基于网络药理学探讨咖啡酸、绿原酸和原儿茶酸对骨关节炎的作用机制
Exploring the Mechanism of Action of Caffeic Acid, Chlorogenic Acid and Protocatechuic Acid on Osteoarthritis Based on Network Pharmacology
DOI: 10.12677/PI.2023.123030, PDF, HTML, XML, 下载: 172  浏览: 268 
作者: 高小凤, 李红美:贵州中医药大学基础医学院,贵州 贵阳;王宝娟, 郑曙光*:贵州中医药大学第一附属医院骨伤科,贵州 贵阳
关键词: 咖啡酸绿原酸原儿茶酸骨关节炎Caffeic Acid Chlorogenic Acid Protocatechuic Acid Osteoarthritis
摘要: 目的:基于网络药理学探讨咖啡酸、绿原酸和原儿茶酸治对骨关节炎的作用机制。方法:根据前期研究,得到了骨炎消方中的8个化学成分。通过PubChem数据库得到其2D结构后,于STP数据库中预测其相应靶点,同时应用CTD数据库获得骨关节炎的相关靶点,利用韦恩图取成分靶点和疾病靶点的交集,得到关键靶点,并在Cytoscape软件中建立“化学成分–关键靶点–疾病”网络,最后应用分子对接验证成分和关键靶点之间的关系。结果:以Probability > 0.5为条件,筛选出其中3个化学成分(咖啡酸、绿原酸、原儿茶酸)的17个相应靶点,取交集后得到15个关键靶点,利用分子对接,发现成分与关键靶点的对接较稳定。结论:通过网络药理学的研究方法,发现骨炎消方中这三个成分对骨关节炎的发病机制具有一定的影响作用,其可通过抑制炎症反应,调节细胞在生长、凋亡及脂质过氧化等方面发挥重要作用,进而可以降低OA的病理变化,并缓解疾病的症状,延迟病程的进展。
Abstract: Objective: To investigate the mechanism of action of caffeic acid, chlorogenic acid and protocate-chuic acid treatment on osteoarthritis based on network pharmacology. Methods: Based on the preliminary study, eight chemical components in osteoarthritis elimination formula were obtained. The 2D structures were obtained from the PubChem database, and the corresponding targets were predicted in the STP database, while the CTD database was applied to obtain the relevant targets for osteoarthritis. Finally, molecular docking was applied to verify the relationship between compo-nents and key targets. Results: With Probability > 0.5, 17 corresponding targets of three of the chemical components (caffeic acid, chlorogenic acid and protocatechuic acid) were screened, and 15 key targets were obtained after taking the intersection, and using molecular docking, it was found that the docking between the components and the key targets was more stable. Conclusion: Through the research method of network pharmacology, it was found that these three components in Osteitis Dissipation Formula have certain influential effects on the pathogenesis of osteoarthritis, which can play important roles by inhibiting the inflammatory response and regulating cells in growth, apoptosis and lipid peroxidation, and then can reduce the pathological changes of OA and relieve the symptoms of the disease and delay the progression of the disease process.
文章引用:高小凤, 李红美, 王宝娟, 郑曙光. 基于网络药理学探讨咖啡酸、绿原酸和原儿茶酸对骨关节炎的作用机制[J]. 药物资讯, 2023, 12(3): 240-247. https://doi.org/10.12677/PI.2023.123030

1. 引言

骨关节炎(osteoarthritis, OA)是一种关节退行性疾病,以关节疼痛、畸形及功能障碍为主要临床表现,是一种由年龄、肥胖、炎症、创伤、遗传等多种因素引起的关节病变,本病发病率以中老年人居多,妇女比男子多,残疾发生率高 [1] 。现今临床上对于骨关节炎有许多的治疗方案,包括手术法和非手术法,但治疗效果均不明显,只能缓解症状,短期改善关节功能,不能阻止OA的病理进程,更不能逆转关节软骨的退变 [2] 。骨炎消方是基于苗族医药基础研究及临床观察的经典验方,全方12味药物合用,相辅相成,既能调节体内紊乱,又能疏通脉络,供应人体所需的“气”“血”,达到治疗疾病的目的。

本课题组前期通过高效液相色谱法测定得到了骨炎消方中8个有效成分 [3] ,本次研究基于此8个成分,运用网络药理学方法研究其对OA的作用机制,以期为其后续实验研究及临床应用提供理论基础。

2. 方法

2.1. 查询药物成分的相关靶点和骨关节炎的相关靶点

根据前期研究,得到了骨炎消方的8个重点成分,通过PubChem (https://pubchem.ncbi.nlm.nih.gov/)数据库查询这几个成分的2D结构,然后将其2D结构输入到Swiss Target Prediction (STP, http://www.swisstargetprediction.ch/)数据库中预测其相关靶点,然后以Probability > 0.5为条件,筛选化学成分的相关靶点。

在CTD (http://ctdbase.org/)数据库中查询骨关节炎的相关靶点。

2.2. 建立“化学成分–关键靶点–疾病”网络

应用Venny数据库(https://bioinfogp.cnb.csic.es/tools/venny/)对化学成分预测的靶点和骨关节炎的相关靶点取交集,得到关键靶点。将化学成分、关键靶点和疾病带入到Cytoscape软件中进行拓扑分析,建立“化学成分–关键靶点–疾病”网络图。

2.3. 分子对接

在PubChem数据库中下载化学成分的3D结构,在开UniProt (https://www.uniprot.org/),搜索相关靶点的基因名,找到3D structure databases,下载PDB文件。通过CB-DOCK2 (https://cadd.labshare.cn/cb-dock2/php/index.php)数据库对下载的成分和关键靶点依次进行分子对接,点“Dock”,上传成分和靶点的文件,然后点“Auto Blind Docking”进行运行,最后调整参数:Receptor Style为Cartoon,Color Receptor为By Hydrophobicity,下载对接好的图片。

3. 结果

Table 1. Component-critical target-molecular docking binding energy

表1. 成分–关键靶点–分子对接结合能

通过数据库分析得到3个成分(咖啡酸、绿原酸、原儿茶酸)的17个相应靶点,同疾病靶点取交集后得到15个关键靶点,建立网络图,如图1

成分和关键靶点进行分子对接后得到20个对接结果如表1,根据对接能量小于−6 kcal/mol,其对接结果稳定,得到以下6个对接图,如图2

注:粉色方形为骨炎消方,黄色圆形表示3个化学成分,蓝色三角形表示15个关键靶点,红色的六边形表示骨关节炎。

Figure 1. “Chemical composition - key target - disease” network

图1. “化学成分–关键靶点–疾病”网络

Caffeic acid-MMP2 Chlorogenic acid-AKR1B1

Chlorogenic acid-AKR1B10 Caffeic acid-PTPN1Caffeic acid-ALOX5 Caffeic acid-MMP9

Figure 2. Molecular docking diagram

图2. 分子对接图

4. 讨论

OA是中老年人群最常见的慢性疾病之一,其最突出的特征是关节软骨(Articular cartilage, AC)的破坏,包括滑膜、AC成分(特别是II型胶原和聚蛋白)、软骨下骨和关节周软组织,并伴有关节功能障碍。骨性关节炎的主要临床表现为膝关节疼痛、膝关节肿胀和僵硬 [4] [5] 。本文基于网络数据库,分析成分、靶点蛋白和疾病之间的关系,旨在明确咖啡酸、绿原酸和原儿茶酸对骨关节炎的作用机制。

咖啡酸(Caffeic acid, CA)是羟基肉桂酸酯和苯丙烯酸酯的代谢物,普遍存在于多种食物中,如咖啡、苹果等 [6] 。研究发现,CA具有抗炎、抗糖尿病、抗氧化和抗肿瘤等作用 [7] 。CA作为一种抗氧化剂,可以改善活性氧,主要是通过向过氧化氢提供一个氢原子来降低过氧基(ROO),从而终止过氧化链反应 [8] [9] 。故CA具有的抗氧化作用可能会保护氧化应激对骨细胞和骨骼系统的负面影响 [10] 。实验研究发现,CA对IL-1β诱导的关节软骨损伤有明显的保护作用,可抑制诱导型一氧化氮合酶(iNOS)和环氧合酶-2 (COX-2)等炎症因子的增加,还可抑制人金属肽酶含血小板反应蛋白5、基质金属蛋白酶(Matrix metalloproteinase, MMPs)等软骨基质分解代谢酶的表达 [11] 。绿原酸(Chlorogenic acid, CGA)是由咖啡酸和奎宁酸酯化形成的多酚类化合物 [12] ,且其与CA功效类似 [13] 。研究发现,CGA降低了炎症软骨细胞中MMPs的表达 [14] 。CGA可以抑制软骨细胞NO和PGE2的产生以及iNOS和COX-2的表达 [15] 。体外研究表明,CGA可减弱几种炎症介质的产生,如IL-1β、IL-6和TNF-α [16] 。此外,Lee等人通过CGA治疗脓毒性关节炎的实验研究,发现CGA发挥的抗炎作用是通过抑制巨噬细胞产生的一氧化氮(NO)来介导的,且通过细胞实验验证得出其抑制作用与CGA的浓度呈相关性 [17] 。CGA还可能减少体内破骨细胞分化和骨吸收,并可能在治疗与炎症性骨破坏相关的疾病中具有治疗潜力 [18] 。原儿茶酸(Protocatechuic acid, PCA)也被称为3,4-二羟基苯甲酸,是一种丰富的自然分布的酚 [19] 。PCA同样具有抗氧化、抗菌、抗炎和抗癌活性的作用 [20] 。研究发现,在Freund佐剂诱导的关节炎大鼠模型中,PCA在大鼠和小鼠中具有良好的抗炎和镇痛作用 [21] 。此外,PCA对于前交叉韧带横断诱导的骨关节炎具有减弱,治疗组的关节软骨变化较轻,会下调破骨细胞特异性标记物,PCA通过抑制MAPK、ATK和NF-κB信号通路抑制破骨细胞的发生 [22] 。有文献报道,PCA作为花青素的主要代谢产物,而花青素主要是通过抑制NF-κB和ERK/MAPK信号通路,从而减少IL-1β诱导的猪软骨外植体的糖胺聚糖和胶原分解具有软骨保护潜力 [23] 。

通过CA、CGA、PCA与OA的作用靶点进行网络药理学分析发现,AKR1B10、MMP2、MMP9、PTPN1、ALOX5等为关键靶点。醛酮还原酶家族1成员B10 (Aldo-keto reductase family 1 member B10, AKR1B10)在正常人类中主要集中在结肠和小肠的部位,但是在肿瘤细胞中常呈过表达状态,因此AKR1B10的临床研究主要是肝癌、肺癌、乳腺癌等疾病 [24] 。研究发现,AKR1B10具有促进细胞存活的功能,主要是通过以下两个途径,AKR1B10阻断乙酰辅酶A羧基转移酶亚单位α (ACCA)的降解,ACCA通过E3泛素蛋白连接酶介导的泛素化–蛋白酶体途径降解,从而调节脂质合成、线粒体功能、氧化状态和脂质过氧化;AKR1B10还将羰基减少为毒性较低的醇形式,阻断羰基诱导的细胞损伤。因此,AKR1B10可能是一种重要的细胞保护蛋白 [25] 。MMPs是调节细胞基质组成的重要蛋白酶,能够降解各种细胞外基质蛋白,包括纤维和非纤维胶原蛋白、纤维连接蛋白、层粘连蛋白和基底膜糖蛋白,在细胞增殖、迁移、分化、凋亡等行为中发挥重要作用 [26] 。实验研究发现,芍药苷下调IL-1β诱导的大鼠软骨细胞中MMPs的表达,增加金属蛋白酶组织抑制剂-1等蛋白的表达,并且阻断NF-κB通路的激活 [27] 。蛋白酪氨酸磷酸酶1B (Tyrosine-protein phosphatase non-receptor type 1, PTPN1)是重要的细胞信号调节分子,广泛存在于肝脏、肌肉等多种组织中,在细胞生长、分化、增殖及迁移等方面具有重要作用 [28] ,研究发现,PTPN1在软骨细胞中的表达增加了细胞凋亡,降低了酪氨酸激酶受体磷酸化,导致下游通路PI3K/AKT/mTOR信号通路收到抑制,致软骨细胞的凋亡增加 [29] 。5-脂氧合酶(5-Lipoxygenase, ALOX5)是一种含铁和非血红素双加氧酶,催化多不饱和脂肪酸产生过氧化反应。ALOX5作为一种限速酶,负责白三烯(Leukotriene, LTs)的生物合成,LTs是炎症的主要介质,最终导致包多种疾病的发生。ALOX5可以通过两种方式影响细胞死亡。一方面,由LTs介导的炎症反应。另一方面,ALOX5本身也是介导脂质过氧化的关键酶,脂质过氧化可导致细胞凋亡和焦亡等细胞死亡 [30] 。有研究报道,在脑缺血大鼠模型中,ALOX5在模型中表达呈过表达状态,当抑制ALOX5可促进脑部功能的恢复 [31] 。

5. 结论

综上所述,本研究通过借助网络药理学方法分析了苗药骨炎消汤中的CA、CGA与PCA对OA的潜在有效成分、靶点及作用机制。通过分析发现CA、CGA与PCA等成分调节AKR1B10、MMP2、MMP9、PTPN1、ALOX5等靶点的表达,且分子对接也验证了其对接稳定性。本次研究发现骨炎消中的这三个成分可通过抑制炎症反应,调节细胞在生长、凋亡及脂质过氧化等方面发挥重要作用,进而可以降低OA的病理变化,并缓解疾病的症状,延迟病程的进展,为后期实验研究及临床应用提供理论基础。但是由于本次研究成分偏少,对于骨炎消全方的预测具有局限性,后续需通过更多的实验研究进行验证。

NOTES

*通讯作者。

参考文献

[1] Hawker, G.A. (2019) Osteoarthritis Is a Serious Disease. Clinical and Experimental Rheumatology, 120, S3-S6.
[2] 陈卫衡. 膝骨关节炎中医诊疗指南(2020年版) [J]. 中医正骨, 2020, 32(10): 1-14.
[3] 李田洋, 杨婷婷, 张琪, 等. 高效液相色谱法同时测定骨炎消方中8种有效成分的含量[J]. 中南药学, 2021, 19(8): 1666-1669.
[4] Goldring, M.B. and Goldring, S.R. (2007) Osteoarthritis. Journal of Cellular Physiology, 213, 626-634.
https://doi.org/10.1002/jcp.21258
[5] Rana, J.E., Saeed, M., Khaled, S., Hossein, B. and Yousefi, B. (2018) Mel-atonin in Regulation of Inflammatory Pathways in Rheumatoid Arthritis and Osteoarthritis: Involvement of Circadian Clock Genes. British Journal of Pharmacology, 175, 3230-3238.
https://doi.org/10.1111/bph.13898
[6] 侯晋, 付杰, 张志明, 等. 咖啡酸衍生物的生物活性与化学结构的改造[J]. 复旦学报(医学版), 2011, 38(6): 546-552.
[7] Armutcu, F., Akyol, S., Ustunsoy, S., et al. (2015) Therapeutic Potential of Caffeic Acid Phenethyl Ester and Its Anti-Inflammatory and Immunomodulatory Effects (Review). Experimental and Therapeutic Medicine, 9, 1582-1588.
https://doi.org/10.3892/etm.2015.2346
[8] Nardini, M., D’Aquino, M., Tomassi, G., et al. (1995) Inhibition of Human Low-Density Lipoprotein Oxidation by Caffeic Acid and other Hydroxycinnamic Acid Derivatives. Free Radical Biology and Medicine, 19, 541-552.
https://doi.org/10.1016/0891-5849(95)00052-Y
[9] 范金波, 蔡茜彤, 冯叙桥, 等. 咖啡酸体外抗氧化活性的研究[J]. 中国食品学报, 2015, 15(3): 65-73.
https://doi.org/10.16429/j.1009-7848.2015.03.009
[10] Ekeuku, S.O., Pang, K.L. and Chin, K.Y. (2021) Effects of Caffeic Acid and Its Derivatives on Bone: A Systematic Review. Drug Design, Development and Therapy, 15, 259-275.
https://doi.org/10.2147/DDDT.S287280
[11] Huang, X., Xi, Y., Pan, Q., et al. (2018) Caffeic Acid Protects against IL-1β-Induced Inflammatory Responses and Cartilage Degradation in Articular Chondrocytes. Biomedicine & Pharmacotherapy, 107, 433-439.
https://doi.org/10.1016/j.biopha.2018.07.161
[12] Pang, C., Sheng, Y.C., Jiang, P., et al. (2015) Chlorogenic Acid Prevents Acetaminophen-Induced Liver Injury: The Involvement of CYP450 Metabolic Enzymes and Some Antioxidant Signals. Journal of Zhejiang University-Science B, 16, 602-610.
https://doi.org/10.1631/jzus.B1400346
[13] Miao, M. and Xiang, L. (2020) Pharmacological Action and Potential Targets of Chlorogenic Acid. Advances in Pharmacology, 87, 71-88.
[14] Chen, W.P., Tang, J.L., Bao, J.P., et al. (2011) Anti-Arthritic Effects of Chlorogenic Acid in Interleu-kin-1β-Induced Rabbit Chondrocytes and a Rabbit Osteoarthritis Model. International Immunopharmacology, 11, 23-28.
https://doi.org/10.1016/j.intimp.2010.09.021
[15] Chen, W.P. and Wu, L.D. (2014) Chlorogenic Acid Suppresses Interleukin-1β-Induced Inflammatory Mediators in Human Chondrocytes. International Journal of Clinical and Experi-mental Pathology, 7, 8797-8801.
[16] Hwang, S.J., Kim, Y.W., Park, Y., et al. (2014) Anti-Inflammatory Effects of Chlorogenic Acid in Lipopolysaccha-Ride Stimulated RAW 264.7 Cells. Inflammation Research, 63, 81-90.
https://doi.org/10.1007/s00011-013-0674-4
[17] Lee, J.H., Park, J.H., Kim, Y.S. and Han, Y. (2008) Chlorogenic Acid, a Polyphenolic Compound, Treats Mice with Septic Arthritis Caused by Candida Albicans. International Im-munopharmacology, 8, 1681-1685.
https://doi.org/10.1016/j.intimp.2008.08.002
[18] Kwak, S.C., Lee, C., Kim, J.Y., et al. (2013) Chlorogenic Acid Inhibits Osteoclast Differentiation and Bone Resorption by Down-Regulation of Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Nuclear Factor of Activated T Cells c1 Expression. Biological and Pharmaceutical Bulletin, 36, 1779-1786.
https://doi.org/10.1248/bpb.b13-00430
[19] Kakkar, S. and Bais, S. (2014) A Review on Protocate-chuic Acid and Its Pharmacological Potential. ISRN Pharmacology, 2014, Article ID: 952943.
https://doi.org/10.1155/2014/952943
[20] 于生, 张丽, 单鸣秋, 等. UFLC-MS法同时测定木瓜饮片中8种有机酸[J]. 中草药, 2016, 47(14): 2465-2469.
[21] Lende, A.B., Kshirsagar, A.D., Deshpande, A.D., et al. (2011) An-ti-Inflammatory and Analgesic Activity of Protocatechuic Acid in Rats and Mice. Inflammopharmacology, 19, 255-263.
https://doi.org/10.1007/s10787-011-0086-4
[22] Zhang, J., Fu, B., Chen, X., Chen, D. and Yang, H. (2020) Pro-tocatechuic Acid Attenuates Anteriorcruciate Ligament Transection-Induced Osteoarthritis by Suppressing Osteoclasto-genesis. Experimental and Therapeutic Medicine, 19, 232-240.
https://doi.org/10.3892/etm.2019.8189
[23] Wongwichai, T., Teeyakasem, P., Pruksakorn, D., Kongtawelert, P. and Pothacharoen, P. (2019) Anthocyanins and Metabolites from Purple Rice Inhibit IL-1β-Induced Matrix Metallopro-teinases Expression in Human Articular Chondrocytes through the NF-κB and ERK/MAPK Pathway. Biomedicine & Pharmacotherapy, 112, Article ID: 108610.
https://doi.org/10.1016/j.biopha.2019.108610
[24] 查琼芳, 刘斌. AKR1B1O的临床研究[J]. 临床肺科杂志, 2012, 17(3): 519-521.
[25] Wang, C., Yan, R., Luo, D., Watabe, K., Liao, D.F. and Cao, D. (2009) Aldo-Keto Reduc-tase Family 1 Member B10 Promotes Cell Survival by Regulating Lipid Synthesis and Eliminating Carbonyls. Journal of Biological Chemistry, 284, 26742-26748.
https://doi.org/10.1074/jbc.M109.022897
[26] Kapoor, C., Vaidya, S., Wadhwan, V., Hitesh, Kaur, G. and Pathak, A. (2016) Seesaw of Matrix Metalloproteinases (MMPs). Journal of Cancer Research and Therapeutics, 12, 28-35.
https://doi.org/10.4103/0973-1482.157337
[27] Hu, P.F., Sun, F.F., Jiang, L.F., et al. (2018) Paeoniflorin Inhibits IL-1β-Induced MMP Secretion via the NF-κB Pathway in Chondrocytes. Ex-perimental and Therapeutic Medicine, 16, 1513-1519.
https://doi.org/10.3892/etm.2018.6325
[28] 潘蓓青. PTPN1促进食管癌细胞侵袭运动的分子机制研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2016.
[29] Gagarina, V., Gabay, O., Dvir-Ginzberg, M., et al. (2010) SirT1 Enhances Survival of Human Osteoarthritic Chondrocytes by Re-pressing Protein Tyrosine Phosphatase 1B and Activating the Insulin-Like Growth Factor Receptor Pathway. Arthritis & Rheumatology, 62, 1383-1392.
https://doi.org/10.1002/art.27369
[30] Sun, Q.Y., Zhou, H.H. and Mao, X.Y. (2019) Emerging Roles of 5-Lipoxygenase Phosphorylation in Inflammation and Cell Death. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 2749173.
https://doi.org/10.1155/2019/2749173
[31] Chu, L.S., Fang, S.H., Zhou, Y., et al. (2010) Minocycline Inhibits 5-Lipoxygenase Expression and Accelerates Functional Recovery in Chronic Phase of Focal Cerebral Ischemia in Rats. Life Sciences, 86, 170-177.
https://doi.org/10.1016/j.lfs.2009.12.001