420862.2019.1682866
[59] Chaparro-Riggers, J., Liang, H., Devay, R.M., et al. (2012) Increasing Serum Half-Life and Extending Cholesterol Lowering in Vivo by Engineering Antibody with pH-Sensitive Binding to PCSK9. Journal of Biological Chemistry, 287, 11090-11097.
https://doi.org/10.1074/jbc.M111.319764
[60] Bonvin, P., Venet, S., Fontaine, G., et al. (2015) De Novo Isolation of Antibodies with pH-Dependent Binding Properties. MAbs, 7, 294-302.
https://doi.org/10.1080/19420862.2015.1006993
[61] Zou, W., Huang, C., Sun, Q., Zhao, K., Gao, H., Su, R. and Li, Y. (2022) A Stepwise Mutagenesis Approach Using Histidine and Acidic Amino Acid to Engineer Highly pH-Dependent Protein Switches. 3 Biotech, 12, Article No. 21.
https://doi.org/10.1007/s13205-021-03079-x
[62] Pardridge, W.M. (2022) Blood-Brain Barrier Delivery for Ly-sosomal Storage Disorders with IgG-Lysosomal Enzyme Fusion Proteins. Advanced Drug Delivery Reviews, 184, Arti-cle No. 114234.
https://doi.org/10.1016/j.addr.2022.114234
[63] Islam, M.R., Grubb, J.H. and Sly, W.S. (1993) C-Terminal Pro-cessing of Human β-Glucuronidase. The Propeptide Is Required for Full Expression of Catalytic Activity, Intracellular Retention, and Proper Phosphorylation. The Journal of Biological Chemistry, 268, 22627-22633.
https://doi.org/10.1016/S0021-9258(18)41574-8
[64] Wilson, P.J., Morris, C.P., Anson, D.S., et al. (1990) Hunter Syndrome: Isolation of an Iduronate-2-Sulfatase cDNA Clone and Analysis of Patient DNA. Proceedings of the National Academy of Sciences of the United States of America, 87, 8531-8535.
https://doi.org/10.1073/pnas.87.21.8531
[65] Kariolis, M.S., Wells, R.C., Getz, J.A., et al. (2020) Brain Delivery of Therapeutic Proteins Using an Fc Fragment Blood-Brain Barrier Transport Vehicle in Mice and Monkeys. Science Translational Medicine, 12, eaay1359.
https://doi.org/10.1126/scitranslmed.aay1359
[66] Mihara, E., Watanabe, S., Bashiruddin, N.K., et al. (2021) Las-so-Grafting of Macrocyclic Peptide Pharmacophores Yields Multi-Functional Proteins. Nature Communications, 12, Ar-ticle No. 1543.
https://doi.org/10.1038/s41467-021-21875-0
[67] Ito, K., Passioura, T. and Suga, H. (2013) Technologies for the synthesis of mRNA-Encoding Libraries and Discovery of Bioactive Natural Product-Inspired Non-Traditional Macrocy-clic Peptides. Molecules, 18, 3502-3528.
https://doi.org/10.3390/molecules18033502
[68] Sakai, K., Sugano-Nakamura, N., Mihara, E., et al. (2023) De-signing Receptor Agonists with Enhanced Pharmacokinetics by Grafting Macrocyclic Peptides into Fragment Crystalliza-ble Regions. Nature Biomedical Engineering, 7, 164-176.
https://doi.org/10.1038/s41551-022-00955-6
[69] Yamamoto, R., Yoden, E., Tanaka, N., et al. (2021) Nonclinical Safety Evaluation of Pabinafusp Alfa, an Anti-Human Transferrin Receptor Antibody and Iduronate-2-Sulfatase Fusion Protein, for the Treatment of Neuronopathic Mucopolysaccharidosis Type II. Molecular Genetics and Metabolism Re-ports, 27, Article ID: 100758.
https://doi.org/10.1016/j.ymgmr.2021.100758
[70] Ruano-Salguero, J.S. and Lee, K.H. (2020) Antibody Transcytosis across Brain Endothelial-Like Cells Occurs Nonspecifically and Independent of FcRn. Scientific Reports, 10, Article No. 3685.
https://doi.org/10.1038/s41598-020-60438-z
[71] DE LA Rosa, A., Metzendorf, N.G., Morrison, J.I., et al. (2022) Introducing or Removing Heparan Sulfate Binding Sites Does Not Alter Brain Uptake of the Blood-Brain Barrier Shuttle scFv8D3. Scientific Reports, 12, Article No. 21479.
https://doi.org/10.21203/rs.3.rs-2166577/v1
[72] Clarke, E., Stocki, P., Sinclair, E.H., et al. (2022) A Single Domain Shark Antibody Targeting the Transferrin Receptor 1 Delivers a TrkB Agonist Antibody to the Brain and Provides Full Neuroprotection in a Mouse Model of Parkinson’s Disease. Pharmaceutics, 14, Article 1335.
https://doi.org/10.3390/pharmaceutics14071335
[73] Hanzatian, K.D, Schwartz, A., Gizatullin, F., et al. (2018) Brain Uptake of Multivalent and Multi-Specific DVD-Ig Proteins after Systemic Admin-istration. mAbs, 10, 765-777.
https://doi.org/10.1080/19420862.2018.1465159