|
[1]
|
Baman, J.R. and Passman, R.S. (2021) Atrial Fibrillation. JAMA, 325, 2218. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gelfman, D.M. (2022) Appropriately Targeting Treatment of Atrial Fibrillation to Maximize Benefits in Older Adults. The American Journal of Medicine, 135, 3-4. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rutherford, O.W., Jonasson, C., Ghanima, W., et al. (2022) Effectiveness and Safety of Oral Anticoagulants in Elderly Patients with Atrial Fibrillation. Heart, 108, 345-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wijesurendra, R.S. and Casadei, B. (2019) Mechanisms of Atri-al Fibrillation. Heart, 105, 1860-1867. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nojima, T. and Proudfoot, N.J. (2022) Mechanisms of lncRNA Biogenesis as Revealed by Nascent Transcriptomics. Nature Reviews Molecular Cell Biology, 23, 389-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bridges, M.C., Daulagala, A.C. and Kourtidis, A. (2021) LNCcation: lncRNA Localization and Function. Journal of Cell Biology, 220, e202009045. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, W., Tian, B., Ning, Z., et al. (2022) Research Progress of LncRNAs in Atrial Fibrillation. Molecular Biotechnology, 64, 758-772. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Xie, J. (2023) Long Noncoding RNA XIST Regulates Myocar-dial Infarction via miR-486-5p/SIRT1 Axis. Applied Biochemistry and Biotechnology, 195, 725-734. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zhu, M., Tan, M., Xu, F., et al. (2022) Long Non-Coding RNA XIST Negatively Regulates Thoracic Aortic Aneurysm Cell Proliferation by Targeting the miR-193a-5p/KLF7 Axis. Cellular and Molecular Biology (Noisy-le-grand), 68, 188-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yang, K., Xue, Y. and Gao, X. (2021) LncRNA XIST Promotes Atherosclerosis by Regulating miR-599/TLR4 Axis. Inflammation, 44, 965-973. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hindricks, G., Potpara, T., Dagres, N., et al. (2021) 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Asso-ciation for Cardio-Thoracic Surgery (EACTS): The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Developed with the Special Contribution of the European Heart Rhythm Association (EHRA) of the ESC. European Heart Journal, 42, 373-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tiver, K.D., Quah, J., et al. (2021) Atrial Fibrillation Burden: An Update—The Need for a CHA2DS2-VASc-AF Burden Score. Europace, 23, 665-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lozano-Velasco, E., Franco, D., Aranega, A., et al. (2020) Genetics and Epigenetics of Atrial Fibrillation. International Journal of Molecular Sciences, 21, 5717. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, Y., Liang, X., Wang, J., et al. (2021) Identification of Atrial Fibril-lation-Associated lncRNAs and Exploration of Their Functions Based on WGCNA and ceRNA Network Analyses. General Physiology and Biophysics, 40, 289-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Fang, Y., Xu, Y., Wang, R., et al. (2020) Recent Advances on the Roles of LncRNAs in Cardiovascular Disease. Journal of Cellular and Molecular Medicine, 24, 12246-12257. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Du, J., Li, Z., Wang, X., et al. (2020) Long Noncoding RNA TCONS-00106987 Promotes Atrial Electrical Remodelling during Atrial Fibrillation by Sponging miR-26 to Regulate KCNJ2. Journal of Cellular and Molecular Medicine, 24, 12777-12788. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, J., Zhang, Q. and Jiao, H. (2021) LncRNA NRON Promotes M2 Macrophage Polarization and Alleviates Atrial Fibrosis through Suppressing Exosomal miR-23a Derived from Atrial Myocytes. Journal of the Formosan Medical Association, 120, 1512-1519. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chen, X., He, X.Y., Dan, Q., et al. (2022) FAM201A, a Long Noncoding RNA Potentially Associated with Atrial Fibrillation Identified by ceRNA Network Analyses and WGCNA. BMC Medical Genomics, 15, Article No. 80. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Shi, J., Chen, L., Chen, S., et al. (2021) Circulating Long Noncoding RNA, GAS5, as a Novel Biomarker for Patients with Atrial Fibrillation. Journal of Clinical Laboratory Analysis, 35, e23572. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Loda, A. and Heard, E. (2019) Xist RNA in Action: Past, Present, and Future. PLOS Genetics, 15, e1008333. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wen, J.L., Ruan, Z.B., Wang, F., et al. (2023) Construction of Atrial Fibrillation-Related circRNA/lncRNA-miRNA- mRNA Regulatory Network and Analysis of Potential Biomarkers. Journal of Clinical Laboratory Analysis, 37, e24833. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Dai, W., Chao, X., Jiang, Z., et al. (2021) lncRNA KCNQ1OT1 May Function as a Competitive Endogenous RNA in Atrial Fibrillation by Sponging miR-223-3p. Molecular Medicine Re-ports, 24, 870. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yao, L., Zhou, B., You, L., et al. (2020) LncRNA MIAT/miR-133a-3p Axis Regulates Atrial Fibrillation and Atrial Fibrillation-Induced Myocardial Fibrosis. Molecular Biology Reports, 47, 2605-2617. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhao, Z., Liu, G., Zhang, H., et al. (2021) BIRC5, GAJ5, and lncRNA NPHP3-AS1 Are Correlated with the Development of Atrial Fibrillation-Valvular Heart Disease. International Heart Journal, 62, 153-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Reddy, Y.N.V., Borlaug, B.A. and Gersh, B.J. (2022) Management of Atrial Fibrillation across the Spectrum of Heart Failure with Preserved and Reduced Ejection Fraction. Circulation, 146, 339-357. [Google Scholar] [CrossRef]
|
|
[26]
|
Menichelli, D., Sciacqua, A., Cangemi, R., et al. (2021) Atrial Fibrillation Pattern, Left Atrial Diameter and Risk of Cardiovascular Events and Mortality. A Prospective Multicenter Cohort Study. International Journal of Clinical Practice, 75, e13771. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, M.J., Yan, Z., Qin, J., et al. (2022) XIST as a Valuable Biomarker for Prognosis and Clinical Parameters in Diverse Tumors: A Comprehensive Meta- and Bioinformatics Analysis. Neo-plasma, 69, 1217-1227. [Google Scholar] [CrossRef]
|
|
[28]
|
Li, Y., Yuan, X., Shi, Z., et al. (2021) LncRNA XIST Serves as a Diagnostic Biomarker in Gestational Diabetes Mellitus and Its Regulatory Effect on Trophoblast Cell via miR-497-5p/FOXO1 Axis. Cardiovascular Diagnosis and Therapy, 11, 716-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lan, F., Zhang, X., Li, H., et al. (2021) Serum Exosomal lncRNA XIST Is a Potential Non-Invasive Biomarker to Diagnose Recurrence of Triple-Negative Breast Cancer. Journal of Cellular and Molecular Medicine, 25, 7602-7607. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zheng, P.F., Chen, L.Z., Liu, P., et al. (2022) A Novel lncRNA-miRNA-mRNA Triple Network Identifies lncRNA XIST as a Biomarker for Acute Myocardial Infarction. Ag-ing (Albany NY), 14, 4085-4106. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Fan, S. and Hu, Y. (2022) Integrative Analyses of Biomarkers and Pathways for Heart Failure. BMC Medical Genomics, 15, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|