CD4+T细胞在风湿病外周血中的变化研究进展
Update on Peripheral CD4+T-Cell Changes in Rheumatic Diseases
DOI: 10.12677/ACM.2023.1381828, PDF, HTML, XML, 下载: 169  浏览: 205 
作者: 严丽芳:青海红十字医院风湿免疫科,青海 西宁
关键词: 风湿病CD4+T细胞变化研究进展Rheumatic Diseases CD4+T-Cell Change Research Progress
摘要: 免疫学方面的研究已经证实CD4+T细胞及其分化亚群参与大多数风湿病的发病机制,与器官受累、治疗反应密切相关,但在不同的风湿病中,CD4+T细胞具体是如何分化的,关于这些的研究目前还并不充分,为此,对近年来CD4+T细胞的主要分化亚群(Th1/Th2/Th17和Treg细胞)在常见风湿病当中的研究情况作一综述。
Abstract: It has been evidenced that CD4+T-cell and their products have been associated with the pathology, organ involvement, or therapeutic response of some CTDs in several researches from immunology, but how exactly CD4+T cells differentiate in different rheumatic diseases is not well studied. In this review, the author would like to summarize changes in peripheral T-cell subsets in CTDs, especially focusing on differences in CD4+T-cell subpopulations-Th1 cell, Th2 cell, Th17 cell and Treg cell.
文章引用:严丽芳. CD4+T细胞在风湿病外周血中的变化研究进展[J]. 临床医学进展, 2023, 13(8): 13050-13056. https://doi.org/10.12677/ACM.2023.1381828

1. 引言

风湿病是一组累及骨与关节及其周围相关组织和器官的慢性疾病。风湿病可以损害全身任何脏器,严重影响患者的生活质量,给身心造成极大伤害。免疫学方面的研究也已经证实CD4+T细胞及其分化亚群参与大多数风湿病的发病机制,与器官受累、治疗反应密切相关,但在不同的风湿病中CD4+T细胞具体如何分化的研究仍不充分,为此,对风湿病外周血中CD4+T细胞亚群的差异作以下概述。

2. CD4+T细胞的基本功能

不同类别的T细胞均非终末细胞,以CD4+Th细胞为代表,在特定微环境诱导下,分化为不同功能亚群,受微环境中细胞因子及表观遗传学机制调控,某些亚群(如Th17细胞和Treg细胞)可发生相互转化。不同类型效应T细胞作用于不同靶细胞,其生物学效应及机制各异。Th1细胞主要通过分泌细胞因子激活巨噬细胞,介导迟发型超敏反应,Th2细胞主要通过促进嗜酸性粒细胞、肥大细胞和IgE介导的应答控制寄生虫特别是蠕虫感染,Th17细胞在适应性免疫应答早期刺激中性粒细胞应答,吞噬和清除细胞外细菌和真菌,存在于淋巴组织淋巴滤泡内的Tfh细胞则可辅助B细胞产生高亲合力抗体,介导体液免疫应答。Treg细胞是一类具有免疫调节功能的T细胞亚群,可抑制CD4+T和CD8+T细胞增殖、活化,并能抑制初始T细胞和记忆性T细胞,以及抑制DC和单核细胞。

3. CD4+T细胞各亚群在风湿病中的变化情况

3.1. Th1细胞在风湿病中的变化情况

胞内细菌、病毒或某些寄生虫感染,可使DC和巨噬细胞分泌IL-12及NK细胞分泌IFN-γ,诱导Th1细胞分化。目前在动物和人类中已经证实在风湿病中,Th1/Th2/Th17/Treg细胞平衡失调。

早在1989年在狼疮动物模型中就发现Th1/Th2细胞平衡的转变 [1] [2] 。尽管已经证实在系统性红斑狼疮中Th1细胞和Th2细胞各自分泌的细胞因子都参与了发病机制,但是在疾病SLE中是Th1细胞还是Th2细胞为主仍然是极具争议的 [3] 。有研究认为在疾病早期,Th1/Th2细胞平衡会向Th2方向转化 [4] [5] [6] ,但是也有研究认为平衡会向Th1方向转化。最近研究发现是Th1细胞还是Th2细胞为主与受累器官有密切关系 [7] 。在青少年SLE中检测到细胞因子TNF-α,IL-6,IL-10水平很高,TNF-α水平与SLEDAI评分呈正相关 [8] 。TNF-α水平也与肾损害相关 [9] 。也有研究证实IFN-α水平与SLEDAI评分呈正相关 [10] 。在SLE患者有肺部症状时血清中IFN-γ诱导蛋白10和MCP-1水平会增高 [11] 。

在疾病RA中,在慢性炎症过程中,多以产生IFN-γ的Th1细胞为主。在RA患者滑膜液中可检测出高水平促炎细胞因子TNF-α,IL-1,IL-6,IL-17 [12] 。在疾病SSc中,发现产IFN-γ Th1细胞发生率较高 [13] 。Kurasawa等发现在PM/DM患者肺泡灌洗液中主要是Th2细胞。在有肺部临床症状的PM/DM中,特别是有间质性肺病的患者发生糖皮质激素抵抗的过程中,被激活了的Th1型的肺泡Th细胞通过细胞因子起重要的作用 [5] 。在SS的受累唾液腺当中Th1/Th2平衡向Th1方向转分化,而且外周血中产IFN-γ细胞数量明显增加 [14] [15] 。在MCTD当中,合并有间质性肺炎的患者对比无肺受累的患者外周血清中IFN-γ水平更低 [16] 。不同风湿病中Th1细胞的主要变化总结如表1

Table 1. Main changes of Th1 cells in peripheral blood of different rheumatic diseases

表1. 不同风湿病外周血中Th1细胞的主要变化

3.2. Th2细胞在风湿病中的变化情况

很多最近的研究显示在SLE患者外周血中Th2细胞发生率和IL-4水平较低 [17] 。在RA患者滑膜液当中IL-4水平也处于较低水平 [18] 。有研究显示在DM患者外周血中Th2细胞为主,而且血清IL-4水平也会上升 [19] 。在另外一项研究中证实,却发现在活动性PM/DM患者中,Th2细胞为主,且IL-17水平较低 [14] 。在SSc患者的皮肤活检组织中,Th1/Th2平衡向Th2方向转分化 [19] 。在SSc患者中,Th2细胞与肺功能受损及肺纤维化有关 [15] 。在干燥综合征中,产生IL-4的CD4+Th2细胞数量会减少 [6] ;在MCTD中,血清IL-9及IL-4水平较高,且IL-9水平与MCTD合并ILD密切相关 [16] 。不同风湿病中Th1细胞的主要变化总结如表2

Table 2. Main changes of Th2 cells in peripheral blood of different rheumatic diseases

表2. 不同风湿病外周血中Th2细胞的主要变化

3.3. Th17细胞在风湿病中的变化情况

Th17细胞分化与调控机制:Th17细胞表面表达CCR6、IL-23R、IL-1R等炎症相关受体,核内表达孤儿核受体(RORγt)、STAT3。其中,RORγt是调控Th17细胞分化的关键转录因子。多种细菌和真菌感染可刺激DC产生IL-6、IL-1和IL-23。① TGF-β (由微环境中其他细胞产生)、IL-6、IL-1可诱导CD4+Th0细胞表达转录因子RORγt,后者与IL-6活化的STAT3共同驱动T细胞表达IL-23受体,从而向Th17谱系分化;② IL-23通过IL-23R信号通路而激活胞内STAT1、STAT3和STAT5,促进Th17细胞增殖和维持;③ Th17细胞产生的IL-21、IL-6通过自分泌作用对Th17细胞分化发挥放大效应。Th17细胞可分泌IL-17A、IL-17F、IL-6、IL-21、IL-26、CXCL8、TNF-α和GM-CSF等炎性细胞因子,促进炎症反应,在慢性感染和风湿病发生、发展中起重要作用。

在SLE患者中,外周血中Th17细胞与疾病活动度相关 [20] 。有研究证实在SLE动物模型中出现Th17细胞,且IL-17水平明显升高 [21] 。Talaat等人研究证实,在SLE患者血清中IFNγ和TGF-β1水平下降,而IL-17和IL-6水平明显升高,说明Th17/Treg平衡向Th17方向转分化 [22] 。最近的研究也证实在SLE并发肾损害的患者外周血清中IL-23水平明显升高 [23] 。也有研究认为在SLE患者外周血中Th17细胞下降,Th17/Treg比值下降,但是主要由Th17分泌的IL-21水平却是升高的 [24] 。在RA的研究中,存在明显Th17/Treg平衡失调,IL-6和IL-23水平升高,而TGF-β和Treg细胞计数减少。在接受抗IL-6受体抗体(托珠单抗)治疗后,Th17/Treg比值恢复正常 [25] 。在RA患者滑膜液中,IL-17A,IL-17F,IL-6,IL-22,IL-21,IL-23水平均升高,都是Th17细胞增加的重要因素 [26] 。在SSc患者皮肤活检中发现Th17细胞数量和IL-17水平明显升高,且与该疾病的进展密切相关 [27] 。并不是每一种CTD中,都会出现Th17细胞增加,例如在PM/DM急性期,Th17细胞计数是减少的,当然要考虑年龄的差异,因为在新发JDM中,Th17细胞决定了细胞因子的表达水平 [28] [29] 。在SS动物研究中,发现Th17细胞与唾液腺的分泌量,与高抗体合成相关的组织损伤和炎症范围有密切关系 [30] 。在MCTD中,特别是MCTD合并肺动脉高压患者中,Th17/Treg比值升高 [31] 。各种CTD中Th17细胞的主要变化见表3

Table 3. Main changes of Th17 cells in peripheral blood of different rheumatic diseases

表3. 不同风湿病外周血中Th17细胞的主要变化

3.4. Treg细胞在风湿病中的变化情况

Treg细胞在风湿病中的数量可能升高、不变或下降都有报道,因为Treg细胞数量与疾病所处阶段、机体功能状态都有关系,都会带来Treg细胞数量变化。在SLE患者中,IL-6水平与IgG的产生以及疾病活动度密切相关 [32] [33] 。最近的研究表明,在VitA缺乏的SLE患者中,Treg细胞增加,而Th17细胞下降。这表明在SLE患者中,视黄酸在Th17/Treg细胞转分化中起作用 [34] 。早年研究显示在SLE患者中给予雷帕霉素和VitD治疗后,Treg细胞数量增加 [35] 。在RA患者中,Treg细胞数量可能升高、不变或下降也都有报道,Th17/Treg失衡受治疗的影响。依那西普和甲氨蝶呤联合治疗能够使Th17/Treg比例恢复正常 [36] ,托珠单抗治疗可以升高Treg/CD4+T细胞的比值 [37] 。在SSc患者皮肤活检中Treg细胞数量下降 [38] ,但是在外周血中和其它风湿病相似,可能增加也可能减少 [39] 。在JDM和Duchenne型肌营养不良患者的肌肉活检和外周血中,Treg细胞数量都较高,然而在成人DM患者的皮肤活检和外周血标本中CD4+/CD25+/Foxp3+Treg数量下降 [40] 。在SS患者唾液腺中Treg细胞数量会增加,但是在外周血中却不变 [41] 。在MCTD患者外周血中Treg细胞数量很低 [42] 。各种CTD中Treg细胞主要变化见表4

Table 4. Main changes of Treg cells in peripheral blood of different rheumatic diseases

表4. 不同风湿病外周血中Treg细胞的主要变化

4. 结语

在早期关于免疫功能紊乱机制研究中,总强调Th1/Th2失调的作用。随着CD4+Th细胞新亚群不断被发现,对其可塑性有了新的认识。目前认为T细胞功能亚群并非终末未分化的T细胞,它们在特定微环境中仍可被重新塑型为其它亚型。Th17/Treg比例和微环境中的细胞因子决定初始Th0细胞的分化。在每一种CTD中,促炎细胞因子模式不同,占优势的Th亚群可能以器官特异性的方式变化。因此,研究外周血、受累器官、组织中占优势的Th细胞亚群和其产生的细胞因子意义重大,可以更好地指导临床针对性用药和监测疗效,判断预后。

参考文献

[1] Takahashi, S., Fossati, L., Iwamoto, M., et al. (1996) Imbalance towards Th1 Predominance Is Associated with Acceleration of Lu-pus-Like Autoimmune Syndrome in MRL Mice. Journal of Clinical Investigation, 97, 1597-1604.
https://doi.org/10.1172/JCI118584
[2] Yoshii, H., Yamamoto, K., Okudaira, H., et al. (1995) Age-Related Differential mRNA Expression of T Cell Cytokines in NZB/NZW F1 Mice. Lupus, 4, 213-216.
https://doi.org/10.1177/096120339500400309
[3] Peng, S.L., Moslehi, J. and Craft, J. (1997) Roles of Interferon-γ and Inter-leukin-4 in Murine Lupus. Journal of Clinical Investigation, 99, 1936-1946.
https://doi.org/10.1172/JCI119361
[4] Đorđević, V., Zvezdanović, L., Ćosić, V., et al. (2010) Serum Levels and in vitro Production of Th1-and Th2-Type Cytokines by Peripheral Blood Mononuclear Cells in Patients suffering from Systemic Lupus Erythematosus. Journal of Medical Biochemistry, 29, 19-27.
https://doi.org/10.2478/v10011-010-0005-z
[5] Kurasawa, K., Nawata, Y., Takabayashi, K., et al. (2002) Activation of Pulmo-nary T Cells in Corticosteroid-Resistant and-Sensitive Interstitial Pneumonitis in Dermatomyositis/Polymyositis. Clinical and Experi-mental Immunology, 129, 541-548.
https://doi.org/10.1046/j.1365-2249.2002.01933.x
[6] Mitsias, D.I., Tzioufas, A.G., Veiopoulou, C., et al. (2002) The Th1/Th2 Cytokine Balance Changes with the Progress of the Immunopathological Lesion of Sjogren’s Syndrome. Clinical and Experimental Immunology, 128, 562-568.
https://doi.org/10.1046/j.1365-2249.2002.01869.x
[7] Miyake, K., Akahoshi, M. and Nakashima, H. (2011) Th Subset Balance in Lupus Nephritis. BioMed Research International, 2011, Article ID: 980286.
https://doi.org/10.1155/2011/980286
[8] Postal, M., Peliçari, K.O., Sinicato, N.A., et al. (2013) Th1/Th2 Cytokine Profile in Childhood-Onset Systemic Lupus Erythematosus. Cytokine, 61, 785-791.
https://doi.org/10.1016/j.cyto.2012.11.023
[9] Tshilela, K.A., Ikeuchi, H., Matsumoto, T., et al. (2016) Glomerular Cytokine Expression in Murine Lupus Nephritis. Clinical and Experimental Nephrology, 20, 23-29.
https://doi.org/10.1007/s10157-015-1123-1
[10] Schneider, L., da Silva, A.C.C., Werres Junior, L.C., et al. (2015) Vitamin D Levels and Cytokine Profiles in Patients with Systemic Lupus Erythematosus. Lupus, 24, 1191-1197.
https://doi.org/10.1177/0961203315584811
[11] Odler, B., Bikov, A., Streizig, J., et al. (2017) CCL21 and IP-10 as Blood Bi-omarkers for Pulmonary Involvement in Systemic Lupus Erythematosus Patients. Lupus, 26, 572-579.
https://doi.org/10.1177/0961203316668418
[12] Miossec, P. and Van Den Berg, W. (1997) Th1/Th2 Cytokine Balance in Arthri-tis. Arthritis & Rheumatism, 40, 2105-2115.
https://doi.org/10.1002/art.1780401203
[13] Valentini, G., Baroni, A., Esposito, K., et al. (2001) Peripheral Blood T Lymphocytes from Systemic Sclerosis Patients Show Both Th1 and Th2 Activation. Journal of Clini-cal Immunology, 21, 210-217.
https://doi.org/10.1023/A:1011024313525
[14] Mavalia, C., Scaletti, C., Romagnani, P., et al. (1997) Type 2 Helper T-Cell Pre-dominance and High CD30 Expression in Systemic Sclerosis. The American Journal of Pathology, 151, 1751-1758.
[15] Atamas, S.P., Yurovsky, V.V., Wise, R., et al. (1999) Production of Type 2 Cytokines by CD8+ Lung Cells Is Associated with Greater Decline in Pulmonary Function in Patients with Systemic Sclerosis. Arthritis & Rheumatism, 42, 1168-1178.
https://doi.org/10.1002/1529-0131(199906)42:6<1168::AID-ANR13>3.0.CO;2-L
[16] Jiang, S., Wang, Z., Ouyang, H., et al. (2016) Aberrant Expression of Cytokine Interleukin 9 Along with Interleukin 4 and Interferon γ in Connective Tissue Disease Associ-ated Interstitial Lung Disease: Association with Severity of Pulmonary Fibrosis. Archives of Medical Science, 12, 101-106.
https://doi.org/10.5114/aoms.2015.47877
[17] Csiszár, A., Nagy, G., Gergely, P., et al. (2000) Increased Interferon-γ (IFN-γ), IL-10 and Decreased IL-4 mRNA Expression in Peripheral Blood Mononuclear Cells (PBMC) from Patients with Systemic Lupus Erythematosus (SLE). Clinical and Experimental Immunology, 122, 464-470.
https://doi.org/10.1046/j.1365-2249.2000.01369.x
[18] Miossec, P., Naviliat, M., Dupuy D’Angeac, A., Sany, J. and Banchereau, J. (1990) Low Levels of Interleukin-4 and High Levels of Transforming Growth Factor β in Rheumatoid Synovitis. Arthritis & Rheu-matism, 33, 1180-1187.
https://doi.org/10.1002/art.1780330819
[19] Ishii, W., Matsuda, M., Shimojima, Y., et al. (2008) Flow Cytometric Analysis of Lymphocyte Subpopulations and Th1/Th2 Balance in Patients with Polymyositis and Dermatomyositis. Internal Medicine, 47, 1593-1599.
https://doi.org/10.2169/internalmedicine.47.0967
[20] Shah, K., Lee, W.W., Lee, S.H., et al. (2010) Dysregulated Balance of Th17 and Th1 Cells in Systemic Lupus Erythematosus. Arthritis Research & Therapy, 12, Article No. R53.
https://doi.org/10.1186/ar2964
[21] Vincze, K., Kovats, Z., Cseh, A., et al. (2014) Peripheral CD4+ Cell Prevalence and Pleuro-pulmonary Manifestations in Systemic Lupus Erythematosus Patients. Respiratory Medicine, 108, 766-774.
https://doi.org/10.1016/j.rmed.2014.02.006
[22] Talaat, R.M., Mohamed, S.F., Bassyouni, I.H. and Raouf, A.A. (2015) Th1/Th2/Th17/Treg Cytokine Imbalance in Systemic Lupus Erythematosus (SLE) Patients: Correlation with Disease Activit. Cytokine, 72, 146-153.
https://doi.org/10.1016/j.cyto.2014.12.027
[23] Hsu, H.C., Yang, P., Wang, J., et al. (2008) Interleukin 17-Producing T Helper Cells and Interleukin 17 Orchestrate Autoreactive Germinal Center Development in Autoimmune BXD2 Mic. Nature Immunology, 9, 166-175.
https://doi.org/10.1038/ni1552
[24] Tabarkiewicz, J., Pogoda, K., Karczmarczyk, A., Pozarowski, P. and Giannopoulos, K. (2015) The Role of IL-17 and Th17 Lymphocytes in Autoimmune Diseases. Archivum Immunologiae et Therapiae Experimentalis, 63, 435-449.
https://doi.org/10.1007/s00005-015-0344-z
[25] Samson, M., Audia, S., Janikashvili, N., et al. (2012) Brief Report: Inhibition of Interleukin-6 Function Corrects Th17/Treg Cell Imbalance in Patients with Rheumatoid Arthritis. Arthritis & Rheumatology, 64, 2499-2503.
https://doi.org/10.1002/art.34477
[26] Xu, B., Wang, S., Zhou, M., et al. (2017) The Ratio of Circulating Follicular T Helper Cell to Follicular T Regulatory Cell Is Correlated with Disease Activity in Systemic Lupus Erythematosus. Clinical Immunology, 183, 46-53.
https://doi.org/10.1016/j.clim.2017.07.004
[27] Yang, X.Q., Yang, J., Xing, X.J., Wan, L.L. and Li, M. (2014) Increased Fre-quency of Th17 Cells in Systemic Sclerosis Is Related to Disease Activity and Collagen Overproduction. Arthritis Research & Therapy, 16, Article No. R4.
https://doi.org/10.1186/ar4430
[28] Lin, X., Rui, K., Deng, J., et al. (2014) Th17 Cells Play a Critical Role in the Development of Experimental Sjögren’s Syndrome. Annals of the Rheumatic Diseases, 74, 1302-1310.
https://doi.org/10.1136/annrheumdis-2013-204584
[29] De Padilla, C.M.L., Crowson, C.S., Hein, M.S., et al. (2017) Gene Ex-pression Profiling in Blood and Affected Muscle Tissues Reveals Differential Activation Pathways in Patients with New Onset Juvenile and Adult Dermatomyositis. The Journal of Rheumatology, 44, 117-124.
https://doi.org/10.3899/jrheum.160293
[30] Sakai, A., Sugawara, Y., Kuroishi, T., Sasano, T. and Sugawara, S. (2008) Identification of IL-18 and Th17 Cells in Salivary Glands of Patients with Sjogren’s Syndrome, and Amplification of IL-17-Mediated Secretion of Inflammatory Cytokines from Salivary Gland Cells by IL-18. The Journal of Immunology, 181, 2898-2906.
https://doi.org/10.4049/jimmunol.181.4.2898
[31] Gaowa, S., Zhou, W., Yu, L., et al. (2014) Effect of Th17 and Treg Axis Dis-order on Outcomes of Pulmonary Arterial Hypertension in Connective Tissue Diseases. Mediators of Inflammation, 2014, Article ID: 247372.
https://doi.org/10.1155/2014/247372
[32] Linker-Israeli, M., Deans, R.J., Wallace, D.J., et al. (1991) Elevated Levels of Endog-enous IL-6 in Systemic Lupus Erythematosus. A Putative Role Inpathogenesis. The Journal of Immunology, 147, 117-123.
https://doi.org/10.4049/jimmunol.147.1.117
[33] Nie, J., Li, Y.Y., Zheng, S.G., Tsun, A. and Li, B. (2015) FOXP3+ Treg Cells and Gender Bias in Autoimmune dISeases. Frontiers in Immunology, 6, Article 493.
https://doi.org/10.3389/fimmu.2015.00493
[34] Handono, K., Firdausi, S.N., Pratama, M.Z., Endharti, A.T. and Kalim, H. (2016) Vitamin A Improve Th17 and Treg Regulation in Systemic Lupus Erythematosus. Clinical Rheumatology, 35, 631-638.
https://doi.org/10.1007/s10067-016-3197-x
[35] Banica, L.M., Besliu, A.N., Pistol, G.C., et al. (2016) Dysregulation of Aner-gy-Related Factors Involved in Regulatory T Cells Defects in Systemic Lupus Erythematosus Patients: Rapamycin and Vitamin D Eff-cacy in Restoring Regulatory T Cells. International Journal of Rheumatic Diseases, 19, 1294-1303.
https://doi.org/10.1111/1756-185X.12509
[36] van Amelsfort, J.M.R., Jacobs, K.M.G., Bijlsma, J.W.J., et al. (2004) CD4+CD25+ Regulatory T Cells in Rheumatoid Arthritis: Differences in the Presence, Phenotype, and Function between Peripheral Blood and Synovial Fluid. Arthritis & Rheumatology, 50, 2775-2785.
https://doi.org/10.1002/art.20499
[37] Lawson, C.A., Brown, A.K., Bejarano, V., et al. (2006) Early Rheumatoid Arthritis Is Associated with a Deficit in the CD4+CD25high Regulatory T Cell Population in Peripheral Blood. Rheumatology, 45, 1210-1217.
https://doi.org/10.1093/rheumatology/kel089
[38] Besliu, A.N., Banica, L.M., Lonescu, R., et al. (2009) Role of Cellular Immun-ity in Systemic Sclerosis Pathogenesis: update on CD4+T Cells Population Studies. Roumanian Archives of Microbiology and Immu-nology, 68, 5-13.
[39] Radstake, T.R.D.J., van Bon, L., Broen, J., et al. (2009) Increased Frequency and Compromised Function of T Regulatory Cells in Systemic Sclerosis (SSc) Is Related to a Diminished CD69 and TGF-β Expressio. PLOS ONE, 4, e5981.
https://doi.org/10.1371/journal.pone.0005981
[40] Vercoulen, Y., Bellutti Enders, F., Meerding, J., et al. (2014) Increased Pres-ence of FOXP3+ Regulatory T Cells in Inflamed Muscle of Patients with Active Juvenile Dermatomyositis Compared to Peripheral Blood. PLOS ONE, 9, e105353.
https://doi.org/10.1371/journal.pone.0105353
[41] Antiga, E., Kretz, C.C., Klembt, R., et al. (2010) Characterization of Regulatory T Cells in Patients with Dermatomyositis. Journal of Autoimmunity, 35, 342-350.
https://doi.org/10.1016/j.jaut.2010.07.006
[42] Baráth, S., Sipka, S., Aleksza, M., et al. (2006) Regulatory T Cells in Peripheral Blood of Patients with Mixed conNective Tissue Disease. Scandinavian Journal of Rheumatology, 35, 300-304.
https://doi.org/10.1080/03009740600709790