植物水杨酸代谢及其调控的研究进展
Research Progress in Salicylic Acid Metabolism and Regulation in Plants
DOI: 10.12677/IJE.2023.122025, PDF, HTML, XML, 下载: 359  浏览: 1,444 
作者: 李佳佳:浙江师范大学生命科学学院,浙江 金华
关键词: 水杨酸合成代谢分解代谢信号转导Salicylic Acid Anabolism Catabolism Signal Transduction
摘要: 水杨酸(SA)属于九大类植物激素之一,是一种广泛存在于植物体内的酚类激素。SA在植物的抗病、抗逆等生物和非生物胁迫以及根系生长发育过程中起到重要作用。目前已鉴定的水杨酸的合成途径主要有两条:一条是存在于叶绿体的异分支酸合成酶(Isochorismate Synthase, ICS)合成代谢途径,另外一条是存在于细胞质的苯丙氨酸解氨酶(Phenylalanine Ammonia Lyase, PAL)合成代谢途径。在不同的植物中这两条途径合成水杨酸的占比是不同的。SA在合成后以不同的方式被修饰合成SA衍生物以达到分解代谢或者获得新功能等作用。此外,SA的代谢途径相关基因受到病原菌诱导和转录因子调控,精确调控SA的时空和胁迫条件下的合成模式。本文综述了SA生物代谢及其调控的研究进展,并对水杨酸代谢未来的研究方向进行了展望。
Abstract: Salicylic acid (SA) is one of the nine major categories of plant hormones, which is a widely phenolic hormone in plants. SA plays an important role in the disease resistance, stress resistance and other biotic and abiotic stresses of plants, as well as in root growth and development. There are two main pathways known for the synthesis of salicylic acid: one is the Isochorismate Synthase (ICS) pathway in the chloroplast, and the other is the Phenylalanine Ammonia Lyase (PAL) pathway in the cytoplasm. However, the proportion of salicylic acid synthesized by these two pathways is different in different plants. After synthesis, SA is modified to synthesize SA derivatives in different ways to achieve catabolism or obtain new functions. In addition, SA is modified in different ways after synthesis to achieve catabolism or obtain new functions. This paper reviews the latest pathways and regulatory processes of SA biosynthesis and modification, and prospects for the future metabolic research directions of salicylic acid.
文章引用:李佳佳. 植物水杨酸代谢及其调控的研究进展[J]. 世界生态学, 2023, 12(2): 209-219. https://doi.org/10.12677/IJE.2023.122025

1. 引言

水杨酸(Salicylic acid, SA)又称为邻羟基苯甲酸,是一种脂溶性的有机酸。基于阿司匹林非凡的药用价值,SA在植物体内的功能及合成代谢过程也备受重视,因此探究这种植物激素参与的生理过程及其与其他激素间的相互作用具有重要意义。

植物体内具有有效的免疫系统能对抗大多数微生物的攻击,而水杨酸作为一种被广泛认识的植物激素能够在植物体受到病原菌攻击时诱导免疫反应的产生。早在1979年就有报道指出它作为植物抗病的诱导剂,能够提高植物的抗病能力,并且通过实验证明了外源施加SA到烟草中能够提高植物对烟草花叶病毒的抵抗能力 [1] 。SA诱导的免疫反应有助于植物生长–免疫反应之间的平衡,即增强免疫反应会抑制植物的生长和发育,反之生长和发育过程也会抑制免疫反应 [2] 。并且参与调节植物的种子萌发、根发育、开花诱导、果实成熟以及衰老等过程 [3] [4] [5] [6] 。

2. 水杨酸的合成代谢途径

植物中水杨酸的合成主要是通过两条独立的途径产生的,一条是异分支酸合成(ICS)途径,另一条是苯丙氨酸(PAL)途径 [7] [8] ,这两条途径都是起始于莽草酸的次生代谢途径的产物。

2.1. ICS途径

在早先的报道中就有指出某些细菌,例如铜绿假单胞菌(Pseudomonas aeruginosa)能够通过异分支酸合成酶(ICS)和丙酮酸裂解酶(pyruvate lyase)来合成水杨酸 [9] ,即异分支酸丙酮酸裂解酶(IPL)来催化异分支酸转化为丙酮酸和SA。而植物中不含IPL直系同源物,则需要通过其它途径来合成SA。对拟南芥的SA缺失突变体(SA-deficient 2, sid2)的研究表明由病原菌诱导的水杨酸的合成主要是通过ICS途径实现的 [10] 。在拟南芥的基因组中包含有两个异分支酸合成酶(ICS)基因,分别是ICS1 (At1g74710)和ICS2 (At1g18870)。其中ICS1是能够被病原菌诱导的 [10] ,经过该途径产生的SA是LAR和SAR (local and systemic acquired resistance)反应所必需的 [10] 。将ICS1和ICS2编码序列融合到GFP并在烟草细胞中瞬时表达这些构建体,通过激光共聚焦显微镜清楚的表明了这两种融合蛋白都定位于叶绿体中 [11] 。质体产生的分支酸盐是SA生物合成的分支点代谢产物,大多数病原体诱导产生的SA来源于异分支酸,它是由分支酸经ICS1催化产生的。通过比较ics1、ics2和ics1ics2突变体中SA的积累,表明ICS2能够参与到SA的合成,但数量有限,只有在缺少ICS1时才能清楚地检测到。此外,在完全没有叶醌的ics1ics2双突变体中也能够检测到SA,也表明了拟南芥中存在除ICS途径以外还有其他生物合成途径 [11] 。

在拟南芥中,ICS酶催化合成的异分支酸经由转运蛋白EDS5 (ENHANCED DISEASE SUSCEPTIBILITY5)从质体中转运到细胞基质中,由氨基转移酶PBS3催化生成异分支酸-9-谷氨酸 (ISC-9-Glu) [12] ,然后通过自发衰变或由EPS1 (ENHANCED PSEUDOMONAS SUSCEPTIBILITY) 催化生成SA [13] 。因此,PBS3是植物合成SA途径中的不可或缺的关键酶。

PBS3蛋白也被称为GH3.12,在1999年被首次报道,属于GH3酰基酸酰胺合成酶家族 [14] ,可以催化水杨酸前体异分支酸与谷氨酸的ATP依赖性结合。pbs3突变后会部分地抑制所有四个P. syringae抗性基因(RPS5、RPS2和RPS4),对RPP基因具有不同程度的影响。此外,pbs3突变株表现出对丁香假单胞菌病原菌较弱的抵抗力,与作为SA生物合成必需酶的功能一致。PBS3还通过抑制脱落酸对SA介导的植物免疫的抑制作用,参与拟南芥非生物和生物胁迫反应之间的平衡。PBS3位于SA和NPR1的上游,因为PBS3突变后所影响的基因表达比SA生物合成和信号传导有关的突变体ics1 (sid2)、eds5和npr1多 [15] 。在SA水平较低的情况下,PBS3能够控制缀合物形成(例如,4HBA-Glu),这种信号后续会启动SA生物合成。一旦SA合成已经充分启动,则不再需要PBS3活性。而且SA又能对PBS3的抑制,这种抑制是SA不再被需要时通过快速减少缀合物合成来完成的 [16] 。

除了上述的抗病等反应外,PBS3也在植物发育中发挥作用。在长日照条件下,PBS3通过调节开花调节因子FLOWERING LOCUS C和FLOWERING LOCUS T的表达来影响拟南芥的开花时间 [13] ,对这一生长发育过程的调控作用并非前文所述的依赖于SA含量改变而发挥的作用。

EPS1是一种BAHD酰基转移酶家族蛋白,它与病原体侵袭时的SA积累有关,具有非经典的活性位点和前所未有的异花生四烯酸–谷氨酸裂解酶(isochorismoyl-glutamate A pyruvoyl-glutamate lyase, IPGL)活性,可以以异草酰谷氨酸A为底物产生SA。研究表明了PBS3和EPS1共同形成了一个后续的两步代谢途径,从拟南芥中的异分支酸产生SA [17] 。

与拟南芥不同的是,水稻具有高水平的内源性SA比拟南芥高几乎100倍,并且这些SA并非由病原体感染诱导的 [18] 。然而,目前关于水稻中的SA合成途径和相关代谢关键基因功能仍不清楚。

2.2. PAL途径

目前,通过PAL (phenylalanine ammonia-lyase)合成水杨酸的途径已经在水稻、烟草和大豆等多种植物中进行了研究 [19] [20] [21] [22] [23] 。以水稻为例,目前普遍认为的PAL路径如下:CA在叶绿体中转化为Phe,并且Phe通过PAL或基于AAAT (Amino acid aminotransferase)和PPAR (Phenylpyruvic acid reductase)的替代途径(目前暂不清晰)转化为反式分支酸(t-CA)。之后再通过基于AIM1的β-氧化将t-CA进一步转化为苯甲酸(BA),再由BA进一步合成SA。但是将BA转化为SA的关键蛋白尚未鉴定 [24] 。拟南芥中存在4个PAL基因 [25] ,在四突变体pal1 pal2 pal3 pal4的水杨酸积累量是野生型25%并且表现为发育迟缓且不育。但是需要注意的是这里的四突材料仍然含有约10%的野生型PAL活性,这可能是由一个或多个泄漏的PAL突变基因或其他未知的PAL基因引起的。 [26] 大豆中存在5个PAL基因和2个ICS基因,但是只有Glyma03g33880 (GmPAL)、Glyma0125690 (GmICSa)和Glyma03g17420 (GmICSb)可以响应病菌。将这三个基因分别沉默后,其基本生理特征如株高、开花时间等没有发生改变,但是在病菌诱导后植物体内水杨酸含量均显著低于野生型,因此PAL路径和ICS路径在大豆抗病过程中具有相同的贡献 [23] 。水稻中的PAL研究现状如何?但是,最近赵乔课题组通过同位素标记在拟南芥中检测发现苯丙氨酸不能生成SA,而是合成其同分异构体4-HBA;因此拟南芥中BA可以生成SA,可能是由于其体内的其他基因的存在 [27] 。有关苯丙氨酸是否直接参与SA合成有待深入研究。

除了PAL途径外,AIM1编码一种羟酰辅酶A水解酶可以将t-CA转化为BA [22] 。在对绿色植物的共同祖先绿藻的突变体分析发现:AIM1的β-氧化而非ICS蛋白在绿藻中SA的合成中发挥关键作用 [24] 。在拟南芥中,AIM1功能丧失性突变能够抑制拟南芥中黑暗诱导下的衰老,其具体机制便是AIM1的β-氧化依赖于SA的产生在H2O2影响细胞死亡 [28] 。在单子叶水稻中,OsICS1突变后其体内的SA水平相较于野生型是几乎不变的,而OsAIM1突变体在水稻芽中能够出现SA水平显著降低 [29] 。

3. 水杨酸的修饰与分解代谢

水杨酸代谢处于一个精确的调控网络中,维持激素动态平衡不仅需要精确控制激素的合成代谢,还需要精确控制激素的分解代谢。水杨酸在合成之后,除一部分以自由态存在以外大部分会被生物酶所修饰,发生糖基化、甲基化、羟基化、氨基化、磺化等。大部分修饰都会降低水杨酸活性,同时又能很好的协调水杨酸的积累、功能和转运 [30] 。

3.1. 羟基化

SA可以清除羟基自由基,从而在体外形成2,3-DHBA和2,5-DHBA,这些产物的比例取决于铁离子浓度和pH值 [31] [32] 。在拟南芥中,2,3-DHBA和2,5-DHBA主要是通过ICS途径合成的。ICS1突变显著降低了2,3-DHBA和2,5-DHBA的积累。Bartsch等人推测2,3-DHBA和2,5-DHBA在植物体内的合成依赖于酶促反应,而不依赖于活性氧,暗示在植物体内存在负责生成2,3-DHBA的SA 3-羟基化酶和负责生成2,5-DHBA的SA 5-羟基化酶 [26] 。对2,5-DHBA的分析表明,它对系统性、非坏死性病原体和病原体特异性的感染具有强烈的诱导作用。在番茄、黄瓜等植物中外源性应用2,5-DHBA,导致SA诱导PR基因的表达,这一发现表明2,5-DHBA和SA在激活植物防御系统中起着互补的信号通道作用 [33] 。Zhang等利用一个叶片早衰突变体鉴定了水杨酸-3-羟化酶(SA 3-hydroxylase, S3H) S3H参与水杨酸的代谢途径,在植物的衰老中起重要作用。S3H受SA的诱导,并且可以负反馈调节SA的含量。S3H可以在体内与体外调节SA羟基化形成2,3-DHBA。S3H基因敲除突变体不能产生2,3-DHBA糖缀合物,并积累了非常高水平的SA及其糖缀合物,植物表现出明显的早衰表型。相反,超表达S3H基因,则在植物中能检测到较高水平的2,3-DHBA糖缀合物和极低水平的SA,植物表现出叶片寿命显著延长 [34] 。在此基础上,Zhang等利用反向遗传学和生物信息学分析以及体外酶活方法筛选到了SA 5-羟化酶(S5H/DMR6),S5H羟基化水杨酸的能力要远超过先前报道过的S3H的催化效率。有意思的是,S5H/DMR6具有底物抑制特性,可以自动调节其酶活性。同样,在S5H缺失突变体中以及S3HS5H都缺失的双突变体(s3hs5h)中有SA的大量积累,植株的叶片严重变小且衰老显著增强,抗病性也显著增加。S5H/DMR6在经SA诱导或者病原菌处理后,在植物的整个生命周期都有表达,但是S3H基因只在成熟或者衰老的植物中表达 [35] 。植物可以通过介导SA-3羟化酶及SA-5羟化酶来调节SA的稳态。UGT76D1/UGT89A2是糖基化酶,UGT76D1可以催化2,3-DHBA和2,5-DHBA形成其葡糖形式2,3-DHBA糖苷和2,5-DHBA糖苷;UGT89A2可以催化2,3-DHBA和2,5-DHBA形成其木糖形式2,3-DHBA木糖甙和2,5-DHBA木糖甙。UGT76D1受病原菌以及SA的诱导,过量表达UGT76D1会导致SA的积累,PR基因也会随之上调,出现超敏反应,产生类病斑等表型。总之,S3H和S5H可以使SA发生羟基化形成2,3-DHBA和2,5-DHBA;2,3-DHBA和2,5-DHBA在UGT76D1/UGT89A2的催化下发生糖基化形成其糖苷形式;进一步2,3-DHBA和2,5-DHBA糖苷形式的积累抑制SA 的合成,PR基因的表达和细胞的程序性死亡等 [36] 。

3.2. 糖基化

糖基化是将水杨酸通过水杨酸糖基转移酶(SAGT)转化为水杨酸葡糖苷(SAG)的过程,使大量水杨酸以糖苷形式储存在液泡中,从而降低水杨酸对植物的毒害作用。拟南芥中存在两个UDP-糖基化基因:UGT74F1UGT74F2 [37] [38] [39] ,其中UGT74F1由At2g43840编码,UGT74F2由At2g43820编码,这两种酶都可催化SA在其羟基处的结合,从而形成2-o-β-d-葡萄糖苷(SAG)。此外,UGT74F2还可催化SA与羧基的结合,形成水杨酸葡萄糖酯(SGE) [40] 。与野生型相比,ugt74f1在病菌处理时水杨酸积累降低,同时水杨酸响应基因PR1和信号转导基因EDS1在转录水平上也都有不同程度的降低,从而表现为增强的敏感表型;而拟南芥突变体ugt74f2则积累了较多的游离态水杨酸,信号转导基因EDS1表达量增加,对病原菌不敏感且抗性明显增强 [41] 。水稻中OsSGT1也具有SA糖基化修饰活性,可以催化游离态水杨酸转变成SAG。使用噻菌灵或者1,2-苯并异噻唑啉-3-酮(BIT)等化学物质处理水稻时可以增强其抗病性,同时在转录水平上高度诱导OsSGT1表达;当对其进行RNA干扰实验时,依赖于噻菌灵的抗病性减弱,同时SAG含量降低,表明OsSGT1确实参与过水稻的抗病。研究表明,水杨酸糖基化修饰在植物抗病反应中具有重要意义。在烟草产生SAR反应过程中,游离态水杨酸和SAG含量都增加,推测SAG可能参与烟草的抗病反应 [42] 。此外,SAG可能只是游离水杨酸的一种储藏形式,在响应抗病时,SAG通过转变为游离态水杨酸来起作用 [43] 。

3.3. 甲基化

在拟南芥中,BA/SA羧基甲基转移酶1 (BSMT1,AT3G11480)催化SA形成水杨酸甲酯(MeSA),BSMT1的底物并不专一,也可以以苯甲酸、间羟基苯基酸和邻氨基苯甲酸等为底物 [7] 。在正常生长条件下,花中BSMT1的表达高于叶中BSMT1的表达 [42] ,这与MeSA在花发育中的功能一致 [44] 。当用MeSA处理bsmt1(MeSA合成突变体)时,bsmt1表现比对照组减弱的感虫表型,但是虫卵处理并没有增强BSMT1的表达,表明抗虫机制并不依赖于MeSA,它可能只是作为一种屏障来抑制虫卵,从而达到抗虫的目的 [45] 。此外,BSMT1催化生成的水杨酸甲酯是一种常见的易挥发化合物,它可以吸引传粉者,同时也可以通过吸引昆虫捕食者来抵抗某些昆虫的伤害 [44] 。

3.4. 氨基酸化

水杨酰天冬氨酸(SA-Asp)是植物中唯一报道的内源性SA-氨基酸缀合物,在病原体感染后在拟南芥激活标签突变体gh3.5-1D中高度积累。体外生化实验表明,GH3.5蛋白可以催化SA与天冬氨酸的结合,形成SA-Asp,它不会转化为游离SA,但可以诱导致病相关(PR)基因表达并增加对致病性丁香假单胞菌的抗病性 [46] 。Staswick预测GH3.5 (At4g27260)具有催化水杨酸的活性 [47] 。当病菌侵染时,过表达GH3.5植株中天冬氨酸化的水杨酸(SA-Asp)含量增加了3.5倍,天冬氨酸化的生长素(IAA-Asp)含量增加了7倍,而gh3.5-2突变体体内糖基化的水杨酸和氨基酸化的水杨酸无明显变化 [48] 。IAA-Asp积累量降低,表现出缺失生长素的表型 [49] 。这表明GH3.5并非直接催化水杨酸,可能是通过影响IAA来影响水杨酸的代谢。Wildermuth等人在GH3.12突变体中,SA向AA-ASP的转化率的提高将使SA的水平降低 [50] 。

3.5. 磺化反应

磺化反应普遍存在于哺乳动物和植物中,它对于激活或者降低激素活性是不可缺少的。体外实验证明磺基转移酶SOT家族成员中的SOT12可以催化水杨酸的磺化反应 [51] 。与野生型相比,拟南芥突变体sot12在病菌处理条件下体内水杨酸含量减低,表现为易感病性,而在SOT12过表达植株体内水杨酸含量增加,同时PR1基因表达水平增加,表现出抗病性表型 [52] 。缺失SOT12 (AT2G03760)的T-DNA插入型突变体表现出SA对初生根生长的抑制作用,并且在病原体诱导时表现出SA降低。相比之下,SOT12的过度表达增强了叶片中SA的积累和抵抗力 [51] 。

4. 水杨酸的调控

4.1. 表观遗传调控

NPR作为SAR过程中的关键调节因子也参与到了SA的信号调控过程中 [53] 。水杨酸有NPR1和NPR3/NPR4这两种类型的受体,但是它们在调控水杨酸响应基因方面的功能是相对的 [54] 。水杨酸能抑制NPR3/NPR4的转录抑制活性,同时它也能促进NPR1的转录激活活性 [55] 。SA与NPR1结合能够进一步诱导相关防御基因的表达,从而激活PTI、ETI和SAR,抑制ETI (effector-triggered immunity)诱导的细胞死亡 [54] 。NPR3/NPR4作为转录共抑制因子发挥作用,SA会抑制这两个蛋白的活性从而促进下游免疫基因的表达。一个npr4等位基因功能获得性突变体npr4-4D会使得NPR4不能结合SA,组成型抑制了SA诱导的免疫响应。相反,NPR1的等效突变会影响其与SA结合的能力,然而却促进了SA诱导的免疫响应。通过使用完整的拟南芥转录组微阵列(CATMAv2)芯片分析拟南芥的野生型和npr1-1突变体幼苗对SA的早期遗传反应鉴定到了由SA快速诱导的217个基因(早期SAIG)。其中依赖于NPR1的途径有193个,不依赖NPR1的途径有24个。对这两类基因进行分析发现它们被SA激活需要转录因子TGA2/5/6亚类。这些基因也被丁香假单胞菌激活,这些都证明了它们可能在防御细菌方面能够发挥作用 [56] 。

叶片衰老是植物必须经历的生物学过程,在不断的研究过程中已经了解到植物激素水杨酸(SA)和乙烯(ET)会促进衰老。已有研究发现EIN3和EIL1是乙烯信号转导中的两个关键转录因子,是拟南芥中SA诱导的叶片衰老所必需的。此外,他们的研究也指出ET增强了SA促进衰老的作用,NPR1作为SA信号的主要调节因子,它与EIN3相互作用以促进其转录活性 [57] 。ANAC017ANAC082ANAC090对衰老促进过程有共同的抑制作用,包括水杨酸(SA)和活性氧(ROS)响应,但分别由ANAC090ANAC017主导SA和ROS响应的调节 [58] 。拟南芥CBP60基因家族的一个成员CBP60g有助于MAMP (microbe-associated molecular pattern)触发的SA积累,MAMP处理后cbp60g突变体的表达谱与sid2pad4相似,当用MAMP flg22或丁香假单胞菌hrcC菌株处理MAMP flg22激活的MAMP信号后,cbp60g突变体积累的SA较少。此外,CBP60g是钙调蛋白结合蛋白,其钙调蛋白结合结构域位于N端附近,取消钙调蛋白结合的CBP60g突变阻止了cbp60g突变体的SA产生和细菌生长缺陷的互补,这表明CBP60g是一种介导钙调蛋白依赖性水杨酸信号转导响应病原体识别的蛋白质 [59] 。

4.2. WRKY转录因子参与调控SA

WRKY蛋白是一类DNA结合蛋白,可识别在大量植物防御相关基因的启动子中发现的TTGAC (C / T) W-box元件。通过Northern印迹分析方法显示了72个AtWRKY基因中的49个在被无毒力的细菌病原体假单胞菌感染或经SA处理的植物中受到不同的调节。这表明,WRKY基因的防御调控表达涉及转录因子超家族自身成员的广泛转录激活和抑制 [60] 。最新的研究表明,丙二唑(PBZ)处理能够诱导的内源性SA的生物合成,经PBZ处理后wrky46突变体显示出明显的叶片衰老延迟,WRKY46与核中的NPR1相互作用,与WRKY6启动子的W-box结合,以响应SA信号传导诱导其表达,这表明WRKY6可能是多个叶片衰老信号通路的整合节点,并且NPR1-WRKY46-WRKY6的信号级联反应在拟南芥PBZ/SA介导的叶片衰老中起着关键作用 [61] 。WRKY42在叶片衰老过程中被高度诱导表达,功能缺失的wrky42突变体则表现出叶片衰老延迟的表型 [62] 。在接收到外界刺激信号时,FLS受体(一种富含Leu的蛋白激酶)被激活并触发MAP激酶级联(MAPKKK/MEKK1, MKK4/5, MPK3/6),进而激活WRKY28基因的转录 [63] 。线粒体ATP依赖性蛋白酶FtSH4可能通过改变活性氧和WRKY转录因子的水平来调节WRKY基因的表达,这些转录因子则能够控制自噬和衰老过程中SA的合成和信号传导 [64] 。WRKY75过表达能够促进叶片衰老,并且这种衰老表型可以在SID2突变或者过氧化氢酶活性增强时被抑制 [65] ,表明WRKY75也是通过SA信号途径参与植物的衰老过程中。

4.3. MYB转录因子对SA的调控

虽然水杨酸(SA)在对病原体侵袭的防御过程中起着核心作用,但其在超敏反应(HR) (一种与植物抗性相关的程序性细胞死亡形式)的激活中的作用尚待阐明。AtMYB30是R2R3-MYB转录因子,可作为HR的正向调节剂,AtMYB30表达的改变可以调节SA水平和与SA相关基因的表达,说明了AtMYB30参与了一个放大环或信号级联反应,从而调节SA合成,进而调节细胞死亡 [66] 。在烟草中利用烟草花叶病毒(TMV)进行处理后,随着SA的增高,myb1基因表现出增加的趋势,并且myb1的表达使PR基因也随之被诱导。因此可以推断myb1在SA诱发的抗病过程中是一个重要的信号元件 [67] 。

4.4. 其他激素参与对SA的调控

SA作为一大激素在发挥其功能时受到多种成分的影响。在烟草和拟南芥中同时采用SA和JA处理,监测发现SA可以拮抗茉莉酸的生物合成和信号传导 [68] 。SA激活的NONEXPRESSER OF PR GENES1 (NPR1)与ETHYLENE INSENSITIVE3 (EIN3)发生相互作用并干扰EIN3与靶基因启动子HLS1的结合,进而影响拟南芥早期根形态建成过程 [69] 。根据这一发现可以推测SA与ET在拟南芥幼苗时期可能发挥着相反的调控作用。Tetiana Kalachova等人发现脱落酸(ABA)和水杨酸(SA)都抑制了拟南芥悬浮细胞中的体内基础磷酸肌醇特异性磷脂酶C ( PI-PLC)活性 [70] ,PI-PLC是肌醇磷脂信号系统中的关键酶之一 [71] 。因此,在这一信号系统中SA与ABA发挥相似的功能。一种钙调素AtSRI (CAMTA3)能够和EDS1 (一种已知的水杨酸水平调节因子)相互作用参与水杨酸介导的免疫应答,由此可见钙信号对水杨酸水平有一定的调控作用 [72] 。

5. 总结与展望

水杨酸在植物响应生物胁迫和非生物胁迫具有重要作用,在这里我们对水杨酸的两条主要合成途径以及多条修饰代谢途径进行了综述。目前以拟南芥、大豆、水稻等植物作为研究对象发现了SA的相关突变体,使SA的信号转导途径得到了较好的阐述。近年来,有关SA受体和转运蛋白研究也取得了突破性进展,相对于水杨酸在拟南芥中的研究,在其他物种如水稻中有待进一步加强。对SA代谢途径及其分子机理的全面了解将帮助我们更好的了解SA在抗病和植物生长发育过程中的作用机制。

目前通过同位素示踪实验,对拟南芥、大豆等植物进行研究克隆到了一系列的SA合成和分解代谢基因,发现了SA合成的PAL途径和ICS途径以及代谢酶的催化反应等,但仍有一些重要的代谢路径和转运途径中的关键因子尚未解析。不同作物中SA合成的关键途径已被揭示,但是一些非首要过程仍待深入探究;SA发挥调控作用中的重要受体及信号分子如NPR1、PBS3、PAD4、EDS1等受到多种转录因子的调控,但是其翻译后修饰还有待解答;SA与多种激素间存在协同或拮抗的作用,在发挥某种激素正向作用的同时相对应的负面效果是否值得被应用到现实生产中。解决上述问题,不仅能完善SA合成和代谢途径,深入阐明SA合成和代谢的调控机理,而且有利于系统阐明不同激素间的互作网络,进而指导作物遗传改良,协助实现高产、优质、高抗的育种目标。

参考文献

[1] White, R.F. (1979) Acetylsalicylic Acid (Aspirin) Induces Resistance to Tobacco Mosaic Virus in Tobacco. Virology, 99, 410-412.
https://doi.org/10.1016/0042-6822(79)90019-9
[2] Van Butselaar, T. and Van Den Ackerveken, G. (2020) Salicylic Acid Steers the Growth-Immunity Tradeoff. Trends in Plant Science, 25, 566-576.
https://doi.org/10.1016/j.tplants.2020.02.002
[3] Kong, X., Zhang, C., Zheng, H., et al. (2020) Antagonistic In-teraction between Auxin and SA Signaling Pathways Regulates Bacterial Infection through Lateral Root in Arabidopsis. Cell Reports, 32, Article ID: 108060.
https://doi.org/10.1016/j.celrep.2020.108060
[4] Shi, Z., Maximova, S., Liu, Y., et al. (2013) The Salicylic Acid Receptor NPR3 Is a Negative Regulator of the Transcriptional Defense Response during Early Flower Development in Arabidopsis. Molecular Plant, 6, 802-816.
https://doi.org/10.1093/mp/sss091
[5] Ajami, C. (1974) Identification of the Flower-Inducing Factor Isolated from Aphid Honeydew as Being Salicvlic Acid. Plant Physiology, 54, 904-906.
[6] Morris, K., Mackerness, S.A., Page, T., et al. (2000) Salicylic Acid Has a Role in Regulating Gene Expression during Leaf Senescence. The Plant Journal, 23, 677-685.
https://doi.org/10.1046/j.1365-313x.2000.00836.x
[7] Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., et al. (2011) Salicylic Acid Biosynthesis and Metabolism. The Arabidopsis Book, 9, e0156.
https://doi.org/10.1199/tab.0156
[8] Hartmann, M. and Zeier, J. (2019) N-hydroxypipecolic Acid and Salicylic Acid: A Metabolic Duo for Systemic Acquired Resistance. Current Opinion in Plant Biology, 50, 44-57.
https://doi.org/10.1016/j.pbi.2019.02.006
[9] Serino, L., Reimmann, C., Baur, H., et al. (1995) Structural Genes for Salicylate Biosynthesis from Chorismate in Pseudomonas aeruginosa. Molecular Genetics and Genomics, 249, 217-228.
https://doi.org/10.1007/BF00290369
[10] Wildermuth, M.C., Dewdney, J., Wu, G., et al. (2001) Isochorismate Synthase Is Required to Synthesize Salicylic Acid for Plant Defence. Nature, 414, 562-565.
https://doi.org/10.1038/35107108
[11] Garcion, C., Lohmann, A., Lamodiere, E., et al. (2008) Characterization and Biological Function of the Isochorismate Synthase2 Gene of Arabidopsis. Plant Physiology, 147, 1279-1287.
https://doi.org/10.1104/pp.108.119420
[12] Rekhter, D., Ludke, D., Ding, Y., et al. (2019) Isochorismate-Derived Biosynthesis of the Plant Stress Hormone Salicylic Acid. Science, 365, 498-502.
https://doi.org/10.1126/science.aaw1720
[13] Li, W., He, J., Wang, X., et al. (2022) PBS3: A Versatile Player in and beyond Salicylic Acid Biosynthesis in Arabidopsis. New Phytologist, 237, 414-422.
https://doi.org/10.1111/nph.18558
[14] Innes, R.W., et al. (1999) Identification of Three Putative Signal Trans-duction Genes Involved in R Gene-Specified Disease Resistance in Arabidopsis. Genetics, 152, 401-412.
https://doi.org/10.1093/genetics/152.1.401
[15] Cohen, J.D., et al. (2008) The Genetic Network Controlling the Arabidopsis Transcriptional Response to Pseudomonas syringae pv. maculicola: Roles of Major Regulators and the Phytotoxin Coronatine. Molecular Plant-Microbe Interactions, 21, 1408-1420.
[16] Okrent, R.A., Brooks, M.D. and Wildermuth, M.C. (2009) Arabidopsis GH3.12 (PBS3) Conjugates Amino Acids to 4-Substituted Benzoates and Is In-hibited by Salicylate. Journal of Biological Chemistry, 284, 9742-9754.
https://doi.org/10.1074/jbc.M806662200
[17] Torrens-Spence, M.P., Bobokalonova, A., Carballo, V., et al. (2019) PBS3 and EPS1 Complete Salicylic Acid Biosynthesis from Isochorismate in Arabidopsis. Molecular Plant, 12, 1577-1586.
https://doi.org/10.1016/j.molp.2019.11.005
[18] Silverman, P., Kanter, D., Schweizer, P., et al. (1995) Salicylic Acid in Rice (Biosynthesis, Conjugation, and Possible Role). Plant Physiology, 108, 633-639.
https://doi.org/10.1104/pp.108.2.633
[19] Yalpani, N., Leon, J., Lawton, M.A., et al. (1993) Pathway of Salicylic Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiology, 103, 315-321.
https://doi.org/10.1104/pp.103.2.315
[20] Zhang, Y., Wang, H.L., Li, Z., et al. (2020) Genetic Network between Leaf Senescence and Plant Immunity: Crucial Regulatory Nodes and New Insights. Plants (Basel), 9, Article No. 495.
https://doi.org/10.3390/plants9040495
[21] Yang, J.-W., El-Habbak, M., et al. (2016) Cooperative Functioning between Phenylalanine Ammonia Lyase and Isochorismate Synthase Activities Contributes to Salicylic Acid Biosynthesis in Soybean. New Phytologist, 212, 627-636.
https://doi.org/10.1111/nph.14078
[22] Xu, L., Zhao, H., Ruan, W., et al. (2017) ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Spe-cies Levels for Root Meristem Activity in Rice. Plant Cell, 29, 560-574.
https://doi.org/10.1105/tpc.16.00665
[23] Pascual, M.B., El-Azaz, J., De La Torre, F.N., et al. (2016) Biosynthesis and Metabolic Fate of Phenylalanine in Conifers. Frontiers in Plant Science, 7, Article No. 1030.
https://doi.org/10.3389/fpls.2016.01030
[24] Jia, X., Wang, L., Zhao, H., et al. (2023) The Origin and Evolution of Salicylic Acid Signaling and Biosynthesis in Plants. Molecular Plant, 16, 245-259.
https://doi.org/10.1016/j.molp.2022.12.002
[25] Cochrane, F.C., Davin, L.B. and Lewis, N.G. (2004) The Ara-bidopsis Phenylalanine Ammonia Lyase Gene Family: Kinetic Characterization of the Four PAL Isoforms. Phytochemistry, 65, 1557-1564.
https://doi.org/10.1016/j.phytochem.2004.05.006
[26] Bartsch, M., Bednarek, P., Vivancos, P.D., et al. (2010) Accumulation of Isochorismate-Derived 2,3-Dihydroxybenzoic 3-O-beta-D-xyloside in Arabidopsis Resistance to Pathogens and Ageing of Leaves. Journal of Biological Chemistry, 285, 25654-25665.
https://doi.org/10.1074/jbc.M109.092569
[27] Wu, J., Zhu, W. and Zhao, Q. (2022) Salicylic Acid Biosynthesis Is Not from Phenylalanine in Arabidopsis. Journal of Integrative Plant Biology, 65, 881-887.
[28] Van der Meer, T., Verlee, A., Willems, P., et al. (2020) Chemical Genetics Approach Identifies Abnormal Inflorescence Meristem 1 as a Putative Target of a Novel Sulfonamide That Protects Catalase2-Deficient Arabidopsis against Photorespiratory Stress. Cells, 9, Article No. 2026.
https://doi.org/10.3390/cells9092026
[29] Xu, L., Wang, J.B., Wang, X.M., et al. (2022) AIM1-Dependent High Basal SA Accumulation Modulates Stomatal Aperture in Rice. New Phytologist, 238, 1420-1430.
https://doi.org/10.1101/2022.06.23.497111
[30] Jones, J.D.G. and Dangl, J.L. (2006) The Plant Immune System. Nature, 444, 323-329.
https://doi.org/10.1038/nature05286
[31] Maskos, Z., Rush, J.D. and Koppenol, W.H. (1990) The Hydroxylation of the Salicylate Anion by a Fenton Reaction and T-Radiolysis: A Consideration of the Respective Mechanisms. Free Radical Biology and Medicine, 8, 153-162.
https://doi.org/10.1016/0891-5849(90)90088-Z
[32] Chang, C.-Y., Hsieh, Y.-H., Cheng, K.-Y., et al. (2008) Effect of pH on Fenton Process Using Estimation of Hydroxyl Radical with Salicylic Acid as Trapping Reagent. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 58, 873-879.
https://doi.org/10.2166/wst.2008.429
[33] Belles, J.M., Garro, R., Pallas, V., et al. (2006) Accumulation of Gentisic Acid as Associated with Systemic Infections but Not with the Hypersensitive Response in Plant-Pathogen In-teractions. Planta, 223, 500-511.
https://doi.org/10.1007/s00425-005-0109-8
[34] Zhang, K., Halitschke, R., Yin, C., et al. (2013) Salicylic Acid 3-Hydroxylase Regulates Arabidopsis Leaf Longevity by Mediating Salicylic Acid Catabolism. Proceedings of the Na-tional Academy of Sciences of the United States of America, 110, 14807-14812.
https://doi.org/10.1073/pnas.1302702110
[35] Zhang, Y., Zhao, L., Zhao, J., et al. (2017) S5H/DMR6 Encodes a Salicylic Acid 5-Hydroxylase That Fine-Tunes Salicylic Acid Homeostasis. Plant Physiology, 175, 1082-1093.
https://doi.org/10.1104/pp.17.00695
[36] Huang, X.X., Zhu, G.Q., Liu, Q., et al. (2018) Modulation of Plant Sal-icylic Acid-Associated Immune Responses via Glycosylation of Dihydroxybenzoic Acids. Plant Physiology, 176, 3103-3119.
https://doi.org/10.1104/pp.17.01530
[37] Lim, E.K., Doucet, C.J, Li, Y., et al. (2002) The Activity of Arabidopsis Glycosyltransferases toward Salicylic Acid, 4-Hydroxybenzoic Acid, and Other Benzoates. Journal of Bi-ological Chemistry, 277, 586-592.
https://doi.org/10.1074/jbc.M109287200
[38] Song, J.T. (2006) Induction of a Salicylic Acid Glucosyltransferase, AtSGT1, Is an Early Disease Response in Arabidopsis thaliana. Molecules and Cells, 22, 233-238.
[39] Dean, J.V. and Delaney, S.P. (2008) Metabolism of Salicylic Acid in Wild-Type, ugt74f1 and ugt74f2 Glucosyltransferase Mutants of Arabidopsis thaliana. Physiologia Plantarum, 132, 417-425.
https://doi.org/10.1111/j.1399-3054.2007.01041.x
[40] Song, J.T., Koo, Y.J., Seo, H.S., et al. (2008) Overex-pression of AtSGT1, an Arabidopsis Salicylic Acid Glucosyltransferase, Leads to Increased Susceptibility to Pseudo-monas syringae. Phytochemistry, 69, 1128-1134.
https://doi.org/10.1016/j.phytochem.2007.12.010
[41] Boachon, B., Gamir, J., Pastor, V., et al. (2014) Role of Two UDP-Glycosyltransferases from the L Group of Arabidopsis in Resistance against Pseudomonas syringae. Euro-pean Journal of Plant Pathology, 139, 707-720.
https://doi.org/10.1007/s10658-014-0424-7
[42] Chen, F., D’auria, J.C., Tholl, D., et al. (2003) An Arabidopsis thaliana Gene for Methylsalicylate Biosynthesis, Identified by a Biochemical Genomics Approach, Has a Role in De-fense. The Plant Journal, 36, 577-588.
https://doi.org/10.1046/j.1365-313X.2003.01902.x
[43] Chen, Z.X., Malamy, J., Henning, J., et al. (1995) In-duction, Modification, and Transduction of the Salicylic Acid Signal in Plant Defense Responses. Proceedings of the National Academy of Sciences of the United States of America, 92, 4134-4137.
https://doi.org/10.1073/pnas.92.10.4134
[44] Effmert, U., Saschenbrecker, S., Ross, J., et al. (2005) Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function. Phytochemistry, 66, 1211-1230.
https://doi.org/10.1016/j.phytochem.2005.03.031
[45] Groux, R., Hilfiker, O., Gouhier-Darimont, C., et al. (2014) Role of Methyl Salicylate on Oviposition Deterrence in Arabidopsis thaliana. Journal of Chemical Ecology, 40, 754-759.
https://doi.org/10.1007/s10886-014-0470-9
[46] Chen, Y., Shen, H., Wang, M., et al. (2013) Salicyloyl-Aspartate Synthesized by the Acetyl-Amido Synthetase GH3.5 Is a Potential Activator of Plant Immunity in Arabidopsis. Acta Biochimica et Biophysica Sinica, 45, 827-836.
https://doi.org/10.1093/abbs/gmt078
[47] Staswick, P.E., Tiryaki, I. and Rowe, M.L. (2002) Jasmonate Response Locus JAR1 and Several Related Arabidopsis Genes Encode Enzymes of the Firefly Luciferase Superfamily That Show Activity on Jasmonic, Salicylic, and Indole-3-Acetic Acids in an Assay for Adenylation. Plant Cell, 14, 1405-1415.
https://doi.org/10.1105/tpc.000885
[48] Zhang, Z., Li, Q., Li, Z., et al. (2007) Dual Regulation Role of GH3.5 in Salicylic Acid and Auxin Signaling during Arabidopsis-Pseudomonas syringae Interaction. Plant Physiology, 145, 450-464.
https://doi.org/10.1104/pp.107.106021
[49] Jagadeeswaran, G., Raina, S., Acharya, B.R., et al. (2007) Arabidopsis GH3-Like Defense Gene 1 Is Required for Accumulation of Salicylic Acid, Activation of Defense Responses and Resistance to Pseudomonas syringae. The Plant Journal, 51, 234-246.
https://doi.org/10.1111/j.1365-313X.2007.03130.x
[50] Robert-Seilaniantz, A., Grant, M. and Jones, J.D. (2011) Hormone Crosstalk in Plant Disease and Defense: More than Just Jasmonate-Salicylate Antagonism. Annual Review of Phytopathology, 49, 317-343.
https://doi.org/10.1146/annurev-phyto-073009-114447
[51] Klein, M. and Papenbrock, J. (2004) The Multi-Protein Family of Arabidopsis Sulphotransferases and Their Relatives in Other Plant Species. Journal of Experimental Botany, 55, 1809-1820.
https://doi.org/10.1093/jxb/erh183
[52] Baek, D., Pathange, P., Chung, J.S., et al. (2010) A Stress-Inducible Sulphotransferase Sulphonates Salicylic Acid and Confers Pathogen Resistance in Arabidopsis. Plant, Cell & Environment, 33, 1383-1392.
https://doi.org/10.1111/j.1365-3040.2010.02156.x
[53] Pajerowska-Mukhtar, K.M., Emerine, D.K. and Mukhtar, M.S. (2013) Tell Me More: Roles of NPRs in Plant Immunity. Trends in Plant Science, 18, 402-411.
https://doi.org/10.1016/j.tplants.2013.04.004
[54] Zhang, Y. and Li, X. (2019) Salicylic Acid: Biosynthesis, Per-ception, and Contributions to Plant Immunity. Current Opinion in Plant Biology, 50, 29-36.
https://doi.org/10.1016/j.pbi.2019.02.004
[55] Ding, Y., Sun, T., Ao, K., et al. (2018) Opposite Roles of Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity. Cell, 173, 1454-1467e15.
https://doi.org/10.1016/j.cell.2018.03.044
[56] Blanco, F., Salinas, P., Cecchini, N.M., et al. (2009) Early Genomic Responses to Salicylic Acid in Arabidopsis. Plant Molecular Biology, 70, 79-102.
https://doi.org/10.1007/s11103-009-9458-1
[57] Yu, X., Xu, Y. and Yan, S. (2021) Salicylic Acid and Ethylene Coordinately Promote Leaf Senescence. Journal of Integrative Plant Biology, 63, 823-827.
https://doi.org/10.1111/jipb.13074
[58] Kim, H.J., Park, J.H., Kim, J., et al. (2018) Time-Evolving Genetic Net-works Reveal a NAC Troika That Negatively Regulates Leaf Senescence in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 115, E4930-E4939.
https://doi.org/10.1073/pnas.1721523115
[59] Wang, L., Tsuda, K., Sato, M., et al. (2009) Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae. PLOS Pathogens, 5, e1000301.
https://doi.org/10.1371/journal.ppat.1000301
[60] Dong, J., Chen, C. and Chen, Z. (2003) Expression Profiles of the Arabidopsis WRKY Gene Superfamily during Plant Defense Response. Plant Molecular Biology, 51, 21-37.
https://doi.org/10.1023/A:1020780022549
[61] Zhang, D., Zhu, Z., Gao, J., et al. (2020) The NPR1-WRKY46-WRKY6 Signaling Cascade Mediates Probenazole/Salicylic Acid-Elicited Leaf Senescence in Ara-bidopsis thaliana. Journal of Integrative Plant Biology, 63, 924-936.
https://doi.org/10.1111/jipb.13044
[62] Niu, F., Cui, X., Zhao, P., et al. (2020) WRKY42 Transcription Factor Positively Regulates Leaf Senescence through Modulating SA and ROS Synthesis in Arabidopsis thaliana. The Plant Journal, 104, 171-184.
https://doi.org/10.1111/tpj.14914
[63] Navarro, L., Zipfel, C., Rowland, O., et al. (2004) The Transcriptional Innate Immune Response to flg22. Interplay and Overlap with Avr Gene-Dependent Defense Responses and Bacterial Pathogenesis. Plant Physiology, 135, 1113-1128.
https://doi.org/10.1104/pp.103.036749
[64] Zhang, S., Li, C., Wang, R., et al. (2017) The Arabidopsis Mito-chondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumula-tion and Signaling. Plant Physiology, 173, 2294-2307.
https://doi.org/10.1104/pp.16.00008
[65] Guo, P., Li, Z., Huang, P., et al. (2017) A Tripartite Amplification Loop Involving the Transcription Factor WRKY75, Salicylic Acid, and Reactive Oxygen Species Accelerates Leaf Senescence. Plant Cell, 29, 2854-2870.
https://doi.org/10.1105/tpc.17.00438
[66] Raffaele, S., Rivas, S. and Roby, D. (2006) An Essential Role for Sali-cylic Acid in AtMYB30-Mediated Control of the Hypersensitive Cell Death Program in Arabidopsis. FEBS Letters, 580, 3498-3504.
https://doi.org/10.1016/j.febslet.2006.05.027
[67] Klessig, Y. (1996) Isolation and Characterization of a Tobacco Mosaic Virus-Inducible Myb Oncogene Homolog from Tobacco.
[68] Mur, L.A., Kenton, P., Atzorn, R., et al. (2006) The Outcomes of Concentration-Specific Interactions between Salicylate and Jasmonate Signaling Include Synergy, Antagonism, and Oxidative Stress Leading to Cell Death. Plant Physiology, 140, 249-262.
https://doi.org/10.1104/pp.105.072348
[69] Huang, P., Dong, Z., Guo, P., et al. (2020) Salicylic Acid Suppresses Apical Hook Formation via NPR1-Mediated Repression of EIN3 and EIL1 in Arabidopsis. Plant Cell, 32, 612-629.
https://doi.org/10.1105/tpc.19.00658
[70] Kalachova, T., Puga-Freitas, R., Kravets, V., et al. (2016) The Inhibition of Basal Phosphoinositide-Dependent Phospholipase C Activity in Arabidopsis Suspension Cells by Abscisic or Salicylic Acid Acts as a Signalling Hub Accounting for an Important Overlap in Transcriptome Remodelling Induced by These Hormones. Environmental and Experimental Botany, 123, 37-49.
https://doi.org/10.1016/j.envexpbot.2015.11.003
[71] Hong, Y., Zhao, J., Guo, L., et al. (2016) Plant Phospho-lipases D and C and Their Diverse Functions in Stress Responses. Progress in Lipid Research, 62, 55-74.
https://doi.org/10.1016/j.plipres.2016.01.002
[72] Du, L., Ali, G.S., Simons, K.A., et al. (2009) Ca(2+)/Calmodulin Regulates Salicylic-Acid-Mediated Plant Immunity. Nature, 457, 1154-1158.
https://doi.org/10.1038/nature07612