维生素D作用与糖尿病关系的研究进展
Advances in the Study of Vitamin D Action in Relation to Diabetes Mellitus
DOI: 10.12677/BP.2023.133019, PDF, HTML, XML, 下载: 199  浏览: 495 
作者: 赵文慧:西安医学院研究生院,陕西 西安;郭 伟*:陕西省人民医院,全科医学科,陕西 西安
关键词: 维生素D糖尿病 Vitamin D Diabetes Mellitus
摘要: 人体中的维生素D发挥调节钙和磷代谢的作用,而维生素D在糖尿病的发展中起着重要作用,其对身体代谢功能影响的细节也慢慢显现。目前,维生素D与糖尿病发病率的关系以及补充维生素D是否能缓解糖尿病患者的血糖状态已逐渐成为国内外的热点话题。本文综述了近年来有关维生素D与糖尿病关系的文献。Body’s vitamin D plays a role in the regulation of both calcium and phosphate metabolism, and vitamin D plays an important role in the progression of diabetes mellitus, and the detailed effects of its impact on the metabolic functions of the bodies are slowly revealed. Now, the connection between vitamin D and the morbidity of diabetes mellitus and the question of whether vitamin D replenishment can ease the blood glucose status of diabetic patients has increasingly become a hot subject both at domestic and international level. In this article, we overview the literature on the link between vitamin D and diabetes mellitus from the last few years.
文章引用:赵文慧, 郭伟. 维生素D作用与糖尿病关系的研究进展[J]. 生物过程, 2023, 13(3): 135-141. https://doi.org/10.12677/BP.2023.133019

1. 维生素D概述

维生素D是一种脂溶性维生素,其负责肠道吸收钙和骨矿化的活性代谢物。它对于维持恒定的细胞外钙离子水平和维持钙磷稳态至关重要 [1] 。然而,维生素D改善胰腺功能β细胞功能和胰岛素作用的机制仍需进一步研究。

2. 维生素D的抗炎活性

维生素D是一种类固醇激素,调节钙和磷酸盐稳态,但也调节细胞增殖和分化。人类从阳光、饮食和补充剂中获取维生素D。两种主要形式是:维生素D2或麦角钙化醇和维生素D3或胆钙化醇。进入循环后,维生素D (D同时表达维生素D2和D3)在肝脏中被维生素D-25-羟化酶(CYP2R1)代谢为25-羟基维生素D或骨化二醇[25(OH)D]。25(OH)D主要在肾脏中被25-羟基维生素D-1α-羟化酶(CYP27B1)进一步代谢成活性形式,1,25-二羟基维生素D或骨化三醇(CT) [1,25(OH)2D] [2] 。然后,1,25(OH)2D通过与细胞质中的维生素D受体(VDR)结合来利用其生理功能,刺激VDR与类视黄醇X受体(RXR)的异二聚化,形成VDR-RXR-激素复合物;在细胞核中,它导致许多基因的上调或下调。

在感染期间,巨噬细胞和单核细胞被募集到炎症部位;暴露于炎性细胞因子表达CYP27B1,其将25(OH)D转化为1,25(OH)2D [3] 。然后,1,25(OH)2D发展巨噬细胞和单核细胞的抗菌活性。此外,1,25(OH)2D抑制单核细胞上toll样受体的表达,并抑制一些炎性细胞因子的产生,例如IL-2、IL-6和IL-17 [4] [5] [6] 。实验研究还表明,自然杀伤(NK)细胞的分化和功能可以通过1,25(OH)2D给药来调节。目前,关于1,25(OH)2D对NK细胞影响的数据仍不一致 [7] [8] [9] 。

研究表明,1,25(OH)2D3是内皮一氧化氮合酶(eNOS)的转录调节因子。这会导致eNOS基因表达上调,从而导致内皮一氧化氮生成增加 [10] [11] 。在局部和全身炎症中,维生素D及其代谢物对血管内皮具有多效性作用,可防止血管功能障碍和组织损伤 [12] [13] 。

正常水平的维生素D能够减少低级别的炎症,这是诱发胰岛素抵抗的一个主要过程。其他研究也表明,CD4/CD8比值降低与25(OH)D水平低有关 [14] ,给予5000~10,000 IU维生素D3可归因于CD4/CD8比值的增加,反映了免疫调节 [15] [16] 。

关于B淋巴细胞,无活性的B淋巴细胞没有VDR,但仅在被激活以增殖丝裂原时上调其VDR表达 [17] 。1,25(OH)2D的过度活跃状态似乎通过多种机制减弱免疫球蛋白免疫应答 [18] [19] [20] [21] 。

通过控制B细胞活性和B细胞转化为浆细胞,1,25(OH)2D利于自身抗体的减少,因此能够改善很多抗体所介导的自身免疫疾病的产生 [22] [23] 。

3. 维生素D的抗氧化特性

氧化应激参与T2DM及其并发症的发生和发展,因此,对T2DM防控的相关研究迫在眉睫。以前的研究表明,血浆中的高葡萄糖和游离脂肪酸水平通过增强自由基的产生来增加氧化应激。血液中的高葡萄糖水平会促进氧化自由基的产生,加速糖尿病的恶化 [24] [25] [26] [27] 。另一方面,葡萄糖水平的升高还可能引起体内氧化应激,激活一些炎症反应,导致一系列并发症的发生和加快 [28] [29] 。高血糖也与白细胞介素-8 (IL-8)水平呈正相关 [30] ,后者导致糖尿病性脑病的严重并发症。

谷胱甘肽(GSH)与氧化应激密切相关,能有效清除氧自由基 [31] 。GSH有助于细胞和组织的损伤,导致糖尿病的进展和并发症的发展 [32] [33] 。GSH参与许多生理和病理过程,如解毒,调节细胞活力,并参与心血管疾病,免疫疾病和糖尿病等慢性疾病的进展 [34] 。维生素D具有很高的抗氧化和抗炎特性。一些研究表明,补充维生素D可以调节炎症症状,提高对某些慢性感染的防御能力 [13] [35] 。

然而,维生素D缺乏症的患病率出人意料地高,并且在所有年龄段和全世界都很普遍,它可能与几种慢性疾病有关 [36] [37] ,包括2型糖尿病。关于高血糖、氧化应激和谷胱甘肽之间关系的研究表明,还原性谷胱甘肽可以降低氧化应激,有助于控制循环葡萄糖水平及其并发症。氧化应激和糖尿病 [38] ,这两个过程很可能相互加强。

4. 维生素D的类胰岛素机制

胰腺组织中1-α羟基酶的表达,支持了维生素D在T2 DM治疗中作用的科学证据。特别是通过胰腺组织中维生素D依赖的钙结合蛋白的存在对维生素D的作用 [39] [40] 。在胰腺β细胞中,维生素D调节钙离子流动,从而调控钙结合蛋白的表达 [41] 。

Calbindin这种胞内钙结合蛋白通过非选择性电压通道增加细胞内钙离子浓度,刺激胰腺β细胞胰岛素分泌,产生钙依赖的内肽酶,从而促进胰岛素原向胰岛素的转化,并通过胞吐释放胰岛素 [42] 。由两个信号通路介导 [43] :第一种途径涉及蛋白激酶A的激活,它磷酸化L型电压门控钙通道中涉及的不同蛋白质,并与胰岛素分泌增加有关。第二种通路通过激活三磷酸肌醇(IP3)和磷脂酶C (PLC)的合成,促进内质网钙离子和二酰基甘油(DAG)的释放,激活蛋白激酶C (PKC)。激活的PKC负责ATP依赖性K+通道和L型电压门控性钙通道的磷酸化。它们使细胞质膜去极化,打开L和T型钙通道,升高细胞内钙离子,从而刺激囊泡动员胰岛素分泌。第三条信号通路与胰岛素基因的表达有关,通过激活cAMP反应元件调节器的转录因子来实现 [44] 。

在外周组织中,维生素D通过刺激其受体直接增强胰岛素的作用。最初,与VDR和外周组织中的维甲酸X受体(RXR),使胰岛素受体启动子中的维生素D与其反应元件(VDRE)结合,激活转录;这种激活导致外周组织中胰岛素受体数量的增加。调节胰岛素受体基因使其信号通路保持活跃 [45] ,改善对这种激素的敏感性和摄取。维生素D已被证明可将胰岛素摄取增加1.3倍,从而改善对葡萄糖运输的反应。

此外,维生素D报告的另一个胰岛素模拟机制是sirtuin-1 (SIRT-1)磷酸化级联的激活。Sirt-1通过控制胰岛素受体的磷酸化、抑制蛋白酪氨酸磷酸酶非受体1型(Ptpn1)以及胰岛素敏感细胞中Akt (信号通路)的激活来积极调节胰岛素信号 [46] 。通过激活过氧化物酶体增殖物激活受体γ (PPAR-γ)也可以改善胰岛素敏感性 [47] 。维生素D调节PPARγ的激活,对外周组织的IR有更好的反应。

最后,维生素D的类胰岛素作用也间接与其他机制有关,如抗氧化剂和抗炎剂表明,维生素D可以对降解胰岛素的酶起调节作用,同时抑制胰高血糖素的分泌,这是一种改善胰岛素敏感性的作用。此外,对脂联素和瘦素水平的调节也有重要作用 [48] ,可以间接改善胰岛素的敏感性。

5. 常见类型糖尿病与维生素D的联系

5.1. 补充维生素D对妊娠期糖尿病患者的降糖作用

妊娠期糖尿病患者使用维生素D和常规糖尿病治疗的小样本研究提出了不同的剂量和结论。在97名妊娠13周被诊断为妊娠期糖尿病的中国孕妇中,干预组(n = 48)从确诊之日起每天食用添加1000 IU维生素D3的酸奶,而对照组(n = 49)在常规治疗GDM的基础上食用不添加维生素D3的普通酸奶。初始的25(OH)D浓度两组间差异没有统计学意义(分别为16.8 ± 4.6和16.2 ± 3.4),但16周后干预组25(OH)D水平显著升高,为29.5 ± 5.7 µg/mL,而对照组维持在15.9 ± 4.5 µg/mL。此外,与对照组相比,干预组的空腹血糖和胰岛素抵抗水平明显有所降低 [49] 。根据一项荟萃分析,在妊娠24~28周诊断为妊娠期糖尿病的孕妇中,25人开始补充维生素D,补充维生素D可显著降低妊娠糖尿病患者的空腹血糖、空腹血浆胰岛素和胰岛素抵抗。

5.2. 维生素D干预对1型糖尿病的影响

研究表明低维生素D水平与新发1型糖尿病儿童的酮症酸中毒密切相关 [50] 。即使在确诊数月的T1DM患者中,维生素D缺乏仍然令人担忧 [51] [52] 。研究表明,通过简单调节T1DM儿童维生素D的摄入量而不改变胰岛素用量,也可以更好地控制糖化血红蛋白(HbA1c) [53] 。从另一个角度来看,维生素D缺乏的T1DM儿童更容易出现低血糖和代谢性疾病 [54] 。补充维生素D作为一种额外疗法,在提高血糖控制和胰岛素敏感性方面可能发挥作用,为加强疾病控制和改善这些患者的健康开辟了新的视角 [55] 。Treiber等人进行的一项双盲随机对照研究中 [56] ,T1DM儿童补充维生素D被证明可以减少对空腹血糖、HbA1c和外源性胰岛素的需求。提示补充维生素D可影响T1DM的发生发展,维生素D水平不足的T1DM患者应服用维生素D。

婴儿早期定期补充维生素D可能会降低患T1DM的风险 [57] [58] [59] 。一项针对10,000多名儿童的出生队列研究发现了类似的保护作用 [60] 。因此,在生命的最初几年,应及时诊断维生素D缺乏症并进行适当治疗,维生素D应被视为一种额外疗法。

5.3. 维生素D与2型糖尿病

维生素D状态、其对血糖的影响和糖尿病发病率之间存在一定的关联在许多报告中都有说明 [61] 。维生素D水平越低,T2DM的发生风险就越高,当25(OH)D升高25 nmol/L,T24DM的患病风险就会下降2% [62] 。Pittas等人另一项研究发现,25项大型试验的风险降低程度相当 [63] 。它显示,与安慰剂相比,服用维生素D补充剂的维生素D水平低(低于12 ng/mL)的人患糖尿病的几率降低了约48%。此外,估计有26%的人转变为血糖正常。此外,He等人的综合分析在多项随机对照试验(RCT)中权衡了维生素D的影响 [64] 。

6. 结语

维生素D可显着延缓T2DM的发作。然而,在一些试验中,补充维生素D被认为会影响受试者的胰岛素抵抗程度。使用匹配剂量的维生素D的进一步随机对照试验有助于阐明维生素D与2型糖尿病之间的联系,以获得指导胰岛素抵抗患者补充维生素D的临床经验。

NOTES

*通讯作者。

参考文献

[1] 曹丽华, 王家霞, 许立侠. 维生素D与牙周炎关系的研究进展[J]. 临床合理用药, 2023, 16(10): 178-181.
https://doi.org/10.15887/j.cnki.13-1389/r.2023.10.051
[2] 张诗颜, 卓影, 王庭强, 等. 维生素D和肠道菌群对结直肠癌的预防作用[J]. 中国卫生标准管理, 2023, 14(10): 189-193.
[3] 郑羽旋, 魏迅, 张乐文, 等. 维生素D与糖尿病关系的研究进展[J]. 中国糖尿病杂志, 2023, 31(6): 472-475.
[4] 邢伟. 补充维生素D辅助治疗炎症性肠病的研究进展[J]. 中国肛肠病杂志, 2022, 42(11): 75-77.
[5] 李贺. 反复呼吸道感染患儿血清维生素A、D、E水平研究及相关因素分析[D]: [硕士学位论文]. 承德: 承德医学院, 2022.
https://doi.org/10.27691/d.cnki.gcdyx.2021.000182
[6] Ota, K., Dambaeva, S., Kim, M.W.-I., Han, A.-R., Fukui, A., Gilman-Sachs, A., Beaman, K. and Kwak-Kim, J. (2015) 25-Dihydroxy-Vitamin D3 Regulates NK-Cell Cytotoxicity, Cytokine Secretion, and Degranulation in Women with Recurrent Pregnancy Losses. European Journal of Immunology, 45, 3188-3199.
https://doi.org/10.1002/eji.201545541
[7] 符璐, 苗健, 张国华, 等. 维生素D调控动物脂肪形成及脂肪组织代谢的研究进展[J/OL]. 动物营养学报: 1-10.
http://kns.cnki.net/kcms/detail/11.5461.S.20230802.1322.022.html, 2023-08-15.
[8] 庄翠侠, 季学磊, 祝腊香, 等. 维生素D、淋巴细胞亚群与2型糖尿病患者颈动脉斑块的相关性研究[J]. 皖南医学院学报, 2023, 42(3): 251-254.
[9] Andrukhova, O., Slavic, S., Zeitz, U., Riesen, S.C., Heppelmann, M.S., Ambrisko, T.D., Markovic, M., Kuebler, W.M. and Erben, R.G. (2014) Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice. Molecular Endocrinology, 28, 53-64.
https://doi.org/10.1210/me.2013-1252
[10] Kim, D.-H., Meza, C.A., Clarke, H., Kim, J.-S. and Hickner, R.C. (2020) Vitamin D and Endothelial Function. Nutrients, 12, Article No. 575.
https://doi.org/10.3390/nu12020575
[11] Molinari, C., Uberti, F., Grossini, E., Vacca, G., Carda, S., et al. (2011) 1α,25-Dihydroxycholecalciferol Induces Nitric Oxide Production in Cultured Endothelial Cells. Cellular Physiol-ogy and Biochemistry, 27, 661-668.
https://doi.org/10.1159/000330075
[12] Corrao, S., Bocchio, R.M., Lo Monaco, M., Natoli, G., Cavezzi, A., Troiani, E. and Argano, C. (2021) Does Evidence Exist to Blunt Inflammatory Response by Nutraceutical Supplementa-tion during COVID-19 Pandemic? An Overview of Systematic Reviews of Vitamin D, Vitamin C, Melatonin, and Zinc. Nutrients, 13, Article No. 1261.
https://doi.org/10.3390/nu13041261
[13] Grant, W.B., Lahore, H., McDonnell, S.L., Baggerly, C.A., French, C.B., Aliano, J.L. and Bhattoa, H.P. (2020) Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients, 12, Article No. 988.
https://doi.org/10.3390/nu12040988
[14] Chen, S., Sims, G.P., Chen, X.X., Gu, Y.Y., et al. (2007) Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. The Journal of Immunology, 179, 1634-1647.
https://doi.org/10.4049/jimmunol.179.3.1634
[15] Lemire, J.M., Adams, J.S., Sakai, R. and Jordan, S.C. (1984) 1α,25-Dihydroxyvitamin D3 Suppresses Proliferation and Immunoglobulin Production by Normal Human Peripheral Blood Mononuclear Cells. Journal of Clinical Investigation, 74, 657-661.
https://doi.org/10.1172/JCI111465
[16] Geldmeyer-Hilt, K., Heine, G., Hartmann, B., Baumgrass, R., et al. (2011) 1,25-Dihydroxyvitamin D3 Impairs NF-ΚB Activation in Human Naïve B Cells. Biochemical and Biophysical Research Communications, 407, 699-702.
https://doi.org/10.1016/j.bbrc.2011.03.078
[17] 宋石开, 李双蕾, 胡洲映, 等. 基于肾藏精探讨维生素D与痛性糖尿病周围神经病变的相关性[J]. 西部中医药, 2023, 36(7): 142-145.
[18] 张惠敏. 维生素D联合阿奇霉素佐治儿童肺炎支原体肺炎的临床研究[D]: [硕士学位论文]. 遵义: 遵义医科大学, 2020.
https://doi.org/10.27680/d.cnki.gzyyc.2020.000043
[19] Yamamoto, E.A., Nguyen, J.K., Liu, J., Keller, E., Campbell, N., Zhang, C.-J., Smith, H.R., Li, X. and Jørgensen, T.N. (2020) Low Levels of Vitamin D Promote Memory B Cells in Lupus. Nutrients, 12, Article No. 291.
https://doi.org/10.3390/nu12020291
[20] Channappanavar, R. and Perlman, S. (2017) Pathogenic Human Corona-virus Infections: Causes and Consequences of Cytokine Storm and Immunopathology. Seminars in Immunopathology, 39, 529-539.
https://doi.org/10.1007/s00281-017-0629-x
[21] Luk, A.O.Y., Lau, E.S.H., Cheung, K.K.T., Kong, A.P.S., Ma, R.C.W., Ozaki, R., Chow, F.C.C., So, W.-Y. and Chan, J.C.N. (2017) Glycaemia Control and the Risk of Hospitalisa-tion for Infection in Patients with Type 2 Diabetes: Hong Kong Diabetes Registry. Diabetes/Metabolism Research and Reviews, 33, e2923.
https://doi.org/10.1002/dmrr.2923
[22] Amento, E.P., Bhalla, A.K., Kurnick, J.T., Kradin, R.L., Clemens, T.L., Holick, S.A., Holick, M.F. and Krane, S.M. (1984) 1α,25-Dihydroxyvitamin D3 Induces Maturation of the Human Monocyte Cell Line U937, and, in Association with a Factor from Human T Lymphocytes, Augments Pro-duction of the Monokine, Mononuclear Cell Factor. Journal of Clinical Investigation, 73, 731-739.
https://doi.org/10.1172/JCI111266
[23] Luk, A.O.Y., Wu, H., Lau, E.S.H., Yang, A., So, W.-Y., Chow, E., Kong, A.P.S., Hui, D.S.C., Ma, R.C.W. and Chan, J.C.N. (2021) Temporal Trends in Rates of Infection-Related Hospitalisa-tions in Hong Kong People with and without Diabetes, 2001-2016: A Retrospective Study. Diabetologia, 64, 109-118.
https://doi.org/10.1007/s00125-020-05286-2
[24] Ceriello, A. (2000) Oxidative Stress and Glycemic Regulation. Metabolism, 49, 27‐29.
https://doi.org/10.1016/S0026-0495(00)80082-7
[25] Hurrle, S. and Hsu, W.H. (2017) The Etiology of Oxidative Stress in Insulin Resistance. Biomedical Journal, 40, 257‐262.
https://doi.org/10.1016/j.bj.2017.06.007
[26] Tangvarasittichai, S. (2015) Oxidative Stress, Insulin Resistance, Dyslipidemia and Type 2 Diabetes Mellitus. World Journal of Diabetes, 6, 456‐480.
https://doi.org/10.4239/wjd.v6.i3.456
[27] Asmat, U., Abad, K. and Ismail, K. (2016) Diabetes Mellitus and Oxi-dative Stress—A Concise Review. Saudi Pharmaceutical Journal, 24, 547‐553.
https://doi.org/10.1016/j.jsps.2015.03.013
[28] Yu, T., Jhun, B.S. and Yoon, Y. (2011) High‐Glucose Stimulation Increases Reactive Oxygen Species Production through the Calcium and Mitogen‐Activated Protein Kinase‐Mediated Ac-tivation of Mitochondrial Fission. Antioxidants & Redox Signaling, 14, 425‐437.
https://doi.org/10.1089/ars.2010.3284
[29] Luo, J., Xiang, Y., Xu, X., et al. (2018) High Glucose‐Induced ROS Production Stimulates Proliferation of Pancreatic Cancer via Inactivating the JNK Pathway. Oxidative Medicine and Cel-lular Longevity, 2018, Article ID: 6917206.
https://doi.org/10.1155/2018/6917206
[30] Tanifuji, C., Suzuki, Y., Geot, W.M., et al. (2005) Reactive Oxygen Species‐Mediated Signaling Pathways in Angiotensin II‐Induced MCP‐1 Expression of Proximal Tubular Cells. Anti-oxidants & Redox Signaling, 7, 1261‐1268.
https://doi.org/10.1089/ars.2005.7.1261
[31] 张琳, 刘森, 高凤敏. 血清Cys C在心力衰竭中的研究进展[J]. 牡丹江医学院学报, 2023, 44(4): 154-157+115.
https://doi.org/10.13799/j.cnki.mdjyxyxb.2023.04.002
[32] Kwon, D.H., Lee, H., Park, C., et al. (2019) Glutathi-one Induced Immune-Stimulatory Activity by Promoting M1‐Like Macrophages Polarization via Potential ROS Scav-enging Capacity. Antioxidants, 8, Article No. 413.
https://doi.org/10.3390/antiox8090413
[33] Fatehi‐Hassanabad, Z., Chan, C.B. and Furman, B.L. (2010) Reactive Oxygen Species and Endothelial Function in Diabetes. European Journal of Pharmacology, 636, 8‐17.
https://doi.org/10.1016/j.ejphar.2010.03.048
[34] Chen, C., Mahar, R., Merritt, M.E., et al. (2021) ROS and Hy-poxia Signaling Regulate Periodic Metabolic Arousal during Insect Dormancy to Coordinate Glucose, Amino Acid, and Lipid Metabolism. Proceedings of the National Academy of Sciences of the United States of America, 118, e2017603118.
https://doi.org/10.1073/pnas.2017603118
[35] 吴劼, 李宏云. 肠道菌群与慢性阻塞性肺疾病的相关性[J]. 河南医学研究, 2022, 31(21): 4023-4028.
[36] 吕凌波, 柴杰, 刘君英, 等. 深圳市糖尿病患者维生素D营养状态调查分析[J]. 深圳中西医结合杂志, 2022, 32(24): 25-28.
https://doi.org/10.16458/j.cnki.1007-0893.2022.24.008
[37] 王研, 丁旭, 黄艳红. 维生素D对多囊卵巢综合征患者生育影响的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(5): 393-396.
[38] Sekhar, R.V., McKay, S.V., Patel, S.G., et al. (2011) Glutathione Synthesis Is Diminished in Patients with Uncontrolled Diabetes and Restored by Dietary Supplementation with Cysteine and Glycine. Diabetes Care, 34, 162‐167.
https://doi.org/10.2337/dc10-1006
[39] Strange, R.C., Shipman, K.E. and Ramachandran, S. (2015) Metabolic Syndrome: A Review of the Role of Vitamin D in Mediating Susceptibility and Outcome. World Journal of Diabetes, 6, 896-911.
https://doi.org/10.4239/wjd.v6.i7.896
[40] Berridge, M.J. (2017) Vitamin D Deficiency and Diabetes. Biochemical Journal, 474, 1321-1332.
https://doi.org/10.1042/BCJ20170042
[41] 王银. 维生素D营养状态与足月儿早发型脓毒症炎性因子的相关性[D]: [硕士学位论文]. 延安: 延安大学, 2023.
https://doi.org/10.27438/d.cnki.gyadu.2022.000646
[42] 张瑞钰, 刘诗贺, 邾门亮, 等. 维生素D缺乏对多囊卵巢综合征患者代谢影响的研究进展[J]. 生理科学进展, 2022, 53(3): 213-218.
[43] Szymczak-Pajor, I. and Śli-wińska, A. (2019) Analysis of Association between Vitamin D Deficiency and Insulin Resistance. Nutrients, 11, Article No. 794.
https://doi.org/10.3390/nu11040794
[44] Altieri, B., Grant, W.B., Della, S., Orio, F., Pontecorvi, A., Colao, A., et al. (2017) Vitamin D and Pancreas: The Role of Sunshine Vitamin in the Pathogenesis of Diabetes Mellitus and Pancreatic Cancer. Critical Reviews in Food Science and Nutrition, 57, 3472-3488.
https://doi.org/10.1080/10408398.2015.1136922
[45] Nicholls, D.G. (2016) The Pancreatic β-Cell: A Bioenergetic Perspective. Physiological Reviews, 96, 1385-1447.
https://doi.org/10.1152/physrev.00009.2016
[46] Manna, P. and Jain, S.K. (2012) Vitamin D Up-Regulates Glu-cose Transporter 4 (GLUT 4) Translocation and Glucose Utilization Mediated by Cystathioninin-y-lyase (CSE) Activa-tion and H2S Formation in 3T3L1 Adipocytes. Journal of Biological Chemistry, 287, 42324-42332.
https://doi.org/10.1074/jbc.M112.407833
[47] 庄颖洁, 刘文徽, 刘正一, 等. 代谢相关脂肪性肝病的流行病学现状及诊治研究进展[J/OL]. 解放军医学杂志: 1-18.
http://kns.cnki.net/kcms/detail/11.1056.R.20230804.1745.006.html, 2023-08-16.
[48] 李思远, 宋娟, 吴锦晖. 肌少性肥胖与代谢综合征关系的研究进展[J]. 实用老年医学, 2023, 37(6): 623-625.
[49] Li, Q. and Xing, B. (2016) Vitamin D3-Supplemented Yogurt Drink Improves Insulin Resistance and Lipid Profiles in Women with Gestational Diabetes Mellitus: A Randomized Double Blinded Clinical Trial. Annals of Nutrition & Metabolism, 68, 285-290.
https://doi.org/10.1159/000447433
[50] 李桂涛, 赵永, 张旭, 等. 小剂量胰岛素联合电解质治疗儿童糖尿病酮症酸中毒临床疗效评价[J]. 黑龙江医药科学, 2022, 45(4): 1-3.
[51] Liu, C., Wang, J., Wan, Y., et al. (2018) Se-rum Vitamin D Deficiency in Children and Adolescents Is Associated with Type 1 Diabetes Mellitus. Endocrine Connec-tions, 7, 1275-1279.
https://doi.org/10.1530/EC-18-0191
[52] Cooper, J.D., Smyth, D.J., Walker, N.M., et al. (2011) Inherited Variation in Vitamin D Genes Is Associated with Predisposition to Autoimmune Disease Type 1 Diabe-tes. Diabetes, 60, 1624-1631.
https://doi.org/10.2337/db10-1656
[53] Ordooei, M., Shojaoddiny-Ardekani, A., Hoseinipoor, S.H., Miroliai, M. and Zare-Zardini, H. (2017) Effect of Vitamin D on HbA1c Levels of Children and Ad-olescents with Diabetes Mellitus Type 1. Minerva Pediatrica, 69, 391-395.
https://doi.org/10.23736/S0026-4946.16.04145-1
[54] Al Shaikh, A. and Al Zahrani, A.M. (2016) Impact of Vita-min D Status on Cardiometabolic Complications among Children and Adolescents with Type 1 Diabetes Mellitus. Jour-nal of Clinical Research in Pediatric Endocrinology, 8, 48-54.
https://doi.org/10.4274/jcrpe.2266
[55] 贾玉姣. 2型糖尿病患者甘油三酯葡萄糖指数与血清维生素D的相关性研究[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2023.
https://doi.org/10.27111/d.cnki.ghyku.2022.000621
[56] Treiber, G., Prietl, B., Fröhlich-Reiterer, E., et al. (2015) Cholecalciferol Supplementation Improves Suppressive Capacity of Regulatory T-Cells in Young Patients with New-Onset Type 1 Diabetes Mellitus—A Randomized Clinical Trial. Clinical Immunology, 161, 217-224.
https://doi.org/10.1016/j.clim.2015.08.002
[57] 刘旭阳. 1,25-(OH)2D3在组织蛋白酶G介导1型糖尿病胰岛功能损伤中的作用研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023.
https://doi.org/10.27232/d.cnki.gnchu.2023.001330
[58] 孟永杰, 陶文远, 王圆, 等. 维生素D与常见内分泌疾病关系的研究进展[J]. 中医临床研究, 2023, 15(12): 138-144.
[59] Zipitis, C.S. and Akobeng, A.K. (2008) Vita-min D Supplementation in Early Childhood and Risk of Type 1 Diabetes: A Systematic Review and Meta-Analysis. Ar-chives of Disease in Childhood, 93, 512-517.
https://doi.org/10.1136/adc.2007.128579
[60] Hyppönen, E., Läärä, E., Reunanen, A., Järvelin, M.R. and Virtanen, S.M. (2001) Intake of Vitamin D and Risk of Type 1 Diabetes: A Birth-Cohort Study. The Lancet, 358, 1500-1503.
https://doi.org/10.1016/S0140-6736(01)06580-1
[61] Khan, Z., Muhammad, S.A., Carpio, J., Yousif, Y., Gul, A., Hamid, S. and Gupta, A. (2023) The Effect of Vitamin D Supplementation on Incidence of Type 2 Diabetes: A System-atic Review. Cureus, 15, e36775.
https://doi.org/10.7759/cureus.36775
[62] Heath, A.K., Williamson, E.J., Hodge, A.M., et al. (2019) Vitamin D Status and the Risk of Type 2 Diabetes: The Melbourne Collaborative Cohort Study. Diabetes Research and Clinical Practice, 149, 179-187.
https://doi.org/10.1016/j.diabres.2018.05.007
[63] Dutta, D., Mondal, S.A., Choudhuri, S., et al. (2014) Vitamin-D Supplementation in Prediabetes Reduced Progression to Type 2 Diabetes and Was Associated with Decreased Insulin Resistance and Systemic Inflammation: An Open Label Randomized Prospective Study from Eastern India. Diabetes Re-search and Clinical Practice, 103, E18-E23.
https://doi.org/10.1016/j.diabres.2013.12.044
[64] Ahmed, M.M., Zingade, U.S. and Badaam, K.M. (2020) Effect of Vitamin D3 Supplementation on Insulin Sensitivity in Prediabetes with Hypovitaminosis D: A Randomized Place-bo-Controlled Trial. Cureus, 12, e12009.
https://doi.org/10.7759/cureus.12009