长链非编码RNA X非活性特异性转录物(XIST)在心房颤动患者中的表达与临床意义
Expression and Clinical Significance of Long Non-Coding RNA X Inactive Specific Transcript (XIST) in Patients with Atrial Fibrillation
DOI: 10.12677/ACM.2023.1371505, PDF, HTML, XML, 下载: 267  浏览: 338  科研立项经费支持
作者: 张 曦:青岛大学医学院,山东 青岛;临沂市金锣医院老年病综合科,山东 临沂;李 展:山东第一医科大学第一附属医院心内科,山东 济南;魏延津*:青岛大学医学院,山东 青岛;临沂市人民医院心内科,山东 临沂
关键词: X非活性特异性转录物心房颤动临床意义CHA2DS2-VASc评分诊断价值XIST AF Clinical Significance CHA2DS2-VASc Score Diagnostic Values
摘要: 目的:研究长链非编码RNA X非活性特异性转录物(XIST)在心房颤动(AF)患者中的表达特征与临床意义。方法:选取2021年6月至2022年5月在山东第一医科大学第一附属医院心内科治疗的75例AF患者,并选取同期75例体检窦性心律者作为健康对照者。采集清晨空腹静脉血并分离血清,通过实时荧光定量PCR检测XIST表达水平。采用t和F检验分析XIST表达与年龄、性别、慢性病(糖尿病、高血压及冠心病)患病情况、AF类型(阵发性、持续性及永久性)、AF评分(CHA2DS2-VASc评分)及心功能分级(I、II、III及IV)之间的关系。采用Spearman检验分析XIST表达与左心室射血分数(LVEF)和左心房内径(LAD)的相关性。采用受试者工作特征(ROC)曲线分析XIST表达检测AF的诊断价值。结果:AF患者血清中XIST表达水平低于健康对照者(P < 0.05)。持续性和永久性AF患者血清中XIST表达水平低于阵发性AF患者(P < 0.05)。CHA2DS2-VASc评分 ≥ 2的AF患者血清中XIST表达水平低于CHA2DS2-VASc评分 < 2的AF患者(P < 0.05)。心功能III~IV级AF患者血清中XIST表达水平低于心功能I~II级AF患者(P < 0.05)。XIST表达与LVEF呈正相关(r = 0.48, P < 0.05),而与LAD负相关(r = −0.73, P < 0.05)。XIST表达诊断AF、阵发性AF、持续性AF及永久性AF的曲线下面积分别为0.66、0.69、0.77及0.82 (P < 0.05)。结论:AF患者血清中XIST表达水平下调,与AF类型、CHA2DS2-VASc评分、心功能分级、LVEF及LAD相关。XIST表达对协助AF诊断具有一定的作用。
Abstract: Objective: To investigate the expression characteristic and clinical significance of long non-coding RNA X inactive specific transcript (XIST) in patients with atrial fibrillation (AF). Methods: Seven-ty-five patients with AF treated in the Department of Cardiology of the First Affiliated Hospital of Shandong First Medical University from June 2021 to May 2022 were selected, and 75 individuals with sinus rhythm on physical examination during the same period were selected as healthy con-trols. Early morning fasting venous blood was collected and serum was isolated, and the expression levels of XIST were detected by real-time fluorescence quantitative PCR. The associations between XIST expression and age, gender, chronic diseases (diabetes, hypertension and coronary artery disease), AF type (paroxysmal, persistent and permanent), AF score (CHA2DS2-VASc score) and car-diac function class (I, II, III and IV) were analyzed by the t and F test. The correlations between XIST expression and left ventricular ejection fraction (LVEF) and left atrial internal diameter (LAD) were analyzed by Spearman’s test. The diagnostic values of the XIST expression for detecting AF were an-alyzed by receiver operating characteristic (ROC) curves. Results: The expression levels of XIST were lower in serum of patients with AF than that in healthy controls (P < 0.05). The expression levels of XIST were lower in serum of patients with persistent and permanent AF than that in pa-tients with paroxysmal AF (P < 0.05). The expression levels of XIST were lower in serum of AF pa-tients with CHA2DS2-VASc score ≥ 2 than that in AF patients with CHA2DS2-VASc score < 2 (P < 0.05). The expression levels of XIST were lower in serum of AF patients with cardiac function class III~IV than that in AF patients with cardiac function class I~II (P < 0.05). XIST expression was posi-tively correlated with LVEF (r = 0.48, P < 0.05), but negatively correlated with LAD (r = −0.73, P < 0.05). The area under the curves of XIST expression for the diagnosis of AF, paroxysmal AF, persis-tent AF and permanent AF were 0.66, 0.69, 0.77 and 0.82, respectively (P < 0.05). Conclusion: The expression levels of XIST are downregulated in serum of AF patients and correlates with AF type, CHA2DS2-VASc score, cardiac function class, LVEF and LAD. XIST expression has a role in assisting in the diagnosis of AF.
文章引用:张曦, 李展, 魏延津. 长链非编码RNA X非活性特异性转录物(XIST)在心房颤动患者中的表达与临床意义[J]. 临床医学进展, 2023, 13(7): 10773-10780. https://doi.org/10.12677/ACM.2023.1371505

1. 引言

心房颤动(atrial fibrillation, AF)以快速、无序的心房电活动为其特点,是临床上最常见的心律失常之一,可以显著增加中风、心力衰竭和死亡发生风险 [1] 。随着我国人口老龄化率的增加,AF发病率显著提高,构成了严重医疗负担。AF的治疗方法以针对基础疾病的“上游治疗”、抗凝治疗、节律控制及室率控制为主 [2] 。近10年来,新型口服抗凝药和导管消融术在AF的治疗中获得了广泛认可 [3] 。尽管如此,当前AF患者的疗效并不十分理想,如何改善这一问题是摆在现代医学面前的一个严峻挑战。AF发生涉及自主神经重塑、电重塑和结构重塑等病理过程 [4] ,但是其确切的分子机制尚不完全清楚。

长链非编码RNA (long non-coding RNA, lncRNA)是一种长度超过200 nt的非编码RNA,虽然没有编码蛋白质的能力,但对基因表达具有重要的调控作用 [5] 。研究发现,lncRNA参与各种生理与病理过程,包括生长发育、细胞增殖分化、肿瘤发生与转移以及能量代谢等过程 [6] 。随着高通量测序和分子生物学的发展,研究显示lncRNA有作为AF诊断和预后的生物标志物的潜力 [7] 。作为研究最多的lncRNA之一,X非活性特异性转录物(X inactive specific transcript, XIST)在心肌梗死 [8] 、胸主动脉瘤 [9] 及动脉粥样硬化 [10] 中均发挥一定的作用。目前有关XIST与AF的关系的报道较少。本研究将分析XIST在心AF患者中的表达特征与临床意义,以期为改善AF的诊疗提供相关理论依据。

2. 材料与方法

2.1. 材料

EDTA采集管(BD,美国),RNA提取试剂盒(翌圣生物,北京),反转录和实时荧光定量PCR试剂盒(宝日医生物,北京)。微量紫外分光光度计(Thermo Fisher,美国),7900型实时荧光定量PCR仪(ABI,美国)。

2.2. 标本收集

选取2021年6月至2022年5月在山东第一医科大学第一附属医院心内科治疗的75例AF患者(男44例、女31例、平均年龄:53.29 ± 9.17),并选取同期75例体检窦性心律者作为健康对照者(男40例、女35例、平均年龄:52.86 ± 8.44)。纳入标准:患者心电图符合AF表现,且符合2020欧洲心脏病学会和欧洲心胸外科协会(ESC/EACTS)AF诊断指南标准 [11] 。排除标准:① 不能配合治疗的AF患者;② 伴有风湿性的心脏病、心肌病、心脏瓣膜病、病毒性心肌炎患者;③ 口服致心律失常药物钾离子异常等原因导致的可逆性AF患者;④ 继发性高血压、恶性肿瘤、严重凝血功能障碍、严重的肝肾功能不全及自身免疫性疾病患者;⑤ 前6个月内出现缺血性脑卒中或出血性疾病患者;⑥ 哺乳期妇女与孕妇及神志精神意识障碍者;⑦ 其他各系统疾病控制不佳者。所有参与者清晨空腹采集静脉血3 mL,放入EDTA采集管并常规离心获得血清。所有参与者均签署了知情同意书,本研究经山东第一医科大学第一附属医院医学伦理委员会批准,所有实验均遵照相关指南进行。

2.3. 方法

2.3.1. 临床指标检测

收集AF患者的临床指标,包括慢性病(糖尿病、高血压及冠心病)患病情况、AF类型(阵发性、持续性及永久性)、AF评分(CHA2DS2-VASc评分)及心功能分级(I、II、III及IV)、左心室射血分数(LVEF)及左心房内径(LAD)。AF患者中患有糖尿病、高血压及冠心病分别为:20例、42例及18例。阵发性AF:持续时间 ≤ 7天,经常是≤48 h,能够自行终止,不需要用药物或者电复律来转复就能自行终止的AF。持续性AF:发作持续时间超过1周,一般不能自行转复,需要通过药物或电转复等方式转复或控制心室率的AF。永久性AF:发作持续时间1年以上,不能用药物转复为窦性心律或终止后又复发者的AF。阵发性、持续性及永久性AF患者分别为:30例、34例及11例。利用CHA2DS2-VASc评分对AF患者进行卒中风险评估,具体标准 [12] 为:糖尿病、血管性疾病、年龄65~74岁、高血压、心力衰竭、女性各计1分,脑卒中史与年龄 ≥ 75岁各2分,总分9分。CHA2DS2-VASc评分 < 2的AF患者为15例,CHA2DS2-VASc评分 ≥ 2的AF患者为60例。心功能分采用美国纽约心脏病学会标准,心功能I、II、III及IV级AF患者分别为11例、27例、24例及13例。采用心脏彩色多普勒超声检测AF患者左心室射血分数(left ventricular ejection fraction, LVEF)与左心房内径(left atrial diameter, LAD)。

2.3.2. 血清总RNA提取与反转录

取200 μL血清加入1 mL RNA提取试剂,充分混匀,常温反应5 min。加入240 μL氯仿溶液,充分混匀,常温反应5 min,4℃、13,000 g离心30 min。取上清液,加入500 μL异丙醇溶液,常温反应10 min,4℃、13000 g离心15 min。吸弃上清液,保留沉淀,加入1 mL 75%乙醇溶液,常温反应5 min,4℃、13,000 g离心10 min。吸弃上清液,保留沉淀,加入20 μL无RNA酶去离子水溶解RNA。取1 μL RNA,利用微量紫外分光光度计测定浓度。取1 µg总RNA按照反转录试剂盒实验步骤合成cDNA,置于−20℃保存。

2.3.3. 实时荧光定量PCR检测XIST表达水平

取2 µL cDNA作为模版,在7900型实时荧光定量PCR仪进行实时荧光定量PCR。反应条件为:预变性95℃ 30 sec,扩增40个循环:95℃ 5 sec、57℃ 30 sec、72℃ 30 sec,延伸72℃ 5 min,保存4℃ 30 min。XIST上游引物,5'-GCCACTAGTGTACAGGGTGT-3'和下游引物,5'-CGAGGAGCTAGTAGGGCAAA-3'。以甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)为内参基因,上游引物,5'-GAGAAGTATGACAACAGCCTCAA-3'和下游引物,5'-GCCATCACGCCACAGTTT-3'。实验独立重复3次,采用2−ΔΔCt法分析XIST表达水平。

2.4. 统计学处理

利用SPSS 28.0软件进行统计学分析。计量资料以 x ¯ ± s 表示,采用t和F检验分析XIST表达与年龄、性别、慢性病(糖尿病、高血压及冠心病)患病情况、AF类型、AF评分及心功能分级的关系。采用Spearman检验分析XIST表达与LVEF和LAD的相关性。以XIST表达水平为检验变量,分别以AF患者、阵发性AF患者、持续性AF患者及永久性AF患者作为状态标量,健康对照者作为参照,以灵敏度作为Y轴,以“1-特异度”作为X轴绘制受试者工作特征(ROC)曲线,并分析曲线下面积(area under curve, AUC)、敏感度和特异度。P < 0.05代表差异有统计学意义。

3. 结果

3.1. XIST在AF患者血清中的表达水平

实时荧光定量PCR分析结果显示,AF患者和健康对照者血清中XIST表达水平分别为1.23 ± 0.14和1.96 ± 0.17,AF患者血清中XIST表达水平低于健康对照者,差异有统计学意义(P < 0.05)。

3.2. XIST表达水平与AF患者临床指标之间的关系

<60岁AF患者血清中XIST表达水平与≥60岁AF患者比较,差异无统计学意义(P > 0.05)。男性AF患者血清中XIST表达水平与女性AF患者比较,差异无统计学意义(P > 0.05)。糖尿病AF患者血清中XIST表达水平与无糖尿病AF患者比较,差异无统计学意义(P > 0.05)。高血压AF患者血清中XIST表达水平与无高血压AF患者比较,差异无统计学意义(P > 0.05)。冠心病AF患者血清中XIST表达水平与无冠心病AF患者比较,差异无统计学意义(P > 0.05)。持续性和永久性AF患者血清中XIST表达水平低于阵发性AF患者,差异有统计学意义(P < 0.05)。持续性AF患者血清中XIST表达水平与永久性AF患者比较,差异无统计学意义(P > 0.05)。CHA2DS2-VASc评分≥2的AF患者血清中XIST表达水平低于CHA2DS2-VASc评分 < 2的AF患者,差异有统计学意义(P < 0.05)。心功能III~IV级AF患者血清中XIST表达水平低于心功能I~II级AF患者,差异有统计学意义(P < 0.05),见表1。表明XIST表达与AF类型、CHA2DS2-VASc评分及心功能分级相关,但与年龄、性别及慢性病患病情况不相关。

Table 1. The relationships between XIST expression levels and clinical indicators of AF patients

表1. XIST表达水平与AF患者临床指标之间的关系

3.3. circ_0010423表达水平与LVEF和LAD的相关性

AF患者和健康对照者LVEF分别为(51.23 ± 10.57)%和(64.22 ± 7.81)%,AF患者LVEF低于健康对照者,差异有统计学意义(P < 0.05)。AF患者和健康对照者LAD分别为(37.36 ± 4.80) mm和(30.53 ± 1.76) mm,AF患者LAD高于健康对照者,差异有统计学意义(P < 0.05)。Spearman检验分析结果显示,XIST表达水平与LVEF呈正相关(r = 0.48, P < 0.05),但与LAD呈负相关(r = −0.73, P < 0.05)。

3.4. 血清XIST表达水平检测AF的诊断价值

ROC曲线分析结果显示,血清XIST表达诊断AF、阵发性AF、持续性AF及永久性AF的AUC分别为0.66、0.69、0.77及0.82,差异有统计学意义(P < 0.05),见表2。表明血清XIST表达水平对AF具有良好的诊断作用。

Table 2. Comparison of the diagnostic values of the serum XIST expression for testing AF

表2. 血清XIST表达检测AF的诊断价值比较

4. 讨论

研究表明,AF发生与表观遗传调节机制异常密切相关 [13] 。近年来,lncRNA在表观遗传调节机制中的作用受到了特别的关注,一些高通量测序和芯片研究显示,AF患者中存在大量异常表达的lncRNA,其通过调控目的基因表达影响AF进展 [14] 。研究表明,lncRNA在包括AF在内的多种心血管疾病中发挥着关键作用,并有作为疾病诊断的生物标志物和治疗靶点的潜力 [15] 。例如,Du等 [16] 发现lncRNA TCONS-00106987通过海绵吸附miR-26调节钾离子内向整流通道亚家族J成员2 (potassium inwardly rectifying channel subfamily J member 2, KCNJ2)表达促进心房电重塑,从而促进AF进展。Li等 [17] 报道lncRNA NRON通过抑制来自心房肌细胞来源的外泌体miR-23a表达促进M2巨噬细胞极化并缓解心房纤维化,从而延缓AF进展。Chen等 [18] 通过生信分析筛选出lncRNA FAM201A与AF易感性有关。此外,Shi等 [19] 报道lncRNA GAS5是AF诊断和预后的潜在生物标志物,可用于监测AF复发。本研究发现,AF患者血清中XIST表达水平下调,XIST表达对协助AF诊断具有一定的作用。

LncRNA XIST由XIST基因转录产生,位于人基因组Xq13.2区域,是哺乳动物中X染色体失活的主调控因子。越来越多的研究表明,XIST在细胞增殖、分化和基因组功能维持中起着关键作用 [20] 。最近,Wen等 [21] 通过芯片在AF患者外周血中发现912个差异表达的lncRNA,进一步分析发现XIST形成的调控网络可能在AF中具有重要作用。然而,XIST在AF患者中的表达特征与临床意义尚不清楚。本研究采用实时荧光定量PCR检测AF患者和健康对照者血清中XIST表达水平,发现AF患者血清中XIST表达水平低于健康对照者,与Wen等 [21] 报道结果一致。随后分析XIST表达水平与AF患者临床指标之间的关系,发现XIST表达水平与AF类型、CHA2DS2-VASc评分及心功能分级相关,提示XIST可以影响AF进展,与已报道的lncRNA KCNQ1OT1 [22] 、lncRNA MIAT [23] 及lncRNA NPHP3-AS1 [24] 功能具有一定的相似性。后续研究需进一步明确XIST在AF中的作用机制。

LVEF是反映左心室收缩功能的重要指标,研究显示AF患者中LVEF呈一定程度下降 [25] 。LAD是监测心房结构重构的一个重要参数,AF患者随着LAD逐渐增大,经药物或导管消融术治疗后AF复发的概率越高,因此LAD增大是AF发生的独立危险因素 [26] 。本研究中AF患者LVEF低于健康对照者,而LAD高于健康对照者,与既往研究 [26] 结果一致,提示AF患者的心脏结构及功能已经发生一定损害。进一步分析发现,XIST表达水平与LVEF呈正相关,而与LAD呈负相关,表明XIST可用于协助监测AF患者的心脏功能。

传统的心脏电生理检查对于某些特发性AF的诊断仍具有一定的局限性。因此,寻找AF相关新的标志物具有重要的临床应用价值。研究发现,XIST可以作为多种疾病诊断和预后监测的生物标志物 [27] 。Li等 [28] 报道血清XIST可作为诊断妊娠期糖尿病的生物标志物。Lan等 [29] 发现血清XIST是诊断三阴性乳腺癌复发的潜在非侵入性生物标志物。Zheng等 [30] 报道XIST通过调节Janus激酶2 (Janus kinase 2, JAK2)和细胞分裂周期蛋白42 (cell division cycle 42, CDC42)表达,是诊断急性心肌梗死的一个新的和可靠的生物标志物。此外,Fan等 [31] 报道XIST是诊断心衰的潜在的生物标志物。本研究通过ROC曲线分析血清XIST表达水平检测AF的诊断价值,发现其诊断AF、阵发性AF、持续性AF及永久性AF的AUC均较高,与既往文献报道 [27] 基本一致,表明XIST表达水平对AF具有良好的诊断价值。

综上所述,本研究发现AF患者血清中XIST表达水平下调,与AF类型、CHA2DS2-VASc评分、心功能分级、LVEF及LAD相关。XIST表达对协助AF诊断具有一定的作用。

基金项目

山东省自然科学基金青年资助项目(ZR2020QH014)。

NOTES

*通讯作者。

参考文献

[1] Baman, J.R. and Passman, R.S. (2021) Atrial Fibrillation. JAMA, 325, 2218.
https://doi.org/10.1001/jama.2020.23700
[2] Gelfman, D.M. (2022) Appropriately Targeting Treatment of Atrial Fibrillation to Maximize Benefits in Older Adults. The American Journal of Medicine, 135, 3-4.
https://doi.org/10.1016/j.amjmed.2021.06.046
[3] Rutherford, O.W., Jonasson, C., Ghanima, W., et al. (2022) Effectiveness and Safety of Oral Anticoagulants in Elderly Patients with Atrial Fibrillation. Heart, 108, 345-352.
https://doi.org/10.1136/heartjnl-2020-318753
[4] Wijesurendra, R.S. and Casadei, B. (2019) Mechanisms of Atri-al Fibrillation. Heart, 105, 1860-1867.
https://doi.org/10.1136/heartjnl-2018-314267
[5] Nojima, T. and Proudfoot, N.J. (2022) Mechanisms of lncRNA Biogenesis as Revealed by Nascent Transcriptomics. Nature Reviews Molecular Cell Biology, 23, 389-406.
https://doi.org/10.1038/s41580-021-00447-6
[6] Bridges, M.C., Daulagala, A.C. and Kourtidis, A. (2021) LNCcation: lncRNA Localization and Function. Journal of Cell Biology, 220, e202009045.
https://doi.org/10.1083/jcb.202009045
[7] Wang, W., Tian, B., Ning, Z., et al. (2022) Research Progress of LncRNAs in Atrial Fibrillation. Molecular Biotechnology, 64, 758-772.
https://doi.org/10.1007/s12033-022-00449-5
[8] Xie, J. (2023) Long Noncoding RNA XIST Regulates Myocar-dial Infarction via miR-486-5p/SIRT1 Axis. Applied Biochemistry and Biotechnology, 195, 725-734.
https://doi.org/10.1007/s12010-022-04165-3
[9] Zhu, M., Tan, M., Xu, F., et al. (2022) Long Non-Coding RNA XIST Negatively Regulates Thoracic Aortic Aneurysm Cell Proliferation by Targeting the miR-193a-5p/KLF7 Axis. Cellular and Molecular Biology (Noisy-le-grand), 68, 188-193.
https://doi.org/10.14715/cmb/2022.68.7.31
[10] Yang, K., Xue, Y. and Gao, X. (2021) LncRNA XIST Promotes Atherosclerosis by Regulating miR-599/TLR4 Axis. Inflammation, 44, 965-973.
https://doi.org/10.1007/s10753-020-01391-x
[11] Hindricks, G., Potpara, T., Dagres, N., et al. (2021) 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Asso-ciation for Cardio-Thoracic Surgery (EACTS): The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Developed with the Special Contribution of the European Heart Rhythm Association (EHRA) of the ESC. European Heart Journal, 42, 373-498.
https://doi.org/10.1093/eurheartj/ehaa612
[12] Tiver, K.D., Quah, J., et al. (2021) Atrial Fibrillation Burden: An Update—The Need for a CHA2DS2-VASc-AF Burden Score. Europace, 23, 665-673.
https://doi.org/10.1093/europace/euaa287
[13] Lozano-Velasco, E., Franco, D., Aranega, A., et al. (2020) Genetics and Epigenetics of Atrial Fibrillation. International Journal of Molecular Sciences, 21, 5717.
https://doi.org/10.3390/ijms21165717
[14] Liu, Y., Liang, X., Wang, J., et al. (2021) Identification of Atrial Fibril-lation-Associated lncRNAs and Exploration of Their Functions Based on WGCNA and ceRNA Network Analyses. General Physiology and Biophysics, 40, 289-305.
https://doi.org/10.4149/gpb_2021015
[15] Fang, Y., Xu, Y., Wang, R., et al. (2020) Recent Advances on the Roles of LncRNAs in Cardiovascular Disease. Journal of Cellular and Molecular Medicine, 24, 12246-12257.
https://doi.org/10.1111/jcmm.15880
[16] Du, J., Li, Z., Wang, X., et al. (2020) Long Noncoding RNA TCONS-00106987 Promotes Atrial Electrical Remodelling during Atrial Fibrillation by Sponging miR-26 to Regulate KCNJ2. Journal of Cellular and Molecular Medicine, 24, 12777-12788.
https://doi.org/10.1111/jcmm.15869
[17] Li, J., Zhang, Q. and Jiao, H. (2021) LncRNA NRON Promotes M2 Macrophage Polarization and Alleviates Atrial Fibrosis through Suppressing Exosomal miR-23a Derived from Atrial Myocytes. Journal of the Formosan Medical Association, 120, 1512-1519.
https://doi.org/10.1016/j.jfma.2020.11.004
[18] Chen, X., He, X.Y., Dan, Q., et al. (2022) FAM201A, a Long Noncoding RNA Potentially Associated with Atrial Fibrillation Identified by ceRNA Network Analyses and WGCNA. BMC Medical Genomics, 15, Article No. 80.
https://doi.org/10.1186/s12920-022-01232-w
[19] Shi, J., Chen, L., Chen, S., et al. (2021) Circulating Long Noncoding RNA, GAS5, as a Novel Biomarker for Patients with Atrial Fibrillation. Journal of Clinical Laboratory Analysis, 35, e23572.
https://doi.org/10.1002/jcla.23572
[20] Loda, A. and Heard, E. (2019) Xist RNA in Action: Past, Present, and Future. PLOS Genetics, 15, e1008333.
https://doi.org/10.1371/journal.pgen.1008333
[21] Wen, J.L., Ruan, Z.B., Wang, F., et al. (2023) Construction of Atrial Fibrillation-Related circRNA/lncRNA-miRNA- mRNA Regulatory Network and Analysis of Potential Biomarkers. Journal of Clinical Laboratory Analysis, 37, e24833.
https://doi.org/10.1002/jcla.24833
[22] Dai, W., Chao, X., Jiang, Z., et al. (2021) lncRNA KCNQ1OT1 May Function as a Competitive Endogenous RNA in Atrial Fibrillation by Sponging miR-223-3p. Molecular Medicine Re-ports, 24, 870.
https://doi.org/10.3892/mmr.2021.12510
[23] Yao, L., Zhou, B., You, L., et al. (2020) LncRNA MIAT/miR-133a-3p Axis Regulates Atrial Fibrillation and Atrial Fibrillation-Induced Myocardial Fibrosis. Molecular Biology Reports, 47, 2605-2617.
https://doi.org/10.1007/s11033-020-05347-0
[24] Zhao, Z., Liu, G., Zhang, H., et al. (2021) BIRC5, GAJ5, and lncRNA NPHP3-AS1 Are Correlated with the Development of Atrial Fibrillation-Valvular Heart Disease. International Heart Journal, 62, 153-161.
https://doi.org/10.1536/ihj.20-238
[25] Reddy, Y.N.V., Borlaug, B.A. and Gersh, B.J. (2022) Management of Atrial Fibrillation across the Spectrum of Heart Failure with Preserved and Reduced Ejection Fraction. Circulation, 146, 339-357.
https://doi.org/10.1161/CIRCULATIONAHA.122.057444
[26] Menichelli, D., Sciacqua, A., Cangemi, R., et al. (2021) Atrial Fibrillation Pattern, Left Atrial Diameter and Risk of Cardiovascular Events and Mortality. A Prospective Multicenter Cohort Study. International Journal of Clinical Practice, 75, e13771.
https://doi.org/10.1111/ijcp.13771
[27] Zhang, M.J., Yan, Z., Qin, J., et al. (2022) XIST as a Valuable Biomarker for Prognosis and Clinical Parameters in Diverse Tumors: A Comprehensive Meta- and Bioinformatics Analysis. Neo-plasma, 69, 1217-1227.
https://doi.org/10.4149/neo_2022_220329N352
[28] Li, Y., Yuan, X., Shi, Z., et al. (2021) LncRNA XIST Serves as a Diagnostic Biomarker in Gestational Diabetes Mellitus and Its Regulatory Effect on Trophoblast Cell via miR-497-5p/FOXO1 Axis. Cardiovascular Diagnosis and Therapy, 11, 716-725.
https://doi.org/10.21037/cdt-21-110
[29] Lan, F., Zhang, X., Li, H., et al. (2021) Serum Exosomal lncRNA XIST Is a Potential Non-Invasive Biomarker to Diagnose Recurrence of Triple-Negative Breast Cancer. Journal of Cellular and Molecular Medicine, 25, 7602-7607.
https://doi.org/10.1111/jcmm.16009
[30] Zheng, P.F., Chen, L.Z., Liu, P., et al. (2022) A Novel lncRNA-miRNA-mRNA Triple Network Identifies lncRNA XIST as a Biomarker for Acute Myocardial Infarction. Ag-ing (Albany NY), 14, 4085-4106.
https://doi.org/10.18632/aging.204075
[31] Fan, S. and Hu, Y. (2022) Integrative Analyses of Biomarkers and Pathways for Heart Failure. BMC Medical Genomics, 15, Article No. 72.
https://doi.org/10.1186/s12920-022-01221-z