多发性骨髓瘤患者的CAR T细胞疗法的临床进展
Clinical Advances in CAR T Cell Therapies for the Patients with Multiple Myeloma
DOI: 10.12677/ACM.2023.1361478, PDF, HTML, XML, 下载: 217  浏览: 318 
作者: 韦学玉:青海大学研究生院,青海 西宁;耿 惠*:青海大学附属医院血液科,青海 西宁
关键词: 多发性骨髓瘤嵌合抗原受体T细胞Multiple Myeloma Chimeric Antigen Receptors-T Cells
摘要: 多发性骨髓瘤(Multiple myeloma, MM)是一种目前依然无法治愈的浆细胞恶性肿瘤。B细胞和MM细胞的小子集上表达,这使其成为用于此类疗法的合适靶抗原。在撰写本文时,来自>20项涉及抗BCMA CAR T细胞的临床试验的数据已经证明,复发性和/或难治性MM患者可以实现客观反应。这些早期研究有助于证明短期安全性和有效性;然而,大多数患者没有持续>18个月的疾病缓解。减少或延迟复发性疾病发作的尝试正在进行中,并且包括鉴定另外的CAR T细胞靶抗原和增强MM细胞上BCMA表达的方法。CAR T细胞以增强治疗的活性和安全性仍然是一种有希望的改进途径。在这篇综述中,我们总结了迄今为止进行的临床试验的数据,描述了未来可能靶向的新型抗原,并强调了未来可能提高CAR T细胞疗法疗效和/或降低其毒性的潜在创新。
Abstract: Multiple myeloma (MM) is a malignancy of plasma cells that remains incurable. Expressed on a small subset of B cells and MM cells, which makes it a suitable target antigen for this type of therapy. At the time of writing, data from >20 clinical trials involving anti-BCMA CAR T cells have demon-strated that objective responses can be achieved in patients with relapsed and/or refractory MM. These early studies help demonstrate short-term safety and efficacy; However, most patients did not have remission that lasted >18 months. Attempts to reduce or delay the onset of recurrent dis-ease are ongoing and include methods to identify additional CAR T cell target antigens and enhance BCMA expression on MM cells. CAR T cells to enhance the activity and safety of treatments remains a promising avenue for improvement. In this review, we summarize data from clinical trials con-ducted to date, describe novel antigens that may be targeted in the future, and highlight potential innovations that may improve the efficacy and/or reduce the toxicity of CAR T cell therapies in the future.
文章引用:韦学玉, 耿惠. 多发性骨髓瘤患者的CAR T细胞疗法的临床进展[J]. 临床医学进展, 2023, 13(6): 10568-10573. https://doi.org/10.12677/ACM.2023.1361478

1. 引言

多发性骨髓瘤(Multiple myeloma, MM)是一种浆细胞恶性肿瘤,其与由于终末器官损伤引起的相关发病率和死亡率相关 [1] ,随着蛋白酶体抑制剂、免疫调节剂、CD38单抗的逐渐使用,已将MM的中位生存期(PFS)从最初诊断提高了3~6年 [2] 。但是,MM目前仍无法治愈。MM在很大程度上仍然是不可治愈的;随着每次新的复发,恶性浆细胞都会进一步克隆化,并能够活得新的突变。从而呈现高风险特征及对标准的治疗方案产生耐药性,显然就需要能够诱导永久抑制恶性浆细胞的克隆。

2. MM亚克隆的异质性和抗性

多发性骨髓瘤(MM)是一种异质性疾病,由意义不明的癌前单克隆丙种球蛋白病或更具侵袭性的前驱疾病发展而来。恶性浆细胞包含可随时间推移获得新突变的不同亚克隆组。随着MM的进展,预先存在的克隆以及新的克隆具有自发出现和作为治疗结果出现的潜力。获得新突变的亚克隆可随时间赋予对标准MM疗法的抗性 [3] 。MM患者接受的每种额外标准治疗的无进展生存期通常较短。被世界卫生组织 (WHO)归类为浆细胞肿瘤。MM的特征是克隆性终末分化的B淋巴细胞异常增殖。恶性浆细胞主要存在于骨髓中,但也可以记录在外周血和其他髓外部位,尤其是在疾病的晚期。在MM过程中,观察到单克隆蛋白(M蛋白)的过量产生,然后在血清和尿液中积累 [3] [4] 。

3. CAR T细胞

CARs是掺入抗原识别以及T细胞活化结构域的杂合分子,从而替代T细胞受体的主要功能 [2] 。CAR T细胞的优点,即,表达CAR的T细胞相对于其他已建立的细胞免疫疗法如allo-SCT是针对特定抗原及其关HLA类型的独立功能的特异性设计,这意味着CAR T细胞疗法可以应用于具有不同HLA类型的患者 [3] [4] [5] 。CAR的另一个结构特征包括铰链区和跨膜区,其将细胞外抗原识别连接到细胞质信号传导结构域。该细胞内结构域进一步并入共刺激和T细胞活化结构域,其促进信号转导并从而活化T细胞 [1] [2] [3] [6] 。

4. CAR T的结构和作用机制

CAR T治疗又称细胞免疫治疗,嵌合抗原受体(CAR)是人工融合蛋白,由通过铰链和跨膜结构域连接到信号部分的抗原识别结构域组成。抗原结构域通常是来自抗体的单链可变片段(single-chain variable fragment, ScFv)、跨膜结构域、共刺激分子和刺激分子,CAR T细胞制造过程开始于使用递送载体将编码CAR的基因转移到T细胞的基因组中 [7] 。广泛使用的递送载体包括病毒载体(慢病毒或γ-逆转录病毒)和转座子系统。T细胞可以通过白细胞分离术从患者(自体)或健康供体(同种异体)收集。CAR T细胞移植技术在过去几年中发生了巨大的变化。BCMA指导的CAR T细胞疗法的当前版本采用具有识别BCMA抗原的单链可变片段、间隔子、细胞内共刺激信号传导结构域。靶向BCMA的CAR T细胞的初始波在MM中显示出显著的功效。CAR T细胞是离体制造的,并且该过程涉及T细胞刺激、转导和增殖;该过程可能需要少至7天,长至6周12、19、20、24、25。CAR T细胞的输注通常在淋巴细胞消耗化疗之前进行。这种方法通过增加血清细胞因子如IL-15的循环水平和通过耗尽内源性调节性T细胞来促进过继转移的CAR T细胞的活性和增殖 [7] [8] [9] 。

5. CAR T细胞靶抗原治疗效果

CAR T识别合适的肿瘤相关靶抗原是是治疗成功的关键。最佳的CAR T细胞靶抗原是在恶性细胞的表面上而不是在非恶性细胞的表面上一致表达的抗原必必须拥有安全及有效这两项基本条件 [10] 。在迄今为止鉴定的抗原中,B细胞成熟抗原(BCMA) (TNF超家族的成员)对于MM细胞定向的CAR靶具有最有利的表达模式。BCMA在几乎所有MM患者中由恶性细胞以可变水平表达,并且该抗原在非恶性细胞上的表达限于浆细胞和B细胞的小子集 [11] - [16] 。

T细胞在治疗B细胞恶性肿瘤患者中非常有效 [10] 并且这种有效性促使研究人员尝试开发用于治疗MM患者的CAR T细胞疗法。CAR T细胞制造过程始于使用递送载体将CAR的基因转移到T细胞的基因组中。广泛使用的递送载体包括病毒载体(慢病毒或γ-逆转录病毒)和转座子系统,T细胞可以从患者(自体)或健康供体(同种异体)通过白细胞收集。需要针对复发和/或难治性多发性骨髓瘤(RRMM)的新疗法。靶向B细胞成熟抗原(BCMA)的嵌合抗原受体(CAR) T细胞已证明对经过大量预处理的MM患者具有疗效,并在一部分患者中深缓 [11] [12] [13] 。MM的表型异质性是实现持久、无复发的CAR T细胞反应的主要障碍,有必要改进目前的方法。靶向新抗原,或单独或联合BCMA,或使用药物增加MM细胞上的目标抗原密度,可能会降低CAR T细胞治疗后MM复发的风险。通过修改抗原结合、共刺激、铰链和/或跨膜结构域来优化CAR设计,可能会改善临床结果。包括基因编码的自杀开关可能会提高CAR T细胞治疗的总体安全性。用对MM具有更大活性的药物替代标准的淋巴消耗化疗方案,或在CAR T细胞输注后增加维持治疗,可能会导致更持久和/或更深层次的反应。神经系统毒性是CAR T细胞的另一个重要的不良反应,包括头痛、失语、谵妄以及较少见的由脑水肿引起的癫痫和闭塞。CRS的治疗包括使用IL-6受体抗体和皮质类固醇,而神经毒性最常用皮质类固醇治疗 [17] [18] [19] 将编码生物自杀开关的基因整合到CAR T细胞产品中,作为一种减轻这类治疗潜在毒性的方法正变得越来越普遍。注射特定药物后,自杀开关的激活导致CAR T细胞凋亡 [20] 。最佳的CAR T细胞靶抗原是在恶性细胞表面一致表达而非在非恶性细胞表面表达的抗原。如果CAR T细胞能够识别非恶性细胞上表达的靶标,严重的毒性将会随之而来。到目前为止,还没有发现在MM细胞上强烈和一致表达的抗原,但在非恶性细胞上没有。在目前鉴定的抗原中,B细胞成熟抗原(BCMA)是TNF超家族的成员,对MM细胞靶向CAR的表达模式最为有利 [21] 。

6. CAR T细胞疗法的毒性特征

来自CAR T细胞疗法的毒性是由直接从输注的细胞和/或宿主细胞如巨噬细胞释放的细胞因子和其他免疫蛋白引起的 [22] 。CRS是由于一种或多种炎性介质的循环水平的急性升高而发生的 [23] 。CRS最常见的症状是发热;CRS还可以表现为心动过速、低血压、缺氧和其他异常 [24] 。几乎所有MM患者的恶性细胞均表达BCMA,且该抗原在非恶性细胞上的表达仅限于浆细胞和一小部分B细胞MM患者在CAR T细胞治疗前有很高的感染风险,感染是发病率和死亡率的主要原因 [25] 。主要为细胞因子释放综合征(CRS)、神经毒性(NT)、血液学毒性和免疫学毒性。

7. BCMA导向的CAR T细胞疗法后复发的MM

由于缺乏来自系统性研究的数据,这些研究旨在鉴定抗BCMA CAR T细胞疗法后MM复发的患者的特征,复发性MM的表型在很大程度上仍然未知。根据临床试验报告,复发性MM患者具有细胞表面BCMA表达谱。具有低或阴性BCMA表达的浆细胞(阴性至二聚体变体)可能由于靶向BCMA的CAR T细胞施加的选择压力而出现 [24] [25] [26] ;BCMA表达的下调可能使MM细胞对抗BCMA CAR T细胞更具抗性。或者,来自一项研究的数据表明,BCMA表达随着响应而降低,并且随后在MM复发时BCMA表达增加 [27] 。研究人员假设,在CAR T细胞活性丧失后,BCMA阴性至二聚体变体被残留的BCMA阳性克隆竞争超过 [28] 。这种情况呈现了一种情况,其中BCMA指导的CAR T细胞的再输注可能潜在地导致第二响应。识别两种不同抗原的CAR T细胞可能会降低这种“BCMA-抗原逃逸”形式的MM复发的风险。此外,γ-分泌酶抑制剂可用于促进BCMA表达,这可能导致更深和更持久的应答 [28] [29] [30] [31] 。

8. 小结

CAR T细胞在目前来说是一种比较好的疗法,尤其在复发难治性MM中表现出了较好的疗效,拉长了患者的PFS,目前抗BCMA CAR T细胞具有针对许多其他疗法具有抗性的MM的强大活性,尽管目前的应答持久性可以得到改善。已经用CAR T细胞治疗的MM患者在无治疗间隔期间生活质量的改善;存在许多进一步研究的途径,以改善CAR T细胞疗法的安全性和有效性;诱导缓解治疗是蛋白酶体抑制剂、免疫调节剂和抗CD 38单克隆抗体以及既往自体干细胞移植难治性骨髓瘤患者的未满足需求。靶向骨髓瘤的CAR T细胞产品为这些患者提供了相当大的希望。需要更多的研究来优化MM患者的这种疗法,这是以后临床试验中更多研究的问题。

NOTES

*通讯作者。

参考文献

[1] Röllig, C., Knop, S. and Bornhäuser, M. (2015) Multiple Myeloma. The Lancet (London, England), 385, 2197-2208.
https://doi.org/10.1016/S0140-6736(14)60493-1
[2] Sadelain, M., Brentjens, R. and Rivière, I. (2013) The Basic Principles of Chimeric Antigen Receptor Design. Cancer Discovery, 3, 388-398.
https://doi.org/10.1158/2159-8290.CD-12-0548
[3] Kochenderfer, J.N. and Rosenberg, S.A. (2013) Treating B-Cell Cancer with T Cells Expressing Anti-CD19 Chimeric Antigen Receptors. Nature Reviews. Clinical Oncology, 10, 267-276.
https://doi.org/10.1038/nrclinonc.2013.46
[4] Maus, M.V., Grupp, S.A., Porter, D.L. and June, C.H. (2014) Antibody-Modified T Cells: CARs Take the Front Seat for Hematologic Malignancies. Blood, 123, 2625-2635.
https://doi.org/10.1182/blood-2013-11-492231
[5] Kershaw, M.H., Westwood, J.A. and Darcy, P.K. (2013) Gene-Engineered T Cells for Cancer Therapy. Nature Reviews Cancer, 13, 525-541.
https://doi.org/10.1038/nrc3565
[6] Holzinger, A. and Abken, H. (2019) CAR T Cells: A Snapshot on the Grow-ing Options to Design a CAR. HemaSphere, 3, e172.
https://doi.org/10.1097/HS9.0000000000000172
[7] Ramos, C.A., Savoldo, B., Torrano, V., Ballard, B., Zhang, H., Dakhova, O., Liu, E., Carrum, G., Kamble, R.T., Gee, A.P., Mei, Z., Wu, M.F., Liu, H., Grilley, B., Rooney, C.M., Brenner, M.K., Heslop, H.E. and Dotti, G. (2016) Clinical Responses with T Lymphocytes Targeting Malignancy-Associated κ Light Chains. The Journal of Clinical Investigation, 126, 2588-2596.
https://doi.org/10.1172/JCI86000
[8] Levine, B.L., Miskin, J., Wonnacott, K. and Keir, C. (2016) Global Manufacturing of CAR T Cell Therapy. Molecular Therapy. Methods & Clinical Development, 4, 92-101.
https://doi.org/10.1016/j.omtm.2016.12.006
[9] Kumar, S.K., Rajkumar, V., Kyle, R.A., van Duin, M., Sonneveld, P., Mateos, M.V., Gay, F. and Anderson, K.C. (2017) Multiple Myeloma. Nature Reviews Disease Primers, 3, Article No. 17046.
https://doi.org/10.1038/nrdp.2017.46
[10] Sadelain, M., Rivière, I. and Riddell, S. (2017) Therapeutic T Cell Engi-neering. Nature, 545, 423-431.
https://doi.org/10.1038/nature22395
[11] Kochenderfer, J.N., Somerville, R.P.T., Lu, T., Shi, V., Bot, A., Rossi, J., Xue, A., Goff, S.L., Yang, J.C., Sherry, R.M., Klebanoff, C.A., Kammula, U.S., Sherman, M., Perez, A., Yuan, C.M., Feldman, T., Friedberg, J.W., Roschewski, M.J., Feldman, S.A., McIntyre, L. and Rosenberg, S.A. (2017) Lymphoma Remissions Caused by Anti-CD19 Chimeric Antigen Receptor T Cells Are Associated with High Serum Interleukin-15 Levels. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35, 1803-1813.
https://doi.org/10.1200/JCO.2016.71.3024
[12] Brudno, J.N. and Kochenderfer, J.N. (2018) Chimeric Antigen Receptor T-Cell Therapies for Lymphoma. Nature Reviews Clinical Oncology, 15, 31-46.
https://doi.org/10.1038/nrclinonc.2017.128
[13] Neelapu, S.S., Locke, F.L., Bartlett, N.L., Lekakis, L.J., Miklos, D.B., Jacobson, C.A., Braunschweig, I., Oluwole, O.O., Siddiqi, T., Lin, Y., Timmerman, J.M., Stiff, P.J., Friedberg, J.W., Flinn, I.W., Goy, A., Hill, B.T., Smith, M.R., Deol, A., Farooq, U., McSweeney, P. and Go, W.Y. (2017) Axi-cabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. The New England Journal of Medicine, 377, 2531-2544.
https://doi.org/10.1056/NEJMoa1707447
[14] Schuster, S.J., Svoboda, J., Chong, E.A., Nasta, S.D., Mato, A.R., Anak, Ö., Brogdon, J.L., Pruteanu-Malinici, I., Bhoj, V., Landsburg, D., Wasik, M., Levine, B.L., Lacey, S.F., Melen-horst, J.J., Porter, D.L. and June, C.H. (2017) Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. The New England Journal of Medicine, 377, 2545-2554.
https://doi.org/10.1056/NEJMoa1708566
[15] Lim, W.A. and June, C.H. (2017) The Principles of Engineering Immune Cells to Treat Cancer. Cell, 168, 724-740.
https://doi.org/10.1016/j.cell.2017.01.016
[16] Zhao, W.H., Liu, J., Wang, B.Y., Chen, Y.X., Cao, X.M., Yang, Y., Zhang, Y.L., Wang, F.X., Zhang, P.Y., Lei, B., Gu, L.F., Wang, J.L., Yang, N., Zhang, R., Zhang, H., Shen, Y., Bai, J., Xu, Y., Wang, X.G., Zhang, R.L. and Zhang, W.G. (2018) A Phase 1, Open-Label Study of LCAR-B38M, a Chimeric Antigen Receptor T Cell Therapy Directed against B Cell Maturation Antigen, in Patients with Relapsed or Refractory Multiple Myeloma. Journal of Hematology & Oncology, 11, Article No. 141.
https://doi.org/10.1186/s13045-018-0681-6
[17] Yan, Z., Zhang, H., Cao, J., et al. (2021) Characteristics and Risk Factors of Cytokine Release Syndrome in Chimeric Antigen Receptor T Cell Treatment. Frontiers in Immunology, 12, Article ID: 611366.
https://doi.org/10.3389/fimmu.2021.611366
[18] Wang, X. and Rivière, I. (2016) Clinical Manufacturing of CAR T Cells: Foundation of a Promising Therapy. Molecular Therapy Oncolytics, 3, Article No. 16015.
https://doi.org/10.1038/mto.2016.15
[19] Brudno, J.N. and Kochenderfer, J.N. (2019) Recent Advances in CAR T-Cell Toxicity: Mechanisms, Manifestations and Management. Blood Reviews, 34, 45-55.
https://doi.org/10.1016/j.blre.2018.11.002
[20] Lee, D.W., Santomasso, B.D., Locke, F.L., Ghobadi, A., Turtle, C.J., Brudno, J.N., Maus, M.V., Park, J.H., Mead, E., Pavletic, S., Go, W.Y., Eldjerou, L., Gardner, R.A., Frey, N., Curran, K.J., Peggs, K., Pasquini, M., DiPersio, J.F., van den Brink, M.R.M., Komanduri, K.V. and Neelapu, S.S. (2019) ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Trans-plantation, 25, 625-638.
https://doi.org/10.1016/j.bbmt.2018.12.758
[21] Cohen, A.D., Garfall, A.L., Stadtmauer, E.A., Melenhorst, J.J., Lacey, S.F., Lancaster, E., Vogl, D.T., Weiss, B.M., Dengel, K., Nelson, A., Plesa, G., Chen, F., Davis, M.M., Hwang, W.T., Young, R.M., Brogdon, J.L., Isaacs, R., Pruteanu-Malinici, I., Siegel, D.L., Levine, B.L. and Milone, M.C. (2019) B Cell Maturation Antigen-Specific CAR T Cells Are Clinically Active in Multiple Myeloma. The Journal of Clinical Investigation, 129, 2210-2221.
https://doi.org/10.1172/JCI126397
[22] Srivastava, S. and Riddell, S.R. (2015) Engineering CAR-T Cells: Design Concepts. Trends in Immunology, 36, 494-502.
https://doi.org/10.1016/j.it.2015.06.004
[23] Baumeister, S.H., Murad, J., Werner, L., Daley, H., Trebeden-Negre, H., Gicobi, J.K., Schmucker, A., Reder, J., Sentman, C.L., Gilham, D.E., Lehmann, F.F., Galinsky, I., DiPietro, H., Cummings, K., Munshi, N.C., Stone, R.M., Neuberg, D.S., Soiffer, R., Dranoff, G., Ritz, J. and Nikiforow, S. (2019) Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunology Research, 7, 100-112.
https://doi.org/10.1158/2326-6066.CIR-18-0307
[24] Schaefer, A., et al. (2019) Cytopenias after Chimeric Antigen Receptor T-Cells (CAR-T) Infusion; Patterns and Outcomes. Biology of Blood and Marrow Transplantation, 25, S171.
https://doi.org/10.1016/j.bbmt.2018.12.311
[25] Mei, H., Li, C., Jiang, H., Zhao, X., Huang, Z., Jin, D., Guo, T., Kou, H., Liu, L., Tang, L., Yin, P., Wang, Z., Ai, L., Ke, S., Xia, Y., Deng, J., Chen, L., Cai, L., Sun, C., Xia, L. and Hu, Y. (2021) A Bispecific CAR-T Cell Therapy Targeting BCMA and CD38 in Relapsed or Refractory Multiple Myeloma. Journal of Hematology & Oncology, 14, Article No. 161.
https://doi.org/10.1186/s13045-021-01170-7
[26] Porter, D., Frey, N., Wood, P.A., Weng, Y. and Grupp, S.A. (2018) Grading of Cytokine Release Syndrome Associated with the CAR T Cell Therapy Tisagenlecleucel. Journal of Hematology & Oncology, 11, Article No. 35.
https://doi.org/10.1186/s13045-018-0571-y
[27] Lee, D.W., Gardner, R., Porter, D.L., Louis, C.U., Ahmed, N., Jensen, M., Grupp, S.A. and Mackall, C.L. (2014) Current Concepts in the Diagnosis and Management of Cytokine Re-lease Syndrome. Blood, 124, 188-195.
https://doi.org/10.1182/blood-2014-05-552729
[28] Xu, J., Chen, L.J., Yang, S.S., Sun, Y., Wu, W., Liu, Y.F., Xu, J., Zhuang, Y., Zhang, W., Weng, X.Q., Wu, J., Wang, Y., Wang, J., Yan, H., Xu, W.B., Jiang, H., Du, J., Ding, X.Y., Li, B., Li, J.M. and Chen, S.J. (2019) Exploratory Trial of a Biepitopic CAR T-Targeting B Cell Maturation Antigen in Relapsed/Refractory Multiple Myeloma. Proceedings of the National Academy of Sciences of the United States of Ameri-ca, 116, 9543-9551.
https://doi.org/10.1073/pnas.1819745116
[29] Carpenter, R.O., Evbuomwan, M.O., Pittaluga, S., Rose, J.J., Raf-feld, M., Yang, S., Gress, R.E., Hakim, F.T. and Kochenderfer, J.N. (2013) B-Cell Maturation Antigen Is a Promising Target for Adoptive T-Cell Therapy of Multiple Myeloma. Clinical Cancer Research: An Official Journal of the Ameri-can Association for Cancer Research, 19, 2048-2060.
https://doi.org/10.1158/1078-0432.CCR-12-2422
[30] Smith, E.L., Harrington, K., Staehr, M., Masakayan, R., Jones, J., Long, T.J., Ng, K.Y., Ghoddusi, M., Purdon, T.J., Wang, X., Do, T., Pham, M.T., Brown, J.M., De Larrea, C.F., Olson, E., Peguero, E., Wang, P., Liu, H., Xu, Y., Garrett-Thomson, S.C. and Brentjens, R.J. (2019) GPRC5D Is a Target for the Immunotherapy of Multiple Myeloma with Rationally De-signed CAR T Cells. Science Translational Medicine, 11, eaau7746.
https://doi.org/10.1126/scitranslmed.aau7746
[31] Boudreault, J.S., Touzeau, C. and Moreau, P. (2017) The Role of SLAMF7 in Multiple Myeloma: Impact on Therapy. Expert Review of Clinical Immunology, 13, 67-75.
https://doi.org/10.1080/1744666X.2016.1209112