中长链甘油三酯的研究进展
Research Progress of Medium-and-Long Chain Triglycerides
DOI: 10.12677/HJFNS.2023.123028, PDF, HTML, XML, 下载: 200  浏览: 313 
作者: 张灵群:浙江师范大学生命科学学院,浙江 金华
关键词: 中长链甘油三酯超临界CO2功能合成反应 MLCT Supercritical CO2 Function Synthetic Reaction
摘要: 中长链甘油三酯(MLCT)是一种由中链脂肪酸(MCFA)和长链脂肪酸(LCFA)组成的高营养价值的新型功能性结构脂质,在促进脂质代谢、改善胰岛素抵抗等方面作用显著,广泛应用于食品、医疗等领域。本文主要对MLCT的代谢机制、功能特性及应用以及合成方法进行综述,讨论了超临界CO2介导下酶促强化MLCT合成的可行性,对提高传统食用油的营养价值,维护生态环境具有重要意义。
Abstract: Medium-and-long chain triglyceride (MLCT) is a novel functional lipid with high nutritional value, which is composed of medium chain fatty acid (MCFA) and long chain fatty acid (LCFA). It plays a significant role in promoting lipid metabolism and improving insulin resistance, and is widely used in food, medical and other fields. In this paper, the metabolic mechanism, functional properties, applications and synthetic methods of MLCT were reviewed, and the feasibility of enzymatic enhancement of MLCT synthesis under supercritical CO2 mediation was discussed, which is of great significance for improving the nutritional value of traditional edible oils and maintaining the ecological environment.
文章引用:张灵群. 中长链甘油三酯的研究进展[J]. 食品与营养科学, 2023, 12(3): 227-234. https://doi.org/10.12677/HJFNS.2023.123028

1. 引言

红托竹荪(Dictyophora rubrovolvata),属鬼笔科(Phallaceae)竹荪属(Dictyophora)。清香型名贵食用菌之一 [1] 。其形态美丽,脆嫩爽口,味道鲜美,营养丰富。过去通过野生采集,是专供皇家贵族、达官富人享受的奇珍,如今大面积商业性生产,市场消费已走向大众,并深受消费者喜爱。红托竹荪开伞后的子实体由菌盖、菌柄、菌裙、菌托组成。可食用部分通常为菌柄和菌裙,也有种植户将菌盖清洗处理后食用。菌托一般弃之不用。目前对红托竹荪研究大多在栽培技术、营养成分等方面。如王林等研究探索利用酱香酒糟栽培红托竹荪技术 [2] ,曾维军等研究不同栽培方法红托竹荪产值与品质综合评价 [3] 。罗丽平等研究红托竹荪不同部位营养成分分析 [4] ,梁亚丽等研究红托竹荪及竹荪蛋个部位主要营养功能成分分析 [5] 。棘托竹荪、长裙竹荪挥发性成分有相关研究 [6] [7] [8] [9] ,关于红托竹荪挥发性成分方面研究相对较少。本文采集红托竹荪鲜品,分离为菌柄 + 菌裙、菌盖、菌托三部分,测定、分析不同部分的挥发性成分种类及含量,为红托竹荪的进一步开发利用提供参考。

2. 材料与仪器

2.1. 材料

采集开伞后红托竹荪子实体鲜品,放于低温采样箱中带回实验室。清理干净杂物,将子实体分离为菌柄 + 菌裙、菌盖、菌托。

2.2. 实验仪器与试剂

仪器:HP6890/5975C气相–质谱联用仪(美国安捷伦公司)。手动固相微萃取装置(美国Supelco公司),萃取纤维为:2 cm-50/30 μm DVB/CAR/PDMS StableFlex。

3. 方法

取剪碎混合样品6 g,置于50 mL固相微萃取仪采样瓶中,60℃平板加热。插入装有2 cm-50/30 μm DVB/CAR/PDMS StableFlex纤维头的手动进样器,顶空萃取45 min时间后,移出萃取头并立即插入气相色谱仪进样口(温度250℃)中,热解析5 min进样。

色谱柱为FB-5MS (30 m × 0.25 mm × 0.25 μm)弹性石英毛细管柱,柱温40℃ (保持2 min),以2.5℃∙min−1升温至160℃,再以15℃∙min−1升温至280℃,运行时间:58 min;汽化室温度250℃;载气为高纯He (99.999%);柱前压7.62 psi,载气流量1.0 mL/min;不分流进样;溶剂延迟时间:1 min。

离子源为EI源;离子源温度230℃;四极杆温度150℃;电子能量70 eV;发射电流34.6 μA;倍增器电压1800 V;接口温度280℃;质量范围29~500 amu。

对总离子流图中的各峰经质谱计算机数据系统检索及核对Nist2014和Wiley275标准质谱图,确定了X种挥发性化学成分,用峰面积归一化法测定了各化学成分的相对质量分数。

4. 测试结果与分析

Table 1. Test results

表1. 测试结果

表1可知,红托竹荪鲜品中挥发性成分,共鉴定出99种,其中醛类13种、醇类22种、酯类36种、酮类10种、烷类3种、烯类7种、杂环及其他类8种。菌柄+菌裙中醛类8种、醇类13种、酯类24种、酮类5种、烷类2种、烯类2种、杂环及其他类5种;含量分别为1.78%、18.43%、69.32%、4.61%、0.04%、0.08%、0.74%;菌盖醛类9种、醇类15种、酯类15种、酮类5种、烯类1种、杂环及其他类4种;含量2.27%、71.85%、23.19%、0.69%、0.04%、1.01%;菌托醛类10种、醇类6种、酯类8种、酮类4种、烷类1种、烯类4种、杂环及其他类1种;含量12.64%、18.08%、16.52%、42.8%、0.09%、1.48%、5.81%。

5 讨论

该方法测得红托竹荪鲜品中挥发性成分共计99种,菌柄 + 菌裙、菌盖、菌托含挥发性成分种类及含量不同。其中菌柄 + 菌裙共鉴定出59种成分,含量95%,各类组分按含量排序为酯类 > 醇类 > 酮类 > 醛类 > 杂环及其他类 > 烯类 > 烷类。菌盖共鉴定出49种成分,含量99.05%,各类组分按含量排序为醇类 > 酯类 > 酮类 > 醛类 > 杂环及其他类 > 烯类。菌托共鉴定出34种成分,含量97.42%,各类组分按含量排序为酮类 > 醇类 > 酯类 > 醛类 > 杂环及其他类 > 烯类 > 烷类。

红托竹荪具有浓郁的清香风味,是名贵食用菌品种之一。所测红托竹荪样品中,具有多种挥发性成分,目前还未得到很好的研究开发。本文对红托竹荪挥发性成分进行分析,试验结果为红托竹荪进一步开发利用提供参考。

基金项目

种植红托竹荪主料繁育生产种及高效栽培技术研发与示范[黔科合成果[2022]一般049]。

NOTES

*通讯作者。

参考文献

[1] Lee, Y.-Y., Tang, T.-K., Phuah, E.-T., et al. (2018) Structural Difference of Palm Based Medium- and Long-Chain Tri-acylglycerol (MLCT) Further Reduces Body Fat Accumulation in DIO C57BL/6J Mice When Consumed in Low Fat Di-et for a Mid-Term Period. Food Research International, 103, 200-207.
https://doi.org/10.1016/j.foodres.2017.10.022
[2] Zhang, Y., Liu, Y., Wang, J., et al. (2010) Medium- and Long-Chain Triacylglycerols Reduce Body Fat and Blood Triacylglycerols in Hypertriacylglycerolemic, Overweight but Not Obese, Chinese Individuals. Lipids, 45, 501-510.
https://doi.org/10.1007/s11745-010-3418-z
[3] Huang, J., Lu, Y., Jin, J., et al. (2021) Chemical Transesterifica-tion of Flaxseed Oil and Medium-Chain Triacylglycerols: MLCT Yield, DAG Content, Physicochemical Properties, Mi-nor Compounds and Oxidation Stability. International Journal of Food Science & Technology, 56, 5160-5167.
https://doi.org/10.1111/ijfs.15173
[4] Kim, B.H. and Akoh, C.C. (2015) Recent Research Trends on the Enzymat-ic Synthesis of Structured Lipids. Journal of Food Science, 80, 1713-1724.
https://doi.org/10.1111/1750-3841.12953
[5] Zhou, S.M., Wang, Y.Q., Jiang, Y.R., Zhang, Z.F., Sun, X.G. and Yu, L.L. (2017) Dietary Intake of Structured Lipids with Different Contents of Medium-Chain Fatty Acids on Obesity Prevention in C57BL/6J Mice. Journal of Food Science, 82, 1968-1977.
https://doi.org/10.1111/1750-3841.13789
[6] Guillot, E., Vaugelade, P., Lemarchali, P. and Re Rat, A. (1993) In-testinal Absorption and Liver Uptake of Medium-Chain Fatty Acids in Non-Anaesthetized Pigs. British Journal of Nutri-tion, 69, 431-442.
https://doi.org/10.1079/BJN19930045
[7] Schönfeld, P. and Wojtczak, L. (2016) Short- and Medium-Chain Fatty Acids in Energy Metabolism: The Cellular Perspective. Journal of Lipid Research, 57, 943-954.
https://doi.org/10.1194/jlr.R067629
[8] Poppitt, S.D., Strik, C.M., MacGibbon, A.K., McArdle, B.H., Budgett, S.C. and McGill, A.T. (2010) Fatty Acid Chain Length, Postprandial Satiety and Food Intake in Lean Men. Physiology & Behavior, 101, 161-167.
https://doi.org/10.1016/j.physbeh.2010.04.036
[9] Deedwania, P. and Lavie, C.J. (2018) Dangers and Long-Term Outcomes in Metabolically Healthy Obesity: The Impact of the Missing Fitness Component. Journal of the American College of Cardiology, 71, 1866-1868.
https://doi.org/10.1016/j.jacc.2018.02.057
[10] Hu, J.N., Shen, J.R., Xiong, C.Y., et al. (2018) Investigation of Li-pid Metabolism by a New Structured Lipid with Medium- and Long-Chain Triacylglycerols from Cinnamomum cam-phora Seed Oil in Healthy C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 66, 1990-1998.
https://doi.org/10.1021/acs.jafc.7b05659
[11] Shi, J., Wang, Q., Li, C., et al. (2023) Effects of the Novel LaPLa-Enriched Medium-and Long-Chain Triacylglycerols on Body Weight, Glycolipid Metabolism, and Gut Microbiota Composition in High Fat Diet-Fed C57BL/6J Mice. Molecules, 28, Article No. 722.
https://doi.org/10.3390/molecules28020722
[12] Du, Y.X., Chen, S.N., Zhu, H.L., et al. (2020) Consumption of Interesterified Medium- and Long-Chain Triacylglycerols Improves Lipid Metabolism and Reduces Inflammation in High-Fat Diet-Induced Obese Rats. Journal of Agricultural and Food Chemistry, 68, 8255-8262.
https://doi.org/10.1021/acs.jafc.0c03103
[13] Zhou, S., Wang, Y., Jacoby, J., Jiang, Y., Zhang, Y. and Yu, L.L. (2017) Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 65, 6599-6607.
https://doi.org/10.1021/acs.jafc.7b01803
[14] Lee, Y.Y., Tang, T.K., Chan, E.S., Phuah, E.T., Lai, O.M., Tan, C.P., et al. (2021) Medium Chain Triglyceride and Medium- and Long Chain Triglyceride: Metabolism, Production, Health Impacts and Its Applications—A Review. Critical Reviews in Food Science and Nutrition, 62, 4169-4185.
[15] Terada, S., Yamamoto, S., Sekine, S. and Aoyama, T. (2012) Dietary Intake of Medium- and Long-Chain Triacylglycerols Ame-liorates Insulin Resistance in Rats Fed a High-Fat Diet. Nutrition, 28, 92-97.
https://doi.org/10.1016/j.nut.2011.04.008
[16] Min, X., Yie, J., Wang, J., Chung, B.C., Huang, C.S., Xu, H., et al. (2020) Molecular Mechanism of an Antagonistic Antibody against Glucose-Dependent Insulinotropic Polypeptide Re-ceptor. MAbs, 12, Article ID: 1710047.
https://doi.org/10.1080/19420862.2019.1710047
[17] Rubin, M., Moser, A., Vaserberg, N., Greig, F., Levy, Y., Spivak, H., Ziv, Y. and Lelcuk, S. (2000) Structured Triacylglycerol Emulsion, Containing both Medium- and Long-Chain Fatty Acids, in Long-Term Home Parenteral Nutrition: A Double-Blind Randomized Cross-Over Study. Nutrition (Burbank, Los Angeles County, Calif.), 16, 95-100.
https://doi.org/10.1016/S0899-9007(99)00249-X
[18] Kruimel, J.W., Naber, T.H., der Vliet, J.A.V., Carneheim, C., Katan, M.B. and Jansen, J.B. (2001) Parenteral Structured Triglyceride Emulsion Improves Nitrogen Balance and Is Cleared Faster from the Blood in Moderately Catabolic Patients. JPEN. Journal of Parenteral and Enteral Nutrition, 25, 237-244.
https://doi.org/10.1177/0148607101025005237
[19] Piper, S., Mengistu, A., Wolf, M., Suttner, S., Boldt, J., et al. (2006) Utilisation of Structured Triglycerides (Structolipid®) in Surgical ICU Patients Receiving Parenteral Nutrition. Critical Care, 10, P206.
https://doi.org/10.1186/cc4553
[20] Tang, Y., Wu, X.S., Zhang, D.W., Wei, B., Chen, L. and Li, R. (2011) The Comparative Study of Structured Triglyceride and Physical Mixed MCT/LCT on Fatty Acid Me-tabolism in Healthy Subjects. Parenteral & Enteral Nutrition, 4, 196-199.
[21] Wu, G.H., Zaniolo, O., Schuster, H., et al. (2017) Structured Triglycerides versus Physical Mixtures of Medium- and Long-Chain Triglycerides for Parenteral Nutrition in Surgical or Critically Ill Adult Patients: Systematic Review and Meta-Analysis. Clinical Nutrition, 36, 150-161.
https://doi.org/10.1016/j.clnu.2016.01.004
[22] Shinohara, H., Fukumitsu, H., Seto, A. and Furukawa, S. (2013) Medium-Chain Fatty Acid-Containing Dietary Oil Alleviates the Depression-Like Behaviour in Mice Exposed to Stress Due to Chronic Forced Swimming. Journal of Functional Foods, 5, 601-606.
https://doi.org/10.1016/j.jff.2012.12.006
[23] Yue, C., Li, M., Li, J., Han, X., Zhu, H., Yu, G., et al. (2020) Me-dium-Long- and Medium-Chain-Type Structured Lipids Ameliorate High-Fat Diet-Induced Atherosclerosis by Regulat-ing Inflammation, Adipogenesis, and Gut Microbiota in ApoE(-/-) Mice. Food & Function, 11, 5142-5155.
https://doi.org/10.1039/D0FO01006E
[24] Arifin, N., Cheong, L.-Z., Koh, S.-P., et al. (2011) Physicochemical Properties and Sensory Attributes of Medium- and Long-Chain Triacylglycerols (MLCT)-Enriched Bakery Shortening. Food and Bioprocess Technology, 4, 587-596.
https://doi.org/10.1007/s11947-009-0204-0
[25] Yuan, T., Wei, W., Zhang, X., et al. (2021) Medium- and Long-Chain Triacylglycerols Composition in Preterm and Full-Term Human Milk across Different Lactation Stages. LWT, 142, Article ID: 110907.
https://doi.org/10.1016/j.lwt.2021.110907
[26] Kim, I.H., Kim, H., Lee, K.T., et al. (2002) Lipase-Catalyzed Aci-dolysis of Perilla Oil with Caprylic Acid to Produce Structured Lipids. Journal of the American Oil Chemists Society, 79, 363-367.
https://doi.org/10.1007/s11746-002-0489-3
[27] Mascioli, E.A., Bistrian, B.R., Babayan, V.K. and Blackburn, G.L. (1987) Medium Chain Triglycerides and Structured Lipids as Unique Nonglucose Energy Sources in Hyperalimentation. Lipids, 22, 421-423.
https://doi.org/10.1007/BF02537272
[28] Kenler, A.S., Swails, W.S., Driscoll, D.F., et al. (1996) Early Enteral Feeding in Postsurgical Cancer Patients. Fish Oil Structured Lipid-Based Polymeric Formula versus a Standard Poly-meric Formula. Annals of surgery, 223, 316-333.
https://doi.org/10.1097/00000658-199603000-00013
[29] Xu, Z., Jin, J., Adhikari, P., et al. (2016) Sheaole-in-Based Cold-Soluble Powder Fats with Medium- and Long-Chain Triacylglycerol: Production via Chemical Interesteri-fication Using Sheaolein and Palm Kernel Stearin. RSC Advances, 6, 18632-18640.
https://doi.org/10.1039/C5RA27824D
[30] Mensink, R.P., Sanders, T.A., Baer, D.J., Hayes, K.C., Howles, P.N. and Marangoni, A. (2016) The Increasing Use of Interesterified Lipids in the Food Supply and Their Effects on Health Parameters. Advances in Nutrition, 7, 719-729.
https://doi.org/10.3945/an.115.009662
[31] Zhao, M.L., Hu, J.N., Zhu, X.M., et al. (2014) Enzymatic Synthesis of Medium- and Long-Chain Triacylglycerols-Enriched Structured Lipid from Cinnamomum camphora Seed Oil and Ca-mellia Oil by Lipozyme RM IM. International Journal of Food Science, & Technology, 49, 453-459.
https://doi.org/10.1111/ijfs.12322
[32] Khodadadi, M. and Kermasha, S. (2014) Modeling Lipase-Catalyzed Inter-esterification of Flaxseed Oil and Tricaprylin for the Synthesis of Structured Lipids. Journal of Molecular Catalysis B Enzymatic, 102, 33-40.
https://doi.org/10.1016/j.molcatb.2014.01.011
[33] Yang, K., Bi, Y., Sun, S., et al. (2014) Optimisation of Novo-zym-435-Catalysed Esterification of Fatty Acid Mixture for the Preparation of Medium- and Long-Chain Triglycerides (MLCT) in Solvent-Free Medium. International Journal of Food Science, & Technology, 49, 1001-1011.
https://doi.org/10.1111/ijfs.12393
[34] Koh, S.P., Tan, C.P., Lai, O.M., et al. (2010) Enzymatic Synthesis of Me-dium- and Long-Chain Triacylglycerols (MLCT): Optimization of Process Parameters Using Response Surface Method-ology. Food & Bioprocess Technology, 3, 288-299.
https://doi.org/10.1007/s11947-008-0073-y
[35] 高向阳, 陈昊, 富校轶, 等. 低热量功能性油脂——结构脂质的研究与开发前景[J]. 大豆科技, 2012(3): 39-43.
https://doi.org/10.3969/j.issn.1674-3547.2012.03.011
[36] Abed, S.M., Zou, X., Ali, A.H., et al. (2017) Synthesis of 1,3-Dioleoyl-2-arachidonoylglycerol-Rich Structured Lipids by Lipase-Catalyzed Acidolysis of Microbial Oil from Mortierella alpina. Bioresource Technology, 243, 448-456.
https://doi.org/10.1016/j.biortech.2017.06.090
[37] 惠菊, 单良, 金青哲, 等. 无溶剂体系酶法催化酸解合成共轭亚油酸甘油酯[J]. 中国油脂, 2009, 34(7): 26-29.
https://doi.org/10.3321/j.issn:1003-7969.2009.07.008
[38] Vázquez, L., Bañares, C., Torres, C.F., et al. (2020) Green Technologies for the Production of Modified Lipids. Annual Review of Food Science and Technology, 11, 319-337.
https://doi.org/10.1146/annurev-food-032519-051701
[39] 潘见, 杨克, 张文成, 等. 超临界CO2萃取天然产物技术及发展[J]. 精细与专用化学品, 2001(14): 8-9.
https://doi.org/10.3969/j.issn.1008-1100.2001.14.001
[40] Lisboa, P., Rodrigues, A.R., Martin, J.L., et al. (2014) Economic Analysis of a Plant for Biodiesel Production from Waste Cooking Oil via Enzymatic Transesterification Using Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 85, 31-40.
https://doi.org/10.1016/j.supflu.2013.10.018
[41] Rebolleda, S., Rubio, N., Beltrán, S., et al. (2012) Supercritical Fluid Extraction of Corn Germ Oil: Study of the Influence of Process Parameters on the Extraction Yield and Oil Quality. Journal of Supercritical Fluids, 72, 270-277.
https://doi.org/10.1016/j.supflu.2012.10.001
[42] 瞿佳政. SCCO2介质中棕榈酸甘油二酯酶促合成反应的研究[D]: [硕士学位论文]. 天津: 天津大学, 2009.
https://doi.org/10.7666/d.y1674421
[43] 齐颖, 陈晓慧, 李越, 等. 超临界CO2状态下酶法合成富含中链脂肪酸的玉米油[J]. 食品工业科技, 2012, 33(2): 300-302.
https://doi.org/10.13386/j.issn1002-0306.2012.02.044
[44] Gulhane, P.A., Gomashe, A.V. and Deo, N.V. (2014) Influence of Ionic Liquid 1-Butyl-3-methylmidazolium Chloride on the Soil Micro-Ecological System. International Journal of Current Microbiology and Applied Sciences, 3, 805-813.
[45] Zhang, Q., De Oliveira Vigier, K., Royer, S., et al. (2012) Deep Eutectic Solvents: Syntheses, Properties and Applications. Chemical Society Reviews, 41, 7108-7146.
https://doi.org/10.1039/c2cs35178a