偏头痛与卒中共病的研究进展
Research Progress on Comorbidity of Migraine and Stroke
DOI: 10.12677/ACM.2023.1361281, PDF, HTML, XML, 下载: 289  浏览: 447  科研立项经费支持
作者: 臧佳丽*, 谭 戈#:重庆医科大学附属第一医院神经内科,重庆
关键词: 偏头痛卒中共病综述Migraine Stroke Comorbidity Review
摘要: 偏头痛和卒中是神经内科常见疾病,同时也是全球残疾的主要原因。众所周知,偏头痛患者以育龄期女性多见,而卒中以老年男性多见。已有的研究表明偏头痛患者的总体卒中风险增加,主要以有先兆偏头痛为主,而无先兆偏头痛与卒中的风险尚有争议。偏头痛与卒中共病的机制也尚不明确。为此我们从流行病学研究、偏头痛的神经影像学、偏头痛与缺血性卒中的可能的机制等方面阐述偏头痛与卒中共病的复杂关联。
Abstract: Migraine and stroke are common neurological disorders and are also major causes of disability worldwide. It is well known that migraine patients are mostly women of childbearing age, while stroke is more common in elderly men. Some studies have shown an increased risk of stroke overall in migraine patients, mainly with migraine with aura, while the risk of stroke with migraine without aura was controversial. The mechanism of comorbidity between migraine and stroke is also unclear. Therefore, we describe the complex association on comorbidity of migraine and stroke from the as-pects of epidemiological studies, neuroimaging of migraine, and possible mechanism of migraine and ischemic stroke.
文章引用:臧佳丽, 谭戈. 偏头痛与卒中共病的研究进展[J]. 临床医学进展, 2023, 13(6): 9145-9153. https://doi.org/10.12677/ACM.2023.1361281

1. 流行病学研究

1.1. 偏头痛患者发生卒中的危险因素

2019年全球疾病负担研究发现:偏头痛被认为是全球第二大残疾原因,仅次于腰痛,全球因偏头痛导致残疾寿命年数的人数约为4210万;卒中是引起伤残调整生命年的第三大原因,仅次于新生儿疾病和缺血性心脏病 [1] 。目前多项回顾性、前瞻性研究以及meta分析已经证明了偏头痛会使缺血性卒中的风险增加 [2] [3] [4] [5] 。1975年,美国年轻女性卒中研究合作小组首次提出,与对照组青年女性脑卒中的患者相比,偏头痛导致缺血性脑卒中的相对危险度(RR)为2.0,而同时服用口服避孕药的偏头痛患者导致缺血性脑卒中的RR升高至为5.9 [6] 。随后多项基于人群的研究及meta分析对偏头痛与卒中之间的风险关系进行了评估,除了表明偏头痛患者的卒中风险增加,还在偏头痛与卒中的关联之中发现女性患者的风险高于男性,尤其是小于45岁的患者,口服避孕药的患者、吸烟的患者风险也偏高 [4] [7] [8] 。Markus Schürks的研究发现,与男性偏头痛患者相比,女性偏头痛患者的缺血性卒中的风险大约高出两倍 [7] 。偏头痛的患病率有明显的性别差异,女性患病率是男性的2~3倍,但目前男性偏头痛患者与缺血性卒中的风险尚未可知 [9] 。

1.2. 偏头痛亚型与缺血性卒中

偏头痛能够增加缺血性卒中的风险已经被普遍认可,但是偏头痛亚型与缺血性卒中的关系需要进一步研究。现有研究支持有先兆偏头痛(Migraine with aura, MA)与缺血性卒中的风险增加更为密切,国际头痛分类标准第3版中还对偏头痛性脑梗死定义为典型的MA发作,且至少1个先兆症状与影像学上的缺血灶相符 [10] 。但是无先兆偏头痛(Migraine without aura, MO)与缺血性卒中的风险尚不清楚。2005年,Etminan等人通过对1966年至2004年之间的14项研究进行meta分析,发现MA患者、MO患者与缺血性卒中的相对风险分别为2.27和1.85,均具有统计学意义 [5] 。而2009年,Schurks等人通过对现有研究进行偏头痛与缺血性卒中的meta分析时发现MA患者的缺血性卒中的风险显著高于MO患者 [7] 。2010年Spector等人的研究也发现缺血性卒中和MA的相关性更强 [11] 。2017年胡先明等人对11项前瞻性研究进行meta分析时发现MA与缺血性卒中相关(RR 2.14),而MO与缺血性卒中无关(RR 1.02) [3] 。2018年Mahmoud等人对13项研究进行meta分析,仅在有先兆的偏头痛患者中观察到卒中风险增加(校正HR 1.56),而在MO患者中没有发现 [12] 。

1.3. 偏头痛与出血性卒中

偏头痛与缺血性卒中的风险增加有关,不过偏头痛与出血性卒中的风险目前仍有争议。2017年胡先明等人的通过对4项前瞻性研究进行meta分析,发现偏头痛与出血性卒中的风险增加无关 [3] 。而2018年Mahmoud等人对偏头痛与出血性脑卒中的风险进行评估时发现,校正HR为1.43 [12] 。关于偏头痛与出血性卒中的研究较少,目前无法确定二者之间的关系。

1.4. 偏头痛与卒中模拟病

卒中模拟病(Stroke mimics, SM)是指一类在发病初期,病人的临床症状及体征类似脑卒中,但经详细评估后,最终被证实并非脑卒中或短暂性脑缺血发作的疾病,又被称为假性卒中 [13] 。MA可逆的视觉、感觉、言语和/或语言、运动、脑干、视网膜等先兆症状,与短暂性脑缺血发作难以鉴别。目前MA被认为是第三种常见的SM,仅次于癫痫发作和精神疾病 [14] [15] 。虽然临床上多种方法都有助于鉴别SM,但因急性缺血性卒中患者从静脉溶栓中获益有时间的依赖性,一些SM会被错误的溶栓 [16] 。有研究表明在卒中中心评估的患者中,1.8%的患者实际患有MA,1.1%的MA患者接受了静脉溶栓治疗,不过整体而言,SM患者行静脉溶栓治疗是安全的,不会导致严重的并发症 [16] [17] 。

2. 偏头痛的神经影像学

目前认为偏头痛是亚临床脑损伤的危险因素,主要与白质病变和无症状脑梗死有关 [18] 。我们将分别阐述偏头痛与白质病变、无症状脑梗死之间的相关性。

2.1. 偏头痛与白质病变

大脑白质在MRI T2像上显示为高信号而在CT上显示为低密度的区域通常称为白质病变,白质病变分为脑室周围白质病变和深部白质病变 [19] 。目前的研究发现偏头痛人群中白质病变的患病率范围在9.9%~78.4%,总体患病率约为44% [20] 。偏头痛患者的白质病变多为深部白质病变 [21] [22] 。很多学者认为成人偏头痛会增加白质病变的患病率,神经影像学研究发现,与对照组相比,偏头痛患者的白质高信号发生率增加了两倍到四倍 [18] [21] [22] [23] 。Kruit等人的基于30~60岁人群的MRI的CAMERA研究发现,偏头痛发作频率越高或偏头痛病史时间越长,患者白质病变风险越高,另外还提出女性偏头痛患者白质病变的风险独立增加 [24] 。Kruit团队对病人的9年随访发现女性MO组的深部白质高信号体积均高于对照组,不过偏头痛的次数、偏头痛的频率、偏头痛的严重程度、偏头痛的类型和偏头痛的治疗与深部白质病变进展无关 [25] 。张文元等人对30项研究进行的meta分析也支持白质病变与大多数偏头痛相关特征之间没有关联 [20] 。目前关于偏头痛的亚型与白质病变的风险相关性存在一定的争议。Kruit等人的研究发现偏头痛患者白质病变的风险的增加与先兆存在与否无关 [18] 。Kurth等人的研究发现MA与位于深部白质的病变之间有更强的相关性,而MO和整体头痛(包括紧张型头痛)与白质高信号体积的相关性相同 [21] 。不过张文元等人及Bashir等人的meta分析发现MO与MA均可增加白质病变,MA的风险高于MO [20] [26] 。头痛儿童可见非特异性偶发性白质改变,随访期间没有出现神经功能恶化 [27] 。Markus等人对头痛门诊年龄2.5~18岁偏头痛患者的研究发现偏头痛儿童约有10.6% (14/131)在MRI扫描中发现了白质病变 [28] 。Soe Mar对2~17岁的偏头痛儿童进行研究发现在375例患者的MRI检查中,有39名(10.4%)患者发现了白质病变,并进一步发现MO与MA患者较对照组相比无统计学意义 [29] 。此外Soe Mar还认为偏头痛白质病变是良性的,与卒中无明显关系 [29] 。

2.2. 偏头痛与无症状脑梗死

偏头痛患者可能会增加无症状脑梗死的患病率,但是在MO与MA之间以及无症状梗死的部位存在一定的争议。2004年,Kruit等人的研究发现偏头痛患者发生小脑梗死的风险增加了七倍,在MA的患者中明显 [18] 。随后一篇队列研究验证了这一说法,并发现中年MA病史与小脑梗死的晚年患病率有关,不过这种关联仅在女性MA患者中具有统计学意义 [30] 。但是在一项女性双胞胎的大型人群研究发现MA并没有增加整体无症状梗死或后循环区域梗死的风险 [31] 。Monteith的研究发现MO与无症状脑梗死之间的关联甚至更强,梗死的部位主要在小脑以外 [32] 。Kurth的研究发现MA患者无症状梗死的患病率增加,但梗死的位置主要在小脑之外 [21] 。这些研究结果的差异可能与研究人群、种族、区域有一定的关系。

3. 偏头痛与缺血性卒中的机制

偏头痛与缺血性卒中的机制不明,可能是多因素导致的结果。

3.1. 皮层扩散性抑制学说

目前普遍认为皮层扩散性抑制(Cortical spreading depolarization, CSD)参与偏头痛先兆的发病机制 [33] [34] 。CSD是大脑皮层受刺激后神经元和胶质细胞的去极化波,以2~5 mm/min的速度在大脑皮层缓慢传播,在CSD中神经元激活伴随着1~2 mins的短暂高灌注,随后是持续1~2 h的神经元抑制和低灌注,局部脑血流量减少20%~30%,可到达脑缺血水平 [35] [36] 。家族性偏瘫性偏头痛(Familial hemiplegic migraine, FHM)是一种常染色体显性遗传的偏头痛亚型,FHM1是由CACNA1A基因突变引起的,S218LCACNA1A突变导致严重的偏瘫性偏头痛综合征 [37] 。Cacna1aS218L小鼠表现出对CSD的极度敏感,触发阈值大大降低,传播速度增加,并且在一次刺激后经常出现多个CSD事件 [37] 。偏头痛先兆的发生与CSD的触发阈值较低有关,有学者提出MA的易感人群也更容易受到脑缺血的影响,更容易发生脑组织损伤 [38] 。在缺血性事件中,CSD是神经元病变发展的必要且普遍存在的机制,这些病变始于缺血核心,并通过半暗带扩大了组织损伤 [38] 。有研究表明缺血性事件中发生的SDs与偏头痛先兆期发生的SDs类似,但在缺血性卒中发作时,大量的SDs在短时间内发生 [39] 。有学者观察到人在缺血性卒中的初始几个小时到几天内可传播数十到数百个SDs [40] 。Eikermann-Haerter等人的研究发现托吡酯或拉莫三嗪长期治疗可降低野生型和FHM1突变小鼠对氯化钾或电刺激诱导的扩散抑制以及缺血性去极化的易感性,使组织和神经系统结局均得到改善 [38] 。所以CSD可能是MA与缺血性卒中关联的纽带,但仍需要更多的研究来验证这个假说。

3.2. 内皮功能障碍和凝血异常

3.2.1. 内皮功能障碍

内皮功能障碍在偏头痛与缺血性卒中之间的作用目前仍有争议。内皮功能障碍包括血管反应性受损以及内皮激活而导致血小板激活、聚集、凝固和凝块形成,以及抗凝物质的抑制 [41] [42] 。目前关于偏头痛的血管生物标志物的研究很多。一些研究发现,在偏头痛的发作期,血管活性物质如加压素和内皮素-1会增加,而目前的证据表明内皮素-1可能在偏头痛发作诱导中发挥主要作用 [43] [44] 。一项偏头痛患者和对照组的全基因组测序发现一些偏头痛易感位点编码血管和平滑肌组织,在一定方面支持内皮可能参与偏头痛的发病机制 [45] 。内皮可释放的大量的物质包括一氧化氮、内皮素-1、血管紧张素II、前列环素、血小板活化因子等等 [46] 。Tietjen等人认为内皮功能障碍在偏头痛患者尤其是MA的缺血性卒中风险增加中起主要作用 [47] 。但是Jawad等人通过调查MA受试者内皮功能的研究发现内皮功能障碍在MA患者中似乎并不重要 [48] 。不同的研究有一定的异质性,证据也参差不齐,可能需要更多的研究来阐述内皮功能障碍与偏头痛与缺血性卒中之间的关系。

3.2.2. 凝血异常

既往的研究表明,偏头痛患者的血管情况多数良好,无论是在年轻人还是老年人 [42] [49] 。那么偏头痛患者与缺血性卒中的风险可能与动脉粥样硬化关系不大。而高凝状态促进动静脉血栓形成,进而可能导致脑梗塞。目前在一些研究中发现偏头痛患者存在一些高凝的风险,或许与缺血性卒中有一定的关联。荷兰的一项研究发现在偏头痛患者中纤维蛋白原和凝血因子II水平会升高,在MA的女性患者中明显,而升高的纤维蛋白原水平反过来会诱发高凝状态,引起炎症和内皮损伤,并加重脑灌注不足 [50] 。Martínez-Sánchez等人的研究发现患有偏头痛的年轻卒中患者出现蛋白C或S缺乏症和凝血酶原G2021A突变的风险增加,而蛋白C或S缺乏症和凝血酶原G2021A突变可能导致高凝状态,可能联系了偏头痛与卒中 [51] 。之前的研究在偏头痛发作期间观察到血小板聚集以及血小板活化因子和血管性血友病因子水平升高,启动凝血系统,导致了高凝状态 [52] [53] [54] 。

除了上述的偏头痛与缺血性卒中的机制以外,还有学者认为卵圆孔未闭、雌激素变化、生活方式等可能也参与了偏头痛患者缺血性卒中的发生,故偏头痛增加缺血性卒中的风险可能是多因素造成的 [55] [56] [57] 。

4. 偏头痛相关药物与卒中的关联

4.1. 麦角碱衍生物和曲普坦类药物

偏头痛的治疗分为急性期止痛治疗和发作间期的预防性治疗。麦角碱衍生物和曲普坦类药物是偏头痛的特异性止痛药 [58] [59] 。麦角胺和双氢麦角胺是曲普坦类药物出现之前特定的用于偏头痛急性期的止痛药物,属于非选择性5-羟色胺受体激动剂 [59] 。麦角碱衍生物可引起血管收缩,动物研究表明,麦角碱衍生物可以收缩颈动脉血管 [60] [61] 。在人类中,麦角碱衍生物会导致肺动脉、大脑和冠状动脉血管收缩 [61] [62] 。麦角碱衍生物虽然是脑保护药物,但因麦角碱衍生物的血管收缩可能会导致缺血,过量使用,可能会导致缺血性脑卒中。曲普坦类药物通过选择性地结合5-羟色胺受体1B和1D来特异性治疗偏头痛发作时的疼痛 [63] 。Gillian等人通过对服用曲普坦类药物的患者与对照组的分析中发现曲普坦类药物治疗偏头痛不会增加卒中、心肌梗死、缺血性心脏病或死亡率的风险,不过曲普坦类药物适用于发生这些事件风险较低的人群 [64] 。

4.2. 口服避孕药

女性偏头痛的患病率远高于男性 [9] 。多项meta分析表明使用口服避孕药的女性缺血性卒中的风险增加一倍以上 [65] [66] [67] 。Jvind Lidegaard等人在丹麦进行的为期5年的病例对照研究发现服用复方口服避孕药后卒中的风险与雌激素含量直接相关 [68] 。许振林等人通过对18项研究进行meta分析发现服用口服避孕药的女性患者的缺血性卒中风险随着雌激素剂量的减少而显着降低 [65] 。有研究表明联合激素避孕药和MA患者的联合作用与缺血性卒中风险增加6倍相关,而在MO患者中,联合使用激素避孕药并没有显著增加缺血性卒中的风险 [69] 。因此MA的女性患者应谨慎使用口服激素避孕药。为此欧洲头痛联合会和欧洲避孕与生殖健康学会对外源性雌激素和孕激素对育龄期患者偏头痛病程影响的数据进行了分析,但是各试验证据等级偏低,并没有得出更好的方案 [70] 。因此需要更多研究来协助制定偏头痛女性患者的口服避孕药方案。

5. 总结与展望

目前普遍认为偏头痛能增加缺血性卒中的风险,以MA为主,MO与缺血性卒中的风险暂时不清楚,女性、吸烟、口服避孕药等因素都可能增加缺血性卒中的风险。MA是SM的一种,在急诊科就诊时常常被误诊,需要临床医生仔细鉴别。在偏头痛患者的神经影像学中可观察到白质病变、无症状梗死。在偏头痛与缺血性卒中的机制方面也是众说纷纭,主要涉及CSD学说、内皮功能障碍和凝血异常、卵圆孔未闭、雌激素变化、行为因素的影响等等。

项目基金

本研究受到重庆市卫生健康委员会和科技局联合医学科研项目(2020MSXM096)的资助。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Safiri, S., Pourfathi, H., Eagan, A., et al. (2022) Global, Regional, and National Burden of Migraine in 204 Countries and Territories, 1990 to 2019. Pain, 163, e293-e309.
https://doi.org/10.1097/j.pain.0000000000002275
[2] Zhang, S., Liu, H. and Shi, T. (2022) Association between Migraine and Risk of Stroke: A Systematic Review and Meta-Analysis. Neurological Sciences, 43, 4875-4889.
https://doi.org/10.1007/s10072-022-06074-z
[3] Hu, X.M., Zhou, Y.C., Zhao, H.Y. and Peng, C. (2017) Migraine and the Risk of Stroke: An Updated Meta-Analysis of Prospective Cohort Studies. Neurological Sciences, 38, 33-40.
https://doi.org/10.1007/s10072-016-2746-z
[4] Oie, L.R., Kurth, T., Gulati, S. and Dodick, D.W. (2020) Migraine and Risk of Stroke. Journal of Neurology, Neurosurgery and Psychiatry, 91, 593-604.
https://doi.org/10.1136/jnnp-2018-318254
[5] Etminan, M., Takkouche, B., Isorna, F.C. and Samii, A. (2005) Risk of Ischaemic Stroke in People with Migraine: Systematic Review and Meta-Analysis of Observational Studies. BMJ, 330, 63-65.
https://doi.org/10.1136/bmj.38302.504063.8F
[6] Durham, N.C. (1975) Oral Contraceptives and Stroke in Young Women. Associated Risk Factors. JAMA, 231, 718-722.
https://doi.org/10.1001/jama.231.7.718
[7] Schurks, M., Rist, P.M., Bigal, M.E., et al. (2009) Migraine and Car-diovascular Disease: Systematic Review and Meta-Analysis. BMJ, 339, b3914.
https://doi.org/10.1136/bmj.b3914
[8] Sacco, S. and Kurth, T. (2014) Migraine and the Risk for Stroke and Car-diovascular Disease. Current Cardiology Reports, 16, Article No. 524.
https://doi.org/10.1007/s11886-014-0524-1
[9] Vetvik, K.G. and Macgregor, E.A. (2017) Sex Differences in the Epidemiology, Clinical Features, and Pathophysiology of Migraine. The Lancet Neurology, 16, 76-87.
https://doi.org/10.1016/S1474-4422(16)30293-9
[10] Headache Classification Committee of the International Headache Society (IHS) (2018) The International Classification of Headache Disorders, 3rd Edition. Cephalalgia, 38, 1-211.
https://doi.org/10.1177/0333102417738202
[11] Spector, J.T., Kahn, S.R., Jones, M.R., et al. (2010) Mi-graine Headache and Ischemic Stroke Risk: An Updated Meta-Analysis. The American Journal of Medicine, 123, 612-624.
https://doi.org/10.1016/j.amjmed.2009.12.021
[12] Mahmoud, A.N., Mentias, A., Elgendy, A.Y., et al. (2018) Migraine and the Risk of Cardiovascular and Cerebrovascular Events: A Meta-Analysis of 16 Cohort Studies In-cluding 1, 152, 407 Subjects. BMJ Open, 8, e020498.
https://doi.org/10.1136/bmjopen-2017-020498
[13] 张依, 韩燕飞, 董威, 等. 常见的脑卒中模拟病及其与急诊卒中的鉴别[J]. 临床神经病学杂志, 2018, 31(6): 472-473.
[14] Otlivanchik, O. and Liberman, A.L. (2019) Migraine as a Stroke Mimic and as a Stroke Chameleon. Current Pain and Headache Reports, 23, Article No. 63.
https://doi.org/10.1007/s11916-019-0801-1
[15] Terrin, A., Toldo, G., Ermani, M., Mainardi, F. and Maggioni, F. (2018) When Migraine Mimics Stroke: A Systematic Review. Cephalalgia, 38, 2068-2078.
https://doi.org/10.1177/0333102418767999
[16] 范学慧, 钟镝, 陈洪苹, 等. 急诊卒中模拟病的鉴别及静脉溶栓的安全性研究进展[J]. 中国卒中杂志, 2018, 13(11): 1211-1216.
[17] Magalhães, J.E. and Rocha-Filho, P.A.S. (2018) Migraine and Cerebrovascular Diseases: Epidemiology, Pathophysiological, and Clinical Considerations. Head-ache, 58, 1277-1286.
https://doi.org/10.1111/head.13378
[18] Kruit, M.C., Van Buchem, M.A., Hofman, P.A., et al. (2004) Migraine as a Risk Factor for Subclinical Brain Lesions. JAMA, 291, 427-34.
https://doi.org/10.1001/jama.291.4.427
[19] Kim, K.W., Macfall, J.R. and Payne, M.E. (2008) Classification of White Matter Lesions on Magnetic Resonance Imaging in Elderly Persons. Biological Psychiatry, 64, 273-280.
https://doi.org/10.1016/j.biopsych.2008.03.024
[20] Zhang, W.Y., Cheng, Z.C., Fu, F.W. and Zhan, Z.X. (2023) Prevalence and Clinical Characteristics of White Matter Hyperintensities in Migraine: A Meta-Analysis. NeuroImage: Clinical, 37, Article ID: 103312.
https://doi.org/10.1016/j.nicl.2023.103312
[21] Kurth, T., Mohamed, S., Maillard, P., et al. (2011) Headache, Mi-graine, and Structural Brain Lesions and Function: Population Based Epidemiology of Vascular Ageing-MRI Study. BMJ, 342, c7357.
https://doi.org/10.1136/bmj.c7357
[22] Eikermann-Haerter, K. and Huang, S.Y. (2021) White Matter Lesions in Migraine. The American Journal of Pathology, 191, 1955-1962.
https://doi.org/10.1016/j.ajpath.2021.02.007
[23] Swartz, R.H. and Kern, R.Z. (2004) Migraine Is Associated with Magnetic Resonance Imaging White Matter Abnormalities: A Meta-Analysis. Archives of Neurology, 61, 1366-1368.
https://doi.org/10.1001/archneur.61.9.1366
[24] Kruit, M.C., Van Buchem, M.A., Launer, L.J., Terwindt, G.M. and Ferrari, M.D. (2010) Migraine Is Associated with an Increased Risk of Deep White Matter Lesions, Subclinical Pos-terior Circulation Infarcts and Brain Iron Accumulation: The Population-Based MRI CAMERA Study. Cephalalgia, 30, 129-136.
https://doi.org/10.1111/j.1468-2982.2009.01904.x
[25] Palm-Meinders, I.H., Koppen, H., Terwindt, G.M., et al. (2012) Structural Brain Changes in Migraine. JAMA, 308, 1889-1896.
https://doi.org/10.1001/jama.2012.14276
[26] Bashir, A., Lipton, R.B., Ashina, S. and Ashina, M. (2013) Migraine and Structural Changes in the Brain: A Systematic Review and Meta-Analysis. Neurology, 81, 1260-1268.
https://doi.org/10.1212/WNL.0b013e3182a6cb32
[27] Bayram, E., Topcu, Y., Karaoglu, P., et al. (2013) Incidental White Matter Lesions in Children Presenting with Headache. Headache, 53, 970-976.
https://doi.org/10.1111/head.12089
[28] Eidlitz-Markus, T., Zeharia, A., Haimi-Cohen, Y. and Konen, O. (2013) MRI White Matter Lesions in Pediatric Migraine. Cephalalgia, 33, 906-913.
https://doi.org/10.1177/0333102413480955
[29] Mar, S., Kelly, J.E., Isbell, S., et al. (2013) Prevalence of White Matter Lesions and Stroke in Children with Migraine. Neurology, 81, 1387-1391.
https://doi.org/10.1212/WNL.0b013e3182a8412e
[30] Androulakis, X.M., Sen, S., Kodumuri, N., et al. (2019) Migraine Age of Onset and Association with Ischemic Stroke in Late Life: 20 Years Follow-Up in ARIC. Headache, 59, 556-566.
https://doi.org/10.1111/head.13468
[31] Gaist, D., Garde, E., Blaabjerg, M., et al. (2016) Migraine with Aura and Risk of Silent Brain Infarcts and White Matter Hyperintensities: An MRI Study. Brain, 139, 2015-2023.
https://doi.org/10.1093/brain/aww099
[32] Monteith, T., Gardener, H., Rundek, T., et al. (2014) Migraine, White Matter Hyperintensities, and Subclinical Brain Infarction in a Diverse Community: The Northern Manhattan Study. Stroke, 45, 1830-1832.
https://doi.org/10.1161/STROKEAHA.114.005447
[33] Dalkara, T., Nozari, A. and Moskowitz, M.A. (2010) Mi-graine Aura Pathophysiology: The Role of Blood Vessels and Microembolisation. The Lancet Neurology, 9, 309-317.
https://doi.org/10.1016/S1474-4422(09)70358-8
[34] Eikermann-Haerter, K., Negro, A. and Ayata, C. (2013) Spreading Depression and the Clinical Correlates of Migraine. Reviews in the Neurosciences, 2, 353-363.
https://doi.org/10.1515/revneuro-2013-0005
[35] Kurth, T., Chabriat, H. and Bousser, M.G. (2012) Migraine and Stroke: A Complex Association with Clinical Implications. The Lancet Neurology, 11, 92-100.
https://doi.org/10.1016/S1474-4422(11)70266-6
[36] Nozari, A., Dilekoz, E., Sukhotinsky, I., et al. (2010) Mi-croemboli May Link Spreading Depression, Migraine Aura, and Patent Foramen Ovale. Annals of Neurology, 67, 221-229.
https://doi.org/10.1002/ana.21871
[37] Van Den Maagdenberg, A.M., Pizzorusso, T., Kaja, S., et al. (2010) High Cortical Spreading Depression Susceptibility and Migraine-Associated Symptoms in Cav2.1 S218L Mice. Annals of Neurology, 67, 85-98.
https://doi.org/10.1002/ana.21815
[38] Eikermann-Haerter, K., Lee, J.H., Yalcin, N., et al. (2015) Migraine Prophylaxis, Ischemic Depolarizations, and Stroke Outcomes in Mice. Stroke, 46, 229-236.
https://doi.org/10.1161/STROKEAHA.114.006982
[39] Chen, S.P. and Ayata, C. (2016) Spreading Depression in Primary and Secondary Headache Disorders. Current Pain and Headache Reports, 20, Article No. 44.
https://doi.org/10.1007/s11916-016-0574-8
[40] Dohmen, C., Sakowitz, O.W., Fabricius, M., et al. (2008) Spreading Depolarizations Occur in Human Ischemic Stroke with High Incidence. Annals of Neurology, 63, 720-728.
https://doi.org/10.1002/ana.21390
[41] Bonetti, P.O., Lerman, L.O. and Lerman, A. (2003) Endothelial Dysfunc-tion: A Marker of Atherosclerotic Risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 168-175.
https://doi.org/10.1161/01.ATV.0000051384.43104.FC
[42] Tietjen, G.E. and Khubchandani, J. (2015) Vascular Biomarkers in Migraine. Cephalalgia, 35, 95-117.
https://doi.org/10.1177/0333102414544976
[43] Hasselblatt, M., Kohler, J., Volles, E. and Hannelore, E. (1999) Simultaneous Monitoring of Endothelin-1 and Vasopressin Plasma Levels in Migraine. NeuroReport, 10, 423-425.
https://doi.org/10.1097/00001756-199902050-00039
[44] Iljazi, A., Ayata, C., Ashina, M. and Hougaard, A. (2018) The Role of Endothelin in the Pathophysiology of Migraine—A Systematic Review. Current Pain and Headache Reports, 22, Article No. 27.
https://doi.org/10.1007/s11916-018-0682-8
[45] Gormley, P., Anttila, V., Winsvold, B.S., et al. (2016) Me-ta-Analysis of 375,000 Individuals Identifies 38 Susceptibility Loci for Migraine. Nature Genetics, 48, 856-866.
https://doi.org/10.1038/ng.3598
[46] Harriott, A.M. and Barrett, K.M. (2015) Dissecting the Association between Migraine and Stroke. Current Neurology and Neuroscience Reports, 15, Article No. 5.
https://doi.org/10.1007/s11910-015-0530-8
[47] Tietjen, G.E. (2009) Migraine as a Systemic Vasculopathy. Ceph-alalgia, 29, 987-996.
https://doi.org/10.1111/j.1468-2982.2009.01937.x
[48] Butt, J.H., Franzmann, U. and Kruuse, C. (2015) Endothe-lial Function in Migraine with Aura—A Systematic Review. Headache, 55, 35-54.
https://doi.org/10.1111/head.12494
[49] Pezzini, A., Grassi, M., Lodigiani, C., et al. (2011) Predictors of Migraine Subtypes in Young Adults with Ischemic Stroke: The Italian Project on Stroke in Young Adults. Stroke, 42, 17-21.
https://doi.org/10.1161/STROKEAHA.110.592246
[50] Tietjen, G.E., Khubchandani, J., Herial, N., et al. (2018) Migraine and Vascular Disease Biomarkers: A Population-Based Case-Control Study. Cephalalgia, 38, 511-518.
https://doi.org/10.1177/0333102417698936
[51] Martinez-Sanchez, P., Martinez-Martinez, M., Fuentes, B., et al. (2011) Migraine and Hypercoagulable States in Ischemic Stroke. Cephalalgia, 31, 1609-1617.
https://doi.org/10.1177/0333102411427599
[52] Sarchielli, P., Alberti, A., Coppola, F., et al. (2004) Plate-let-Activating Factor (PAF) in Internal Jugular Venous Blood of Migraine without Aura Patients Assessed during Mi-graine Attacks. Cephalalgia, 24, 623-630.
https://doi.org/10.1111/j.1468-2982.2003.00717.x
[53] Kovacs, K., Herman, F., Filep, J., et al. (1990) Platelet Ag-gregation of Migraineurs during and between Attacks. Cephalalgia, 10, 161-165.
https://doi.org/10.1046/j.1468-2982.1990.1004161.x
[54] Cesar, J.M., Garcia-Avello, A., Vecino, A.M., Sastre, J.L. and Alvarez-Cermeña, J.C. (1995) Increased Levels of Plasma von Willebrand Factor in Migraine Crisis. Acta Neu-rologica Scandinavica, 91, 412-413.
https://doi.org/10.1111/j.1600-0404.1995.tb07030.x
[55] Tietjen, G.E. and Maly, E.F. (2020) Migraine and Is-chemic Stroke in Women. A Narrative Review. Headache, 60, 843-863.
https://doi.org/10.1111/head.13796
[56] Zhang, Y., Parikh, A. and Qian, S. (2017) Migraine and Stroke. Stroke and Vascular Neurology, 2, 160-167.
https://doi.org/10.1136/svn-2017-000077
[57] Allais, G., Chiarle, G., Sinigaglia, S., et al. (2018) Estrogen, Mi-graine, and Vascular Risk. Neurological Sciences, 39, 11-20.
https://doi.org/10.1007/s10072-018-3333-2
[58] Ong, J.J.Y. and De Felice, M. (2018) Migraine Treatment: Current Acute Medications and Their Potential Mechanisms of Ac-tion. Neurotherapeutics, 15, 274-290.
https://doi.org/10.1007/s13311-017-0592-1
[59] Chan, K.Y., Vermeersch, S., De Hoon, J., Villalón, C.M. and MaassenVanDenBrink, A. (2011) Potential Mechanisms of Prospective Antimigraine Drugs: A Focus on Vascular (Side) Effects. Pharmacology & Therapeutics, 129, 332-351.
https://doi.org/10.1016/j.pharmthera.2010.12.001
[60] De Vries, P., Villalon, C.M., Heiligers, J.P.C. and Saxena, P.R. (1998) Characterization of 5-HT Receptors Mediating Constriction of Porcine Carotid Arteriovenous Anastomoses; Involvement of 5-HT1B/1D and Novel Receptors. British Journal of Pharmacology, 123, 1561-1570.
https://doi.org/10.1038/sj.bjp.0701770
[61] Cortijo, J., Marti-Cabrera, M., Bernabeu, E., et al. (1997) Characteriza-tion of 5-HT Receptors on Human Pulmonary Artery and Vein: Functional and Binding Studies. British Journal of Pharmacology, 122, 1455-1463.
https://doi.org/10.1038/sj.bjp.0701509
[62] Maassenvandenbrink, A., Reekers, M., Bax, W.A., Ferrari, M.D. and Saxena, P.R. (1998) Coronary Side-Effect Potential of Current and Prospective Antimigraine Drugs. Circulation, 98, 25-30.
https://doi.org/10.1161/01.CIR.98.1.25
[63] Johnston, M.M. and Rapoport, A.M. (2010) Triptans for the Management of Migraine. Drugs, 70, 1505-1518.
https://doi.org/10.2165/11537990-000000000-00000
[64] Hall, G.C., Brown, M.M., MO, J.P. and MacRae, K.D. (2004) Triptans in Migraine: The Risks of Stroke, Cardiovascular Disease, and Death in Practice. Neurology, 62, 563-568.
https://doi.org/10.1212/01.WNL.0000110312.36809.7F
[65] Xu, Z., Li, Y., Tang, S.W., Huang, X.P. and Chen, T. (2015) Current Use of Oral Contraceptives and the Risk of First-Ever Ischemic Stroke: A Meta-Analysis of Observational Studies. Thrombosis Research, 136, 52-60.
https://doi.org/10.1016/j.thromres.2015.04.021
[66] Peragallo Urrutia, R., Coeytaux, R.R., Mcbroom, A.J., et al. (2013) Risk of Acute Thromboembolic Events with Oral Contraceptive Use: A Systematic Review and Meta-Analysis. Obstetrics & Gynecology, 122, 380-389.
https://doi.org/10.1097/AOG.0b013e3182994c43
[67] Roach, R.E., Helmerhorst, F.M., Lijfering, W.M., Algra, A. and Dekkers, O.M. (2015) Combined Oral Contraceptives: The Risk of Myocardial Infarction and Ischemic Stroke. Cochrane Database of Systematic Reviews, 2015, CD011054.
https://doi.org/10.1002/14651858.CD011054
[68] Lidegaard, O. and Kreiner, S. (2002) Contraceptives and Cere-bral Thrombosis: A Five-Year National Case-Control Study. Contraception, 65, 197-205.
https://doi.org/10.1016/S0010-7824(01)00306-7
[69] Champaloux, S.W., Tepper, N.K., Monsour, M., et al. (2017) Use of Combined Hormonal Contraceptives among Women with Migraines and Risk of Ischemic Stroke. American Journal of Obstetrics and Gynecology, 216, 489.E1-489.E7.
https://doi.org/10.1016/j.ajog.2016.12.019
[70] Sacco, S., Merki-Feld, G.S., Kl, A.E., et al. (2018) Effect of Exogenous Estrogens and Progestogens on the Course of Migraine during Reproductive Age: A Consensus Statement by the European Headache Federation (EHF) and the European Soci-ety of Contraception and Reproductive Health (ESCRH). The Journal of Headache and Pain, 19, Article No. 76.
https://doi.org/10.1186/s10194-018-0896-5