电化学传感器检测镉离子的研究进展
Research Progress of Cd2+ Detection by Elec-trochemical Sensors
DOI: 10.12677/JSTA.2023.115045, PDF, HTML, XML, 下载: 192  浏览: 491  科研立项经费支持
作者: 陈献容, 莫 南, 戴丽艳:广西现代职业技术学院,智能冶金学院,广西 河池
关键词: 电化学传感器Cd2+电极修饰 Electrochemical Sensor Cd2+ Electrode Modification
摘要: 重金属镉(Cd)对环境和人类健康具有极大的毒性,其检测是环境科学和分析科学的一个巨大挑战,但由于其不良影响,迫切需要解决。近年来,电化学技术以其独特的优势受到了广泛的关注。本文首先对其检测原理进行了简要介绍。然后,对基于金属有机骨架、导电聚合物、氧化物、碳材料的复合电极在电化学检测Cd2+的最新进展中进行了全面的阐述。最后,对电化学检测Cd2+的发展趋势进行了展望。
Abstract: The heavy metal cadmium (Cd) is extremely toxic to the environment and human health, and its detection is a great challenge for environmental science and analytical science, but it needs to be urgently addressed due to its adverse effects. In recent years, electrochemical technology has been widely concerned for its unique advantages. In this paper, the principle of its detection is introduced briefly. Then, the latest advances in electrochemical detection of Cd2+ with composite electrodes based on metal-organic framework, conductive polymer, oxide and carbon materials are reviewed. Finally, the development trend of electrochemical detection of Cd2+ is prospected.
文章引用:陈献容, 莫南, 戴丽艳. 电化学传感器检测镉离子的研究进展[J]. 传感器技术与应用, 2023, 11(5): 389-399. https://doi.org/10.12677/JSTA.2023.115045

1. 介绍

镉(Cd)是一种稀有元素,广泛用于制造合金、电镀、可充电电池等 ‎[1] ‎[2] 。通常情况下,Cd以硫化镉的形式存在于自然界中,少量存在于锌矿中 ‎[3] 。但镉离子(Cd2+)和某些化合物是有毒的,经常造成环境污染,威胁人类的生命和健康。例如,Cd2+会刺激呼吸道。长期暴露于受Cd2+污染的环境中可引起嗅觉丧失、牙龈黄斑。镉的化合物不易被肠道吸收,但可通过呼吸被人体吸收,积聚在肝脏或肾脏,造成危害,尤其是对肾脏 ‎[4] ‎[5] 。Cd2+的主要污染源是电镀、采矿、冶炼、染料、电池、化工等行业排放的废水。即使是水、空气或食物中极少量的Cd2+也会对人的生命和健康造成危害。Cd2+一旦进入人体,其半衰期可累积达10年,可诱发癌症、肾功能障碍、高血压、免疫/神经系统损伤、骨骼病变、致畸等严重的健康风险。根据世界卫生组织,饮用水中Cd2+的最高水平为0.003 mg/L ‎[6] ‎[7] ‎[8] 。因此,开发灵敏、及时的Cd2+检测方法是必不可少的。

Cd2+的传统分析方法包括电感耦合等离子体质谱法、电感耦合等离子光学发射光谱法、原子荧光光谱法、原子吸收光谱法和双硫腙分光光度法 ‎[9] ‎[10] ‎[11] 。这些检测方法虽然具有较高的分辨率和精度,但存在需要大型的检测设备、专业的仪器、专业的操作、复杂的检测程序和不方便携带等缺点。因此建立一种快速、简便、灵敏的Cd2+检测方法具有重要意义 ‎[12] 。目前已经出现了荧光 ‎[13] 、比色 ‎[14] 、表面增强拉曼光谱(SERS) ‎[15] 和试纸条 ‎[16] 等快速、及时的Cd2+检测方法,但它们灵敏度和稳定性方面还是存在一定的局限性。与其他方法相比,电化学技术具有高灵敏度和选择性、节省时间、高成本效益和小型化等优点 ‎[17] ‎[18] ‎[19] ,是Cd2+检测中最具潜力和备受关注的技术。

近年来研究人员在开发各种电化学检测Cd2+的方法方面做出了许多贡献,在过去的几年中,发表的关于这一主题的论文迅速增加。因此,应及时进行专门的综述,讨论目前的发展情况,并评估Cd2+分析领域面临的挑战。本文阐述了电化学方法检测Cd2+的原理,并基于不同材料类型的电化学传感器的最新进展进行了详细的讨论,并提出了这一课题面临的挑战和未来展望。

2. 检测原理

电化学技术涉及记录扫描电位产生的响应电流,包括方波伏安法(SWV)、差分脉冲伏安法(DPV)、阳极溶出伏安法(ASV)、线性扫描伏安法和循环伏安法 ‎[20] ‎[21] ‎[22] ‎[23] 。一般来说,电化学法测定Cd2+是在一个由工作电极、对电极和参比电极组成的3电极系统中进行的。由于电化学反应是以工作电极表面的过程为基础的,因此工作电极的特性决定了检测性能,所以选择合适的工作电极对电化学检测很重要。可以通过对工作电极的表面进行不同种类的材料修饰,以实现高选择性和高灵敏度地检测痕量Cd2+

ASV具有待测物消耗量少的特点,因此常用于检测稀溶液金属元素含量。ASV法分为富集和溶出两步。第一步是Cd2+的富集过程,由于修饰电极的特定组分的特性使Cd2+在工作电极表面积累,然后通过施加恒定电位在一段的时间内将Cd2+还原成Cd0。第二步是Cd2+的溶出过程,通过阳极方向的电压扫描,Cd0被重新氧化回Cd2+,这使得呈现在电极表面的Cd0分析物溶解,从而导致电化学反应的发生,从而产生与Cd2+水平成正比的强氧化峰电流,电化学法检测Cd2+原理如图1所示。

Figure 1. Schematic diagram of Cd2+ detection by electrochemical method

图1. 电化学法检测Cd2+示意图

3. 最近的Cd2+电化学检测进展

3.1. 基于金属有机骨架的电极

金属–有机框架(MOFs),又称多孔配位聚合物,是一类新型的晶体有机–无机杂化材料,由金属节点(金属离子或簇)与有机配体自组装形成周期性网络结构 ‎[24] 。由于MOFs具有丰富可调的微孔结构、较大的比表面积和开放的金属活性位点,引起了广泛的关注,成为21世纪材料研究的热点 ‎[25] 。MOFs在重金属离子吸附和特异性识别方面也表现出独特的优势:1) 丰富且可调节的孔隙结构促进了重金属离子在MOFs中的扩散,增加了主体结构与客体分子的接触面积和相互作用,有利于重金属离子的预富集;2) MOFs材料的大比表面积、多样的金属中心和有机配体为重金属离子的特异性识别提供了大量的活性位点;3) MOFs易于通过引入各种官能团或与其他功能材料进行后合成修饰而实现功能化,以达到特定需求 ‎[26] ‎[27] 。基于上述特点,MOFs已被用作重金属离子吸附剂,用于环境污染治理 ‎[28] 。由于MOFs的电化学导电性弱,水稳定性差,其在电化学检测中的应用受到很大限制,所以为了提高MOFs电化学性能,一般将MOFs与导电材料结合。

近年来,制备了一些具有高水稳定性的MOF材料,UiO-66就是其中之一。这种MOF具有较大的比表面积和良好的水稳定性 ‎[29] ,使得检测水相中的重金属离子成为可能。为了提高其电化学活性,采用了与导电材料复合、引入能量及氧化还原中心等方法。如Wang等人将导电聚苯胺(PANI)聚合在UiO-66-NH2 MOF周围制备导电材料,并基于该复合材料构建电化学传感器,实现水溶液中Cd2+的高效检测 ‎[30] 。Wang等 ‎[31] 基于二茂铁羧酸功能化金属有机骨架(MOF)、Fc-NH2-UiO-66和热还原氧化石墨烯(trGNO)合成了trGNO/Fc-NH2-UiO-66。NH2-UiO-66具有多孔结构和较大的比表面积,有利于重金属离子的吸附和预富集。trGNO和Fc的引入提高了MOF材料的导电性和电化学活性。此外,Fc信号可作为内参开展比例检测,大大提高了电化学检测的重复性和可靠性。基于该复合材料的电化学传感器,实现了对Cd2+、Pb2+和Cu2+的同时、灵敏、可靠的检测。该工作为同时检测多种重金属离子提供了新的传感平台,极大地拓展了UiO-66型MOFs在电化学领域的应用。

聚吡咯(PPy)因其易于合成、高导电性、制备简单、成本低、具有生物生物相容性和在环境条件下的结构稳定性而被认为是研究最广泛和最有前途的导电聚合物之一 ‎[32] 。Li等 ‎[33] 通过MOF-867纳米晶与吡咯单体的共聚合成了一种Fe3+@MOF-867@PPy复合薄膜,可用于对各种实际水样中Cd2+的定量检测。该复合膜具备MOFs的孔隙度和传感优势,以及PPy聚合物的高导电性。最重要的是,MOF-867与PPy之间的化学共价键可以避免MOF颗粒泄漏,保证了检测结果的准确性和稳定性。此外,MOF-867纳米颗粒掺入PPy薄膜可以增加与被分析物的接触面积,从而提高传感灵敏度。制备得到的复合膜对Cd2+具有非常好的传感选择性和灵敏度,通过SWASV进行测试发现该传感器的检测范围为0 μg/L~130 μg/L,且检测限很低,约为0.29 μg/L,低于纯MOF-867。

Qi等 ‎[34] 以碳纤维纸(CFP)、CoMOF、AuNPs和谷胱甘肽(GSH)为导电底物,建立了一种检测Cd2+的电化学传感器(CFP/CoMOF/AuNPs/GSH)。与传统的重金属检测方法相比,电化学检测具有灵敏度高、易于小型化、便携等优点。此外,由于CFP具有柔韧性、可弯曲性、超高导电性以及容易获得电活性位点等优点,因此将CFP作为导电衬底可以极大地提升电化学传感器的性能。CoMOF表面含有许多活性基团,可以进一步修饰材料。AuNPs可以进一步沉积在CoMOF上,进一步提高材料的导电性。GSH可以通过-SH与表面Au之间形成Au-S键固定在电极表面,形成CFP/CoMOF/AuNPs/GSH。且一旦Cd2+存在,GSH上的-COOH会与Cd2+螯合形成COO-Cd-OOC结构,从而富集电极表面的Cd2+。在最佳实验条件下,所设计的电化学传感器具有良好的分析性能、抗干扰能力和稳定性,检测限为1 nM。

3.2. 基于导电聚合物的电化学传感器

导电聚合物由于其独特的物理、化学和电学性能,以及优异的环境稳定性、低成本、易于制造和优异的导电性等特点 ‎[35] ,因此在测定Cd2+时受到了广泛的关注。聚吡咯(PPy)是电化学传感中常用的导电聚合物,对金属离子具有很高的吸附能力。Song等 ‎[36] 利用DPSV和SWASV开发了一种羧基纳米复合材料功能化的三维多孔PPy/GO,用于Cd2+检测。单分散的聚吡啶被物理地嵌入石墨烯表面,促进了三维纳米结构的形成。这种羧基功能化的聚吡啶/石墨烯具有优异的电化学性能(例如,高电子迁移率和对Cd2+的选择性吸附),重要的是,多孔的纳米结构和形貌提供了更多的沉积位点。研究表明,在相同的检测条件下,DPASV分析比SWASV分析具有更好的稳定偏差和灵敏度。为了研究实际应用,将所开发的3D羧基PPy/GO用于自来水、河水和池塘水等各种水样的ASV检测。该检测器在1 μg/L~100 μg/L线性范围内具有较高的灵敏度,检出限为0.05 μg/L。

树突状大分子具有丰富的吸附位点,是理想的受体模板。Maleki等 ‎[38] 通过原位化学聚合(原位化学聚合在大规模制备中具有突出优势) ‎[37] ,制备了聚酰胺(PAD)树状官能团磁性纳米粒子Fe3O4@G2-PAD,可通过SWASV检测Cd2+。在这项工作中,PAD树状大分子致力于有效吸附由多端基和结构均匀性产生的Cd2+。此外,Fe3O4具有高的表面体积比、优异的电催化性能、良好的生物相容性、优越的超顺磁性和分析科学低毒性,而引入的在Fe3O4纳米颗粒表面涂覆的SiO2壳层专门用于防止Fe3O4聚集,提高其化学稳定性。经过各种条件的优化,Cd2+的检测范围为0.5 ng/mL~80  ng/mL,检测限值低至0.21 ng/mL。接着,Yu等 ‎[39] 通过改变黑色TiO2与单体(3,4-乙烯二氧基噻吩(EDOT)或3,4-丙基二氧基噻吩(ProDOT))的质量比,利用原位聚合法制备了PEDOT型导电聚合物/黑色TiO2复合材料(PEDOT/B-TiO2和PProDOT/TiO2),用于检测Cd2+。PEDOT导电聚合物可以通过非共价键与B-TiO2相互作用。聚合物与TiO2的结合有效增强了复合材料对重金属离子的吸附和电荷转移能力,有利于提高复合材料的电催化能力。此外,TiO2除了具有无毒、成本低、热稳定性和化学稳定性好的优点外,还具有对Cd2+的优异吸附能力。为了提高Cd2+检测的选择性和减少干扰,Ghanei-Motlagh和Taher ‎[40] 首次以Prodo3-[2-(2-氨基乙基氨基)乙基氨基]丙基–三甲氧基硅烷为功能单体,通过溶胶–凝胶法制备了离子印迹聚合物碳糊电极(IIP/CPE),所制备的IIP/CPE具有较高的选择性。

3.3. 基于氧化物的电化学传感器

许多许多金属氧化物对重金属离子具有低毒性、优异的生物相容性、良好的催化和吸附能力,在Cd2+的电化学检测中具有重要的应用前景。裸金属氧化物的缺点是容易相互聚集,分散性和稳定性差。Fe3O4是一种常用的用于检测Cd2+的金属氧化物,因为它除了具有与其他金属氧化物相似的优越性能外,还具有超顺磁性,易于制备 ‎[41] ‎[42] 。Zhang等 ‎[43] 制备了Fe3O4/MWCNTs纳米复合材料,用于SWASV电化学检测Cd2+和多种金属。MWCNTs可以处理Fe3O4的聚集,并具有优异的电子导电性,从而实现对五种金属离子的同时检测。同样,Fe3O4纳米颗粒也与石墨烯结合以电化学检测Cd2+,通过简单的一步法,将具有优异导电性和大表面积的石墨烯与Fe3O(OH2)3[(OOC)2NH2-C6H3](NH2-MIL-88(Fe))结合制备出NH2-MIL-88(Fe)/石墨烯复合材料,NH2-MIL-88/石墨烯/GCE具有高导电性、大活性表面积、优异的电化学响应和吸附能力,并对多种金属离子具有吸附能力 ‎[44] 。在优化的操作条件下,线性范围为0.005 mM~ 0.3 mM,检测限为4.9 nM。以湖水为实际样品,研究了NH2-MIL-88/石墨烯/GCE的适用性,回收率为97.2%~104.0%。

CeO2型复合材料由于其独特的性能,如大的表面积,优异的催化和氧化还原能力,是一种应用广泛的传感纳米材料。此外,一旦CeO2材料的尺寸、晶体平面和形态发生改变(例如,从纳米立方体到纳米线、纳米棒和3D木桩),其催化和氧化还原性能就会相应的改变。Zhang等 ‎[45] 合成了三种类型的CeO2结构,包括CeO2纳米棒(r-CeO2)、CeO2纳米立方体和CeO2纳米多面体。膨胀石墨(EG)被用来做切断装载这些纳米材料的支撑。结果表明,r-CeO2/EG/GCE纳米复合材料对Cd2+检测的电化学传感能力最高,因此以r-CeO2/EG为传感材料构建了DPASV传感器。此外,TiO2 ‎[46] 、SnO2 ‎[47] ‎[48] 和Sb2O3 ‎[47] ‎[49] 用于ASV检测Cd2+。同时,多金属氧化物对Cd2+的检测也很常见,原理也不同于单一金属氧化物。如Pu等 ‎[41] 制备了Fe3O4/Bi2O3/C3N4纳米复合材料,并将其用于Cd2+的ASV检测。由于g-C3N4和Fe3O4对Cd2+的吸附特性以及Bi2O3对重金属离子的汞齐效应,Fe3O4/Bi2O3/C3N4修饰电极具有良好的线性响应范围(0.01 μmol/L~3 μmol/L)、低检测限(3.0 nM)和优良的选择性。

与上述金属氧化物不同的是,SiO2是一种非金属氧化物,由于其具有高表面积、低温包封性和良好的生物相容性等特性,在电分析中得到了广泛的应用。表面丰富的活性-OH基团使SiO2成为重金属检测的理想材料 ‎[50] ‎[51] 。Qin等 ‎[52] 制备了SiO2@C蛋黄壳微球结构作为ASV检测Cd2+和Pb2+的传感材料。C是专门用于提高SiO2@C微球的电子导电性。与二氧化硅纳米颗粒相比,介孔二氧化硅由于其孔隙结构,具有更大的比表面积,对Cd2+的检测表现出更好的传感性能。Salis等 ‎[53] 采用胺化介孔SiO2修饰的GCE (GC/SBA-15-NH2/Nafion)检测Cd2+,SWASV检测的检测限为0.36 μM~1.68 μM,检测范围为1 μM~100 μM。

3.4. 基于碳材料的电化学传感器

由于碳基材料具有优异的电子性能、较大的比表面积和较高的电催化活性,在许多领域得到了广泛的关注和应用 ‎[54] ‎[55] ‎[56] ‎[57] 。特别是石墨烯和碳纳米管,由于其成本低且制备简单,已被广泛应用于化学和环境分析检测中,包括重金属检测 ‎[42] ‎[58] ‎[59] 。然而,纯石墨烯或碳纳米管在Cd2+的检测中是不理想的,因为它们容易聚集和缺乏吸附位点,所以它们通常和其他功能成分(如聚合物、金属纳米粒子、有机分子和氧化物)结合。如Priya等 ‎[60] 通过由AuNPs修饰的l-半胱氨酸和还原氧化石墨烯(PrGO)纳米复合材料涂覆在玻碳电极(GCE)表面得到复合膜PrGO/AuNPs/Sal-Cys/GCE,并对Cd2+和Pb2+同时进行测定,检测范围为1 nM~10 nM,检出限分别为0.06 nM (Cd2+)和0.04 nM (Pb2+)。其中PrGO是提供所需表面积的主要成分,AuNPs的功能是提高电导率。为了提高Cd2+的检测范围,Zhou等 ‎[61] 开发了一种基于还原氧化石墨烯(rGO)-羧基功能化多壁碳纳米管(MWCNTs-COOH)复合材料的高性能丝网印刷碳电极(Nafion/rGO-MWCNTs-COOH/SPCE),通过SWASV对Cd2+进行检测,检测范围为0.1 μg/L~1350 μg/L,检测限为0.04 μg/L。亲水性MWCNTs-COOH可以通过π-π相互作用加载到rGO上,使rGO纳米片相互剥离并“溶解”在水中。MWCNTs-COOH的存在抑制了还原氧化石墨烯的团聚,增加了其比表面积和电导率。另一方面,MWCNTs-COOH在rGO表面上创建交错的导电网络。

与石墨烯和碳纳米管不同,石墨炔(GDY)是由sp和sp2杂化碳原子组成的新型碳同素异形体,在苯环上有两个乙基连接,形成分布均匀的具有6个乙基连接的空穴,有利于离子扩散。同时,由于含有丰富π电子的乙炔键提供电子,使得GDY表面具有更多的负电荷,有利于金属阳离子的吸附。此外,GDY还具有与石墨烯材料相似的独特性能,如良好的导电性和大的比表面积。所有这些特殊的优点使GDY成为Cd2+传感纳米材料的优势。Guo和Sun等人 ‎[62] 首次探索了GDY在SWV电化学检测Cd2+和Pb2+中的应用,检测的线性度和检测限分别为0.01 μM~1.0 μM和0.46 nM。另一种有趣的碳基材料g-C3N4因其稳定性好、成本低、无毒和表面积大而在许多领域引起了相当大的关注 ‎[63] ‎[64] 。但其电导率和化学惰性较差,限制了其应用。为了解决这一问题,通过简单的静电相互作用方法制备了质子化的g-C3N4(H-C3N4/Ti3C2Tx)复合材料,并将其用作Ca2+的传感材料 ‎[65] 。

最近,一些基于DNA或适体的生物受体电极被提出用于电化学检测Cd2+ ‎[66] ‎[67] 。与ASV检测不同,这种生物受体电极的基本原理是基于与探针结合的电活性的电流响应变化。例如,Yuan等人 ‎[68] 首次设计了一种基于适体的电化学配体传感器,可同时检测水果和蔬菜中的Cd2+和Pb2+。包括适体的双链DNA通过Au-S键固定在电极上。由于核酸适体与金属离子的特异性结合,亚甲基蓝或二茂铁标记的核酸适体被竞争出金电极,电化学信号减弱。在最佳条件下,电化学配体传感器对Cd2+和Pb2+在0.1 nmol/L~1000 nmol/L范围内呈线性响应,Cd2+和Pb2+的检出限分别达到89.31 pmol/L和16.44 pmol/L。表1总结了不同修饰材料的镉离子电化学传感器的对比,从表中可以看出Cd2+的检测下限可达89.31 pM,大多数传感器可用于自来水、湖水和河水等水样的检测。

Table 1. System resulting data of standard experiment

表1. 不同修饰材料的镉离子电化学传感器的对比

4. 结论与展望

重金属离子分布广泛,从田野、水体到生物体,最终积累到人体,造成健康问题。因此,开发原位、快速、实时、准确的重金属离子检测方法,特别是生物样品中的重金属离子检测具有重要意义。本文对Cd2+电化学检测的最新进展进行了详细的综述,并对基于不同材料D的电化学传感器进行了分类。可以发现,在过去的几年中出现了许多吸引人的研究,Cd2+的电化学检测仍然是一个非常活跃的研究领域。但是所有方法都有其潜在的应用和特异性,在许多情况下,它们并不能满足所有的使用要求,开发有效电极和应用于更多领域的需求仍然很大。在实际应用中Cd2+电化学传感器仍存在一些需要解决的问题:1) 由于重金属离子之间的相互干扰,开发能够同时快速灵敏的检测多种重金属离子的电化学传感器仍然具有挑战性;2) 由于许多实际样品中Cd2+的实际含量很低,因此仍然需要研究能够检测极低浓度的Cd2+的电化学传感器;3) 在所有重金属离子中,许多重金属离子(如Pb2+、Hg2+和Cu2+)表现出与Cd2+相似的配位机制,因此需要设计合成高选择性的传感材料;4) 目前主要是检测水样中的Cd2+,尤其是自来水和湖水中的。事实上,许多更复杂的环境系统如工厂污水、大气和各种土壤中都含有Cd2+,新的电化学传感器应该可以在这些样品中检测Cd2+。最后,明确了相关理论研究有待加强,以指导实践和实验;反过来,实践和实验可以丰富理论。

总之,目前基于各种材料修饰电极的检测方法仍然面临一些挑战,但研究人员所做的努力是非常有吸引力的,并显示出测Cd2+检测的潜在应用,并加速了电化学技术的发展。随着检测策略和先进技术的发展,我们坚信在不久的将来可以构建更有效的电化学检测Cd2+的传感方法。

基金项目

2023年度广西教育科学“十四五”规划2023年度自筹经费重点课题(B)类项目《欠发达地区高职院校人才培养质量评价研究》(2023B206)。

参考文献

[1] Cui, L., Wu, J. and Ju, H. (2015) Electrochemical Sensing of Heavy Metal Ions with Inorganic, Organic and Bio-Materials. Biosensors and Bioelectronics, 63, 276-286.
https://doi.org/10.1016/j.bios.2014.07.052
[2] Rana, S., Kumar, T., Bansod, B.K., et al. (2017) A Review on Various Electrochemical Techniques for Heavy Metal Ions De-tection with Different Sensing Platforms. Biosensors & Bioelectronics, 94, 443-455.
https://doi.org/10.1016/j.bios.2017.03.031
[3] Gan, X., Zhao, H., Wong, K.Y., Lei, D.Y., Zhang, Y. and Quan, X. (2018) Covalent Functionalization of MoS2 Nanosheets Synthesized by Liquid Phase Exfoliation to Construct Electro-chemical Sensors for Cd (II) Detection. Talanta, 182, 38-48.
https://doi.org/10.1016/j.talanta.2018.01.059
[4] Incebay, H., Aktepe, L. and Leblebici, Z. (2020) An Electro-chemical Sensor Based on Green Tea Extract for Detection of Cd (ii) Ions by Differential Pulse Anodic Stripping Volt-ammetry. Surfaces and Interfaces, 21, Article ID: 100726.
https://doi.org/10.1016/j.surfin.2020.100726
[5] Priya, T., Dhanalakshmi, N., Thennarasu, S., Pulikkutty, S. and Thinakaran, N. (2020) Synchronous Detection of Cadmium and Lead in Honey, Cocos Nucifera and Egg White Samples Using Multiwalled Carbon Nanotube/Hyaluronic Acid/Amino Acids Nanocomposites. Food Chemistry, 317, Article ID: 126430.
https://doi.org/10.1016/j.foodchem.2020.126430
[6] Wang, X.F., Gao, W.Y., Yan, W., Li, P., Zou, H.H., Wei, Z.X., Guan, W.J., Ma, Y.H., Wu, S.M., Yu, Y. and Ding, K. (2018) A Novel Aptasensor Based on Graphene/Graphite Carbon Nitride Nanocomposites for Cadmium Detection with High Selectivity and Sensitivity. ACS Applied Nano Mate-rials, 1, 2341-2346.
https://doi.org/10.1021/acsanm.8b00380
[7] Rusinek, C.A., Bange, A., Papautsky, I. and Heineman, W.R. (2015) Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium. Analytical Chemistry, 87, 6133-6140.
https://doi.org/10.1021/acs.analchem.5b00701
[8] Khairy, M., El-Safty, S.A. and Shenashen, M. (2014) Envi-ronmental Remediation and Monitoring of Cadmium. TrAC Trends in Analytical Chemistry, 62, 56-68.
https://doi.org/10.1016/j.trac.2014.06.013
[9] Yu, H., Ai, X., Xu, K., Zheng, C. and Hou, X. (2016) Uv-Assisted Fenton Digestion of Rice for the Determination of Trace Cadmium by Hydride Generation Atomic Fluorescence Spec-trometry. Analyst, 141, 1512-1518.
https://doi.org/10.1039/C5AN02068A
[10] Rehan I., Gondal, M.A., Almessiere, M.A., Dakheel, R.A., Rehan, K., Sultana, S. and Dastageer, M.A. (2021) Nutritional and Toxic Elemental Analysis of Dry Fruits Using Laser Induced Breakdown Spectroscopy (LIBS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Saudi Journal of Biological Sciences, 28, 408-416.
https://doi.org/10.1016/j.sjbs.2020.10.024
[11] Mozhayeva, D. and Engelhard, C. (2020) A Critical Review of Sin-gle Particle Inductively Coupled Plasma Mass Spectrometry—A Step towards an Ideal Method for Nanomaterial Charac-terization. Journal of Analytical Atomic Spectrometry, 35, 1740-1783.
https://doi.org/10.1039/C9JA00206E
[12] Stenclova, P., Vyskocil, V., Szabo, O., Izak, T., Potocky, S. and Kromka, A. (2019) Structured and Graphitized Boron Doped Diamond Electrodes: Impact on Electrochemical Detection of Cd2+ and Pb2+ Ions. Vacuum, 170, Article ID: 108953.
https://doi.org/10.1016/j.vacuum.2019.108953
[13] Kolling, L., Zmozinski, A.V., Vale, M.G.R. and da Silva, M.M. (2019) The Use of Dried Matrix Spot for Determination of Pb and Ni in Automotive Gasoline by Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Talanta, 205, Article ID: 120105.
https://doi.org/10.1016/j.talanta.2019.06.105
[14] Sung, Y.M. and Wu, S.P. (2014) Colorimetric Detection of Cd (II) Ions Based on Di-(1H-Pyrrol-2-yl) Methanethione Functionalized Gold Nanoparticles. Sensors & Actuators B: Chemical, 201, 86-91.
https://doi.org/10.1016/j.snb.2014.04.069
[15] Zhang, D., Yang, S., Ma, Q., Sun, J. and Liu, J. (2019) Simultane-ous Multi-Elemental Speciation of As, Hg and Pb by Inductively Coupled Plasma Mass Spectrometry Interfaced with High-Performance Liquid Chromatography. Food Chemistry, 313, Article ID: 126119.
https://doi.org/10.1016/j.foodchem.2019.126119
[16] Celestina, J.J., Tharmaraj, P. and Sheela, C.D. (2020) Greener Development of Highly Selective Turn-on Fluorogenic Chemo Sensor for Cd2+—Cell Imaging and Test Strips Studies. Optical Materials, 109, Article ID: 110176.
https://doi.org/10.1016/j.optmat.2020.110176
[17] Liu, Y., Li, T., Ling, C., Chen, Z., Deng, Y. and He, N. (2019) Electrochemical Sensor for Cd2+ and Pb2+ Detection Based on Nano-Porous Pseudo Carbon Paste Electrode. Chinese Chemical Letters, 30, 2211-2215.
https://doi.org/10.1016/j.cclet.2019.05.020
[18] Yu, L., Zhang, Q., Yang, B., Xu, Q., Xu, Q. and Hu, X. (2018) Electrochemical Sensor Construction Based on Nafion/Calcium Lignosulphonate Functionalized Porous Graphene Nanocomposite and Its Application for Simultaneous Detection of Trace Pb2+ and Cd2+. Sensors & Actuators B: Chemi-cal, 259, 540-551.
https://doi.org/10.1016/j.snb.2017.12.103
[19] Magesa, F., Wu, Y., Tian, Y., Vianney, J.M., Buza, J., He, Q. and Tan, Y. (2019) Graphene and Graphene Like 2D Graphitic Carbon Nitride: Electrochemical Detection of Food Colorants and Toxic Substances in Environment. Trends in Environmental Analytical Chemistry, 23, e00064.
https://doi.org/10.1016/j.teac.2019.e00064
[20] Alex, L., Eden, E.L. and Richard, G. (2017) Recent Developments in Inorganic Hg2+ Detection by Voltammetry. TrAC Trends in Analytical Chemistry, 94, 161-172.
https://doi.org/10.1016/j.trac.2017.07.020
[21] Lu, M.X., Deng, Y.J., Luo, Y., Lv, J.P., Wang, J.Y., et al. (2018) Graphene Aerogel-Metal-Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy Metal Ions. Analytical Chemistry, 91, 888-895.
https://doi.org/10.1021/acs.analchem.8b03764
[22] Xia, Y.X., Ma, Y.Z., Wu, Y.T., Yi, Y.H., Lin, H.Y. and Zhu, G.B. (2021) Free-Electrodeposited Anodic Stripping Voltammetry Sensing of Cu (II) Based on Ti3C2Tx MXene/Carbon Black. Microchimica Acta, 188, Article No. 377.
https://doi.org/10.1007/s00604-021-05042-2
[23] Pizarro, J., Segura, R., Tapia, D., Navarro, F., Fuenzalida, F. and Aguirre, M.J. (2020) Inexpensive and Green Electrochemical Sensor for the Determination of Cd (II) and Pb (II) by Square Wave Anodic Stripping Voltammetry in Bivalve Mollusks. Food Chemistry, 321, Article ID: 126682.
https://doi.org/10.1016/j.foodchem.2020.126682
[24] Sun, D.R. and Li, Z.H. (2016) Double-Solvent Method to Pd Nanoclusters Encapsulated Inside the Cavity of NH2-Uio-66(Zr) for Efficient Visible-Light-Promoted Suzuki Coupling Reaction. Journal of Physical Chemistry C, 120, 19744-19750.
https://doi.org/10.1021/acs.jpcc.6b06710
[25] Yang, Q., Xu, Q. and Jiang, H.L. (2017) Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for En-hanced Catalysis. Chemical Society Reviews, 46, 4774-4808.
https://doi.org/10.1039/C6CS00724D
[26] Hu, Z., Deibert, B.J. and Li, J. (2014) Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection. Chemical Society Reviews, 43, 5815-5840.
https://doi.org/10.1039/C4CS00010B
[27] Yi, F.Y., Chen, D., Wu, M.K., Han, L. and Jiang, H.L. (2016) Chemical Sensors Based on Metal-Organic Frameworks. ChemPlusChem, 81, 675-690.
https://doi.org/10.1002/cplu.201600137
[28] Wang, C., Luan, J. and Wu, C. (2019) Metal-Organic Frameworks for Aquatic Arsenic Removal. Water Research, 158, 370-382.
https://doi.org/10.1016/j.watres.2019.04.043
[29] Qiu, H., Ye, M., Zeng, Q., Li, W., Fortner, J., Liu, L.L. and Yang, L.Y. (2019) Fabrication of Agricultural Waste Supported UiO-66 Nanoparticles with High Utilization in Phos-phate Removal from Water. Chemical Engineering Journal, 360, 621-630.
https://doi.org/10.1016/j.cej.2018.12.017
[30] Wang, Y., Wang, L., Huang, W., Zhang, T., Hu, X., Perman, J.A. and Ma, S. (2017) A Metal-Organic Framework and Conducting Polymer Based Electrochemical Sensor for High Per-formance Cadmium Ion Detection. Journal of Materials Chemistry A, 5, 8385-8393.
https://doi.org/10.1039/C7TA01066D
[31] Wan, X., Qi, Y., Shen, Y., Yuan, Y., Zhang, L., Zhang, C. and Sun, Y. (2020) A Ratiometric Electrochemical Sensor for Simultaneous Detection of Multiple Heavy Metal Ions Based on Ferro-cene-Functionalized Metal-Organic Framework. Sensors and Actuators B: Chemical, 310, Article ID: 127756.
https://doi.org/10.1016/j.snb.2020.127756
[32] Wu, T.M., Chang, H.L. and Lin, Y.W. (2009) Synthesis and Char-acterization of Conductive Polypyrrole/Multi-Walled Carbon Nanotubes Composites with Improved Solubility and Con-ductivity. Composites Science and Technology, 69, 639-644.
https://doi.org/10.1016/j.compscitech.2008.12.010
[33] Li, Y., Cai, Y., Shao, K., Chen, Y. and Wang, D. (2021) A Free-Standing Poly-MOF Film Fabricated by Post-Modifi- cation and Interfacial Polymerization: A Novel Platform for Cd2+ Electrochemical Sensors. Microporous and Mesoporous Materials, 323, Article ID: 111200.
https://doi.org/10.1016/j.micromeso.2021.111200
[34] Qi, Y., Chen, X., Liu, S., Yang, P., Zhang, S., Hou, C. and Hou, D. (2021) Electrochemical Sensor for Cd2+ Detection Based on Carbon Fiber Paper Sequentially Modified with CoMOF, AuNPs, and Glutathione. Journal of the Electrochemical Society, 168, Article ID: 067526.
https://doi.org/10.1149/1945-7111/ac0c36
[35] Deshmukh, M.A., Shirsat, M.D., Ramanaviciene, A. and Rama-navicius, A. (2018) Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review). Critical Reviews in Analytical Chemistry, 48, 293-304.
https://doi.org/10.1080/10408347.2017.1422966
[36] Song, Y., Bian, C., Hu, J., Li, Y., Tong, J., Sun, J., Gao, G. and Xia, S. (2019) Porous Polypyrrole/Graphene Oxide Functionalized with Carboxyl Composite for Electrochemical Sensor of Trace Cadmium (II). Journal of the Electrochemical Society, 166, B95-B102.
https://doi.org/10.1149/2.0801902jes
[37] Dahaghin, Z., Kilmartin, P.A. and Mousavi, H.Z. (2018) Determination of Cadmium (II) Using a Glassy Carbon Electrode Modified with a Cd-Ion Imprinted Polymer. Journal of Electroanalyt-ical Chemistry, 810, 185-190.
https://doi.org/10.1016/j.jelechem.2018.01.014
[38] Maleki, B., Baghayeri, M., Ghanei-Motlagh, M., Mohammadi Zonoz, F., Amiri, A., Hajizadeh, F., Hosseinifar, A. and Esmaeilnezhad, E. (2019) Polyamidoamine Dendrimer Func-tionalized Iron Oxide Nanoparticles for Simultaneous Electrochemical Detection of Pb2+ and Cd2+ Ions in Environmental Waters. Measurement, 140, 81-88.
https://doi.org/10.1016/j.measurement.2019.03.052
[39] Yu, Z., Jamal, R., Zhang, R., Zhang, W. and Abdiryim, T. (2020) Pedot-Type Conducting Polymers/Black TiO2 Composites for Electrochemical Determination of Cd2+ and Pb2+. Journal of the Electrochemical Society, 167, Article ID: 067514.
https://doi.org/10.1149/1945-7111/ab8188
[40] Ghanei-Motlagh, M. and Taher, M.A. (2017) Novel Imprinted Polymeric Nanoparticles Prepared by Sol-Gel Technique for Electrochemical Detection of Toxic Cadmium (II) Ions. Chemical Engineering Journal, 327, 135-141.
https://doi.org/10.1016/j.cej.2017.06.091
[41] Pu, Y., Wu, Y., Yu, Z., Lu, L. and Wang, X. (2021) Simultaneous Determination of Cd2+ and Pb2+ by an Electrochemical Sensor Based on Fe3O4/Bi2O3/C3N4 Nanocomposites. Talanta Open, 3, Article ID: 100024.
https://doi.org/10.1016/j.talo.2020.100024
[42] Zhang, C., Wang, C., Hao, T., Lin, H., Wang, Q., Wu, Y., Hu, Y., Wang, S., Huang, Y. and Guo, Z. (2021) Electrochemical Sensor for the Detection of ppq-Level Cd2+ Based on a Multi-functional Composite Material by Fast Scan Voltammetry. Sensors and Actuators B: Chemical, 341, Article ID: 130037.
https://doi.org/10.1016/j.snb.2021.130037
[43] Wu, W., Wang, M., Zhang, Z., Zhang, W., Liu, Q., Zhang, G., Li, Z. and Wu, P. (2019) Simultaneous Voltammetric Determination of Cadmium (II), Lead (II), Mercury (II), Zinc (II), and Copper (II) Using a Glassy Carbon Electrode Modified with Magnetite (Fe3O4) Nanoparticles and Fluorinated Multi-walled Carbon Nanotubes. Mikrochimica Acta, 186, Article No. 97.
https://doi.org/10.1007/s00604-018-3216-5
[44] Duan, S. and Huang, Y. (2017) Electrochemical Sensor Using NH2-MIL-88 (Fe)-rGO Composite for Trace Cd2+, Pb2+, and Cu2+ Detection. Journal of Electroanalytical Chemistry, 807, 253-260.
https://doi.org/10.1016/j.jelechem.2017.11.051
[45] Huang, W., Zhang, Y., Li, Y., Zeng, T., Wan, Q. and Yang, N. (2020) Morphology-Controlled Electrochemical Sensing of Environmental Cd2+ and Pb2+ Ions on Expanded Graphite Supported CeO2 Nanomaterials. Analytica Chimica Acta, 1126, 63-71.
https://doi.org/10.1016/j.aca.2020.06.010
[46] Zhou, W.Y., Li ,S.S., Song, J.Y., Jiang, M., Jiang, T.J., Liu, J.Y., Liu, J.H. and Huang, X.J. (2018) High Electrochemical Sensitivity of TiO2-x Nanosheets and an Electron-Induced Mutu-al Interference Effect toward Heavy Metal Ions Demonstrated Using x-Ray Absorption Fine Structure Spectra. Analytical Chemistry, 90, 4328-4337.
https://doi.org/10.1021/acs.analchem.7b02315
[47] Rehman, A.U., Ikram, M., Kan, K., Zhao, Y., Zhang, W.J., Zhang, J., Liu, Y., Wang, Y., Du, L. and Shi, K. (2018) 3D Interlayer Nanohybrids Composed of Reduced Gra-phenescheme Oxide/SnO2/PPy Grown from Expanded Graphite for the Detection of Ultra-Trace Cd2+, Cu2+, Hg2+ and Pb2+ Ions. Sensors and Actuators, 274, 285-295.
https://doi.org/10.1016/j.snb.2018.08.004
[48] Jin, Z., Yang, M., Chen, S.H., Liu, J.H., Li, Q.X. and Huang, X.J. (2017) Tin Oxide Crystals Exposed by Low-Energy {110} Facets for Enhanced Electrochemical Heavy Metal Ions Sensing: X-Ray Absorption Fine Structure Experimental Combined with Density-Functional Theory Evidence. Analytical Chemistry, 89, 2613-2621.
https://doi.org/10.1021/acs.analchem.6b04977
[49] Hai, T.L., Hung, L.C., Phuong, T.T.B., Ha, B.T.T. and Nguyen, V.H. (2019) Multiwall Carbon Nanotube Modified by Antimony Oxide (Sb2O3/MWCNTs) Paste Electrode for the Sim-ultaneous Electrochemical Detection of Cadmium and Lead Ions. Microchemical Journal, 153, Article ID: 104456.
https://doi.org/10.1016/j.microc.2019.104456
[50] Li, G., Belwal, T., Luo, Z., Li, Y. and Lin, X. (2021) Direct De-tection of Pb2+ and Cd2+ in Juice and Beverage Samples Using PDMS Modified Nanochannels Electrochemical Sensors. Food Chemistry, 356, Article ID: 129632.
https://doi.org/10.1016/j.foodchem.2021.129632
[51] Fang, Y., Cui, B., Huang, J. and Wang, L. (2019) Ultrasen-sitive Electrochemical Sensor for Simultaneous Determination of Cadmium and Lead Ions Based on One-Step Co-Electropolymerization Strategy. Sensors & Actuators B: Chemical, 284, 414-420.
https://doi.org/10.1016/j.snb.2018.12.148
[52] Qin, D., Mamat, A., Li, X., Hu, Y., Wang, X., Cheng, P., Dong, H., Hu, Y. and Zhi, G. (2019) Double-Shelled Yolk- Shell Si@C Microspheres Based Electrochemical Sensor for Determi-nation of Cadmium and Lead Ions. Analytica Chimica Acta, 1078, 32-41.
https://doi.org/10.1016/j.aca.2019.06.011
[53] Sacara, A.M., Pitzalis, F., Salis, A., Turdean, G.L. and Muresan, L.M. (2019) Glassy Carbon Electrodes Modified with Ordered Mesoporous Silica for the Electrochemical Detection of Cadmium Ions. ACS Omega, 4, 1410-1415.
https://doi.org/10.1021/acsomega.8b03305
[54] Li, L., Liu, D., Shi, A. and You, T. (2017) Simultaneous Stripping Determination of Cadmium and Lead Ions Based on the N-Doped Carbon Quantum Dots-Graphene Oxide Hybrid. Sen-sors & Actuators B: Chemical, 255, 1762-1770.
https://doi.org/10.1016/j.snb.2017.08.190
[55] Kava, A.A., Beardsley, C., Hofstetter, J. and Henry, C.S. (2020) Disposable Glassy Carbon Stencil Printed Electrodes for Trace Detection of Cadmium and Lead. Analytica Chimica Acta, 1103, 58-66.
https://doi.org/10.1016/j.aca.2019.12.047
[56] Sukhrobov, P., Wagberg, T., Mamat, X., Qin, D., Gao, S., Wang, L., Shen, H., Yalikun, N. and Zhao, Y. (2017) Three- Dimensional Carbon Nanofiber Derived from Bacterial Cellulose for Use in a Nafion Matrix on a Glassy Carbon Electrode for Simultaneous Voltammetric Determination of Trace Levels of Cd (II) and Pb (II). Mikrochimica Acta, 184, 2759-2766.
https://doi.org/10.1007/s00604-017-2260-x
[57] Gao, S., Liu, J., Mamat, X., Sambasivam, S., Li, Y., Hu, X., Wagberg, T. and Hu, G. (2018) Selective Voltammetric Determina-tion of Cd (II) by Using N, S-Codoped Porous Carbon Nanofibers. Mikrochimica Acta, 185, Article No. 282.
https://doi.org/10.1007/s00604-018-2818-2
[58] Wu, W., Jia, M., Wang, Z., Zhang, W., Zhang, Q., Liu, G., Zhang, Z. and Li, P. (2019) Simultaneous Voltammetric Determination of Cadmium(II), Lead(II), Mercury(II), Zinc(II), and Copper(II) Using a Glassy Carbon Electrode Modified with Magnetite (Fe3O4) Nanoparticles and Fluorinated Multi-walled Carbon Nanotubes. Microchimica Acta, 186, Article No. 97.
https://doi.org/10.1007/s00604-018-3216-5
[59] Qin, D., Wang, L., Gao, S., Wang, Y., Mamat, X., Li, Y., Wag-berg, T., Cheng, H. and Hu, G. (2018) N-Doped Hollow Porous Carbon Spheres/Bismuth Hybrid Film Modified Elec-trodes for Sensitive Voltammetric Determination of Trace Cadmium. Electroanalysis, 30, 1906-1912.
https://doi.org/10.1002/elan.201700839
[60] Priya, T., Dhanalakshmi, N., Thennarasu, S., Karthikeyan, V. and Thinakaran, N. (2019) Ultra Sensitive Electrochemical Detection of Cd2+ and Pb2+ Using Penetrable Nature of Gra-phene/Gold Nanoparticles/Modified L-Cysteine Nanocomposite. Chemical Physics Letters, 731, Artilce ID: 136621.
https://doi.org/10.1016/j.cplett.2019.136621
[61] Zhou, J., Pan, K., Qu, G., Ji, W., Ning, P., Tang, H. and Xie, R. (2022) RGO/MWCNTs-COOH 3D Hybrid Network as a High-Performance Electrochemical Sensing Platform of Screen-Printed Carbon Electrodes with an Ultra-Wide Detection Range of Cd(II) and Pb(II). Chemical Engineering Journal, 449, Article ID: 137853.
https://doi.org/10.1016/j.cej.2022.137853
[62] Li, Y., Huang, H., Cui, R., Wang, D. and Sun, B. (2021) Electro-chemical Sensor Based on Graphdiyne Is Effectively Used to Determine Cd2+ and Pb2+ in Water. Sensors and Actuators B: Chemical, 332, Article ID: 129519.
https://doi.org/10.1016/j.snb.2021.129519
[63] Wang, J., Yu, P., Kan, K., Lv, H., Liu, Z., Sun, B., Bai, X., Chen, J., Zhang, Y. and Shi, K. (2021) Efficient Ultra- Trace Electrochemical Detection of Cd2+, Pb2+ and Hg2+ Based on Hier-archical Porous S-Doped C3N4 Tube Bundles/Graphene Nanosheets Composite. Chemical Engineering Journal, 420, Article ID: 130317.
https://doi.org/10.1016/j.cej.2021.130317
[64] Ramalingam, M., Ponnusamy, V.K. and Sangilimuthu, S.N. (2019) A Nanocomposite Consisting of Porous Graphitic Carbon Nitride Nanosheets and Oxidized Multiwalled Carbon Nano-tubes for Simultaneous Stripping Voltammetric Determination of Cadmium (II), Mercury (II), Lead (II) and Zinc (II). Microchimica Acta, 186, Article No. 69.
https://doi.org/10.1007/s00604-018-3178-7
[65] Lv, X., Pei, F., Feng, S., Wu, Y. and Lei, W. (2020) Facile Syn-thesis of Protonated Carbon Nitride/Ti3C2Tx Nanocomposite for Simultaneous Detection of Pb2+ and Cd2+. Journal of the Electrochemical Society, 167, Article ID: 067509.
https://doi.org/10.1149/1945-7111/ab7e22
[66] Zhang, Y., Yan, X., Liu, D. and Jie, G. (2022) Versatile Electro-chemiluminescence Sensor for Dual-Potential “off” and “on” Detection of Double Targets Based on a Novel Terbium Organic Gel and Multifunctional DNA Network Probes. Sensors and Actuators B: Chemical, 362, Article ID: 131740.
https://doi.org/10.1016/j.snb.2022.131740
[67] Chen, Z., Liu, C., Su, X., Zhang, W. and Zou, X. (2021) Signal on-off Ratiometric Electrochemical Sensor Based on Semi-Complementary Aptamer Couple for Sensitive Cadmium De-tection in Mussel. Sensors and Actuators B: Chemical, 346, Article ID: 130506.
https://doi.org/10.1016/j.snb.2021.130506
[68] Yuan, M., Qian, S., Cao, H., Yu, J., Ye, T., Wu, X., Chen, L. and Xu, F. (2022) An Ultra-Sensitive Electrochemical Aptasensor for Simultaneous Quantitative Detection of Pb2+ and Cd2+ in Fruit and Vegetable. Food Chemistry, 382, Article ID: 132173.
https://doi.org/10.1016/j.foodchem.2022.132173