BP  >> Vol. 2 No. 2 (June 2012)

    蔗糖与接种量组合对长春花培养细胞吲哚生物碱合成的影响
    Effect of Sucrose and Inoculating Quantity Combination on the Indole Alkaloids Synthesis of Catharanthus Roseus Culture Cell

  • 全文下载: PDF(263KB) HTML   XML   PP.75-80   DOI: 10.12677/bp.2012.22013  
  • 下载量: 2,440  浏览量: 8,139  

作者:  

赵 楠,陈文,郭志刚:清华大学化学工程系,北京

关键词:
长春花细胞培养长春碱萜类吲哚生物碱Catharanthus Roseus; Cell Culture; Vinblastine; Terpene Indole Alkanoid

摘要:

实验结果表明,初始pH为6.5时有利于细胞生物量积累和吲哚生物碱的合成。接种量在20%时,随着蔗糖浓度的提高吲哚生物碱的含量也提高,添加90 g/L蔗糖时,长春碱的含量达到了1.7 mg/g干细胞。当接种量提高到25%或30%时,较低浓度的蔗糖有利于吲哚生物碱的合成。60 g/L蔗糖与25%接重量组合有利于细胞生物量的积累。

The experimental results show that, the initial pH of 6.5 is the optimum condition to the accumulation of cell biomass and the synthesis of indole alkaloids. When inoculation rate is at 20%, the content of indole alkaloids increase with the sucrose concentration increased, add 90 g/L sucrose, the content of vinblastine reached 1.7 mg/g dry cell. When the inoculation rate increased to 25% or 30%, a lower concentration of sucrose is conducive to the synthesis of indole alkaloids. 60 g/L sucrose and 25% of the inoculation rate combination is conducive to the cell biomass accumu- lation.

文章引用:
赵楠, 陈文, 郭志刚. 蔗糖与接种量组合对长春花培养细胞吲哚生物碱合成的影响[J]. 生物过程, 2012, 2(2): 75-80. http://dx.doi.org/10.12677/bp.2012.22013

参考文献

[1] 刘红蕾, 张玉臻, 陶文沂. 营养及环境因子对农杆菌诱导的长春花发根生长和生物碱生成的影响[J]. 药物生物技术, 2003, 10(2): 155-158.
[2] S. Brown, R. C. Cresswell. Selection study on Catharanthus roseus. Physiol Veg, 1984, 22: 254-271.
[3] 孙祥海. 植物次生代谢物的细胞培养技术研究进展[J]. 龙岩学院学报, 2005, 23(6): 60-67.
[4] 郭胜娟, 杨春燕, 冯玲玲等. 长春花愈伤组织的诱导与增殖[J]. 华中师范大学学报, 2004, 38(2): 228-230.
[5] 孙敏, 伍春莲, 汪洪等. 多因子正交试验对长春花离体培养条件的筛选[J]. 西南师范大学学报(自然科学版), 2002, 27(2): 202-205.
[6] 黄小龙, 谢达平. 植物代谢工程的研究现状[J]. 生物学杂志, 2003, 20(2): 11-14.
[7] A. J. Parr, A. C. J. Peerless and J. D. Manill. Alkaloid production by transformed root cultures of Catharanthus roseus. Report Plant Cell, 1988, 7(5): 309-312.
[8] A. Pietrosiuk, M. Furmanowa and B. Łata. Catharanthus roseus: Micropropagation and in vitro techniques. Phytochemistry Reviews, 2007, 6(2-3): 459-473.
[9] J. A. Morgan, J. V. Shanks. Determination of metabolic rate- limitations by precursor feeding in Catharanthus roseus hairy root cultures. Journal of Biotechnology, 2000, 79(2): 137-145.
[10] A. Dutta, J. Batra, S. Pandey-Rai, et al. Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don. Planta, 2005, 220(3): 376-383.
[11] 谢从华, 柳俊. 植物细胞工程[M]. 北京: 高等教育出版社, 2004: 74-149.
[12] M. El-Sayed, R. Verpoorte. Me-thyljasmonate accelerates catabolism of monoterpenoid indole alkaloids in Catharanthus roseus during leaf processing. Fitoterapia, 2005, 76(1): 83-90.
[13] K. H. Jung, S. S. Kwak. Development of 2-Stage culture process by optimization of inorganic salts for improving catharanthine production in hairy root cultures of Catharanthus roseus. Journal of Fermentation and Bioengineering, 1994, 77(1): 57-61.
[14] M. J. Xu, J. F. Dong. Nitric oxide stimulates indole alkaloid production in Catharanthus roseus cell suspension cultures through a protein kinase-dependent signal pathway. Enzyme and Microbial Technology, 2005, 37(1): 49-53.
[15] M. J. Xu, J. F. Dong. O2– from elicitor-induced oxidative burst is necessary for triggering phenylalanine ammonia-lyase activation and catharanthine synthesis in Catharanthus roseus cell cultures. Enzyme and Microbial Technology, 2005, 36(2-3): 280-284.
[16] Z J. hao, W. H. Zhu and H. Qiu. Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme and Microbial Technology, 2001, 28(7-8): 673-681.
[17] 曹阳, 侯军, 郑珍贵等. 长春花细胞大型生物反应器培养的初步研究[J]. 西北农林科技大学学报(自然科学版), 2002, 30(2): 87-90.
[18] Y. Miura, K. Hirata, N. Kurano, et al. Alkaloid production in multiple shoot culture of Catharanthus roseus. Biological Che- mistry, 1987, 51(5): 611-614.
[19] Z. G. Guo, Y. Liu and X. H. Xing. Enhanced catharanthine biosynthesis through regulation of cyclooxygenase in the cell suspension culture of Catharanthus roseus (L.) G. Don. Process Biochemistry, 2011, 46(3): 783-787.