P63在HER2低表达乳腺癌中的表达及临床意义
Expression and Clinical Significance of P63 in HER2 Low-Expression Breast Cancer
DOI: 10.12677/ACM.2023.13122621, PDF, HTML, XML, 下载: 113  浏览: 172 
作者: 冯 月*, 张立雪:新疆医科大学第三临床医学院,新疆 乌鲁木齐;欧江华#:新疆医科大学附属肿瘤医院乳腺外科(二病区),新疆 乌鲁木齐
关键词: P63蛋白HER2低表达乳腺癌预后P63 Protein HER2 Low Expression Breast Cancer Prognosis
摘要: 乳腺癌是全球女性常见的恶性肿瘤,而乳腺癌患者的转移和浸润是影响患者生存预后的主要因素。目前,临床上将乳腺癌分为四种,即Luminal A型、Luminal B型、HER2过表达型及三阴型乳腺癌,不同分子分型的乳腺癌细胞在增殖、凋亡、迁移、侵袭等方面具有明显差异,其中最常见的为HER2过表达型乳腺癌。HER2的过表达使乳腺癌细胞的转移风险增高,而且与雌孕激素受体的表达情况及患者生存预后相关。HER2过表达一定程度影响细胞的恶性增殖,是患者预后的独立危险因素。2021年HER2低表达这一概念的提出,将传统的“HER2阴性”细分为HER2零表达和HER2低表达,但其能否作为乳腺癌新的分型还需要进一步研究来验证。p63是p53家族的成员,在结构与功能上与p53高度同源,在肿瘤的发生发展及转移过程中至关重要。而在乳腺癌中,p63参与肿瘤细胞的侵袭和转移等重要过程,研究发现ΔNp63在HER2调节的细胞侵袭和散射中也起重要作用。ΔNp63就通常高表达于具有化生和基底样特征的肿瘤,这些肿瘤通常就是三阴型乳腺癌,目前部分HER2低表达人群仍被归类于三阴型乳腺癌中。因此,本文就p63蛋白与HER2低表达型乳腺癌及其相关性与临床意义等方面进行综述,为p63的意义及HER2低表达型乳腺癌的后续研究提供理论依据。
Abstract: Breast cancer is a common malignant tumor in women all over the world, and the metastasis and invasion of breast cancer patients are the main factors affecting the survival prognosis. At present, there are four types of breast cancer: Luminal A, Luminal B, HER2 over-expression type and triple negative type. There are significant differences in proliferation, apoptosis, migration and invasion among breast cancer cells of different molecular types, the most common of which is HER2 overex-pression. Overexpression of HER2 increases the metastatic risk of breast cancer cells and is associ-ated with estrogen receptor and progesterone receptor expression and patient survival. The over-expression of HER2 may affect the malignant proliferation of cells to some extent and is an inde-pendent risk factor for the prognosis of patients. The concept of HER2 low-expression subdivides the traditional “HER2 negative” into HER2 zero-expression and HER2 low-expression in 2021, but whether it can be used as a new classification of breast cancer needs further study. P63 is a member of p53 family, which is highly homologous with p53 in structure and function, and plays an im-portant role in tumorigenesis, development and metastasis. In breast cancer, p63 is involved in the invasion and metastasis of tumor cells. ΔNp63 also plays an important role in HER2-regulated cell invasion and scattering. ΔNp63 is usually highly expressed in tumors with metaplastic and ba-sal-like features, and these tumors are usually triple-negative breast cancers, and some low- ex-pression HER2 populations are still classified as triple-negative breast cancers. Therefore, this arti-cle reviews p63 protein and HER2 low-expression breast cancer and its correlation and clinical sig-nificance, which provides a theoretical basis for the follow-up study of p63 and HER2 low- expres-sion breast cancer.
文章引用:冯月, 张立雪, 欧江华. P63在HER2低表达乳腺癌中的表达及临床意义[J]. 临床医学进展, 2023, 13(12): 18644-18652. https://doi.org/10.12677/ACM.2023.13122621

1. 引言

乳腺癌是目前女性最常见的恶性肿瘤,其发病率呈逐年上升趋势,2023年全球最新癌症报告 [1] 显示,乳腺癌占比增高约达31%,新发病例约226万,远超女性其他癌症,已取代肺癌成为全球第一大癌,占全球癌症的11.7%。而在癌症死亡人数中,乳腺癌也位居全球女性癌症死亡人数榜首,约68万。目前临床上乳腺癌主要分为Luminal A型、Luminal B型和人表皮生长因子受体-2 (human epidermal growth factor receptor 2, HER2)过表达型以及三阴型乳腺癌(triple negative breast cancer, TNBC) 4种类型 [2] 。近年来,随着病理检测的改进及抗体药物偶联物(antibody-drug conjugates, ADC)的应用获得显著疗效 [3] ,HER2低表达型乳腺癌渐渐进入人们的视野,其临床及分子表型特点也逐渐成为人们关注的焦点。研究发现ADC药物具有靶向选择性,利用HER2靶向单克隆抗体的高特异性和各种小分子的强效细胞毒性作用,ADC药物通过旁观者效应在抗肿瘤治疗中发挥作用 [4] 。基于DESTINY-Breast 01 I期、II期、DESTINY-Breast 03 III期和DESTINY-Breast 04 III期临床试验的数据,曲妥珠单抗(T-DXd)被批准用于化疗或复发的不可切除或转移性HER2低表达乳腺癌患者的治疗 [5] [6] [7] [8] 。DESTINY-Breast 04 III期临床试验 [6] 进一步揭示,在总人群中,T-DXd组的mPFS有同样的获益结果(9.9个月VS 5.1个月,P < 0.0001)。总生存率(OS)方面,HR阳性人群中T-DXd组较TPC组延长6.4个月(23.9个月VS 17.5个月,HR = 0.64,P < 0.0028);总人群中T-DXd组与TPC组OS分别为23.4个月和6.8个月(HR = 0.64, P < 0.0010)。

2. HER2在乳腺癌中的应用及意义

2.1. HER2的定义及结构

HER2属于表皮生长因子受体家族(EGFR),是一种存在于某些肿瘤细胞表面的跨膜受体蛋白,具有酪氨酸激酶活性,位于染色体17q21,分子量约为185 kD,故又称为p185 [9] 。HER2蛋白由ERBB2基因编码,是乳腺癌生物学中重要的原癌基因 [10] 。HER2蛋白结构由3部分组成,即胞外结合域(the extracellular domain, ECD)、跨膜结构域(a transmembrane domain, TM)及胞内结构域(an intrcellular domain, ICD)。ECD又可分4个亚结构域,其中I、III亚结构域是配体的结合位点,而II、IV亚结构域则存在丰富的半胱氨酸,可以形成同源或异源二聚体。TM通常为α螺旋结构。在ICD包含了重要的环状结构,构成了酪氨酸激酶的活性位点 [11] [12] 。

2.2. HER2介导的信号通路及功能

HER2主要参与RAS-RAF-MEK-ERK及PI3K-AKT-mTOR通路。由于缺乏配体,HER2与HER3、HER4等形成二聚体,通过二聚化构象反应激活胞内的酪氨酸激酶,完成下游信号通路的启动。在细胞膜内,鸟苷酸交换因子(SOS)结合相应受体,使质膜RAS-GDP转换为RAS-GTP。之后激活丝氨酸-苏氨酸激酶(RAF)和具有双重激酶活性的MEK。最终,级联激活丝裂原活化蛋白激酶(ERK)。ERK的激活将信号传至细胞核内,使多种转录因子得到活化。另一方面,ERBB2扩增导致HER2受体过度表达,信号通路发生转导级联,使细胞膜内侧的酪氨酸残基磷酸化,激活磷脂酰肌醇激酶(phosphoinositide 3-kinase, PI3K)/蛋白激酶B (protein Kinase B, PKB)细胞信号通路,诱导AKT活化;同时激活丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)等信号通路 [13] ,进一步激活了mTOR。PI3K-AKT-mTOR通路参与了细胞的增殖分化、迁移侵袭以及肿瘤的耐药敏感性,使肿瘤细胞更具有侵袭性和传播性 [14] 。更为重要的是,许多研究表明HER2所介导的这两条信号通路与多种癌症疾病紧密相关 [15] 。

2.3. HER2的检测

随着新型ADC药物用于HER2低表达乳腺癌的治疗,鉴别HER2零表达和HER2低表达亚型具有重要意义。现阶段,HER2的检测分为基因诊断和蛋白检测2种。基因扩增情况采用原位杂交(in situ hybridization, ISH)法,常用荧光原位杂交(fluorescence in situ hybridization, FISH)。蛋白检测则采用免疫组织化学(immunohistochemistry, IHC)法,目前临床上通常将二者联合判断制定诊疗方案 [16] 。当IHC结果提示HER2 (3+)或(2+)且伴有FISH基因扩增者为HER2阳性,即HER2过表达型乳腺癌,而IHC结果显示HER2表达为(0)、(1+)或(2+)伴FISH显示基因无扩增定义为HER2阴性。

目前HER2的检测主要区分HER2基因有无扩增,但不够敏感,HER2在低范围内(0和1+)的染色强度差异较小,病理阅片易受主观影响,难以进一步在低表达中再细分。研究 [17] 显示,HER2在肿瘤中的表达较为广泛,从大约1000个分子到超过1,000,000个分子/细胞 [18] 。Moutafi M、Robbins CJ等人确定了乳腺癌中未扩增HER2检测的最佳动态范围,根据HER2范围的灵敏度和线性度重新设计了一种检测方法 [19] ,使HER2的分层更加精确。该方法使用定量免疫荧光与质谱标准化的HER2阵列耦合,测量绝对量的HER2蛋白在传统的组织学切片中的表达情况。

2.4. HER2低表达型乳腺癌

DESTINY-Breast 04临床试验研究发现,ADC药物对HER2低表达乳腺癌患者的预后有显著疗效,因此,对HER2的精准区分也成为乳腺癌病理领域的关注重点。“HER2低表达”这一概念在2021年版《乳腺癌诊疗指南》中首次被提出,指南明确细化了既往定义为“HER2阴性”乳腺癌的临床分型。许多诊疗指南也重新定义了HER2低表达乳腺癌的概念,即IHC检测为1+或2+伴有ISH结果为阴性者为HER2低表达 [20] 。2018年版美国临床肿瘤学会(American Society of Clinical Oncology, ASCO)/美国病理学家学会(College of American Pathologists, CAP)及HER2检测指南 [21] 研究表明,目前HER2低表达人群的治疗仍遵循Luminal型及TNBC的诊疗指南,这对于乳腺癌的精准治疗来说是不够的。HER2过表达型乳腺癌细胞膜表面约有200万个HER2受体,而HER2低表达患者的肿瘤细胞表面只有少量的HER2表达,因此难以从曲妥、帕妥等靶向药物治疗中取得显著效果 [22] 。HER2的过高表达是乳腺癌患者发生转移的重要因素之一,而乳腺癌患者转移又是患者死亡的主要因素。HER2过表达促进以高耐药率和缩短生存率为特征的侵袭性疾病表型。HER2的过度表达使肿瘤细胞更具转化活性 [23] ,大大增加了复发转移的概率,缩短患者的无病生存期和总生存期。多项研究表明 [4] ,HER2基因的扩增与较高的癌症复发率和较短的无病和总生存期有关。研究 [24] 发现,组织学分级越高、有淋巴结转移的患者,HER2的阳性表达率越高(P < 0.05)。而HER2过表达者对化疗的耐药性更高。HER2能够加快乳腺癌细胞生长,并与肿瘤恶性侵袭及TNM分期具有相关性 [25] 。在所有乳腺癌类型中,HER2低表达乳腺癌患者总患病率约占所有乳腺癌患者的一半,激素受体阳性比例高于阴性,原发肿瘤体积相较于HER2无表达患者更大,且更易出现淋巴结转移。HER2表达在单个肿瘤和转移病灶间具有异质性,且随着疾病进展及治疗周期,表达状态也可能会有所改变 [26] 。HER2低表达乳腺癌能否成为一种新的亚型及该类患者能否从传统的靶向治疗中改善预后是目前的聚焦点 [27] 。

2.5. HER2在其他肿瘤中的表达情况及研究进展

ERBB2原癌基因通过高水平扩增诱导HER2蛋白过表达,使细胞获得致癌性。现有的研究发现HER2参与多种肿瘤的生长分化,抑制肿瘤细胞凋亡,同时促进肿瘤细胞新生血管的形成,从而使肿瘤具备更强的侵袭性和转移性,包括乳腺癌、胃癌、结直肠癌、卵巢癌、子宫内膜癌、膀胱癌等 [28] 。其中,在乳腺癌和胃癌中HER2的研究最为成熟。研究表明,HER2过表达乳腺癌有更强的浸润性、更早的复发和转移可能性、患者的生存预后也相对更差。该类患者对化学疗法和激素疗法不敏感。超过20%的胃癌患者病理提示HER2过表达。研究表明,HER2表达患者的预后较不表达者更差,HER2阳性的晚期胃癌患者通过靶向治疗可显著改善预后。但也有研究发现胃癌患者的预后与HER2是否过表达无关 [29] 。另外,HER2结合肿瘤抗原标志物的血清学检验可为胃癌的诊断提供较高价值 [30] ,是胃癌的早期筛查与后续病情进展状况监测的重要依据。HER2在结直肠癌组织中已经报道了不同的HER2过表达率 [31] ,并且HER2与其他EGFR家族及血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)联合检测对患者预后的判断具有重要意义 [32] 。随着疾病的逐渐进展,HER2的活性也逐渐增高,同时提示肿瘤细胞的侵袭及转移风险也逐渐增高。在尿路上皮癌(Urothelial cancer, UC)中,HER2高表达占比约10%~20%,研究 [33] 发现HER2的单独表达或与EGFR及ERBB3共表达均与非肌层浸润性和肌层浸润性UC患者的生存有关。研究 [34] 显示,在肌层浸润性膀胱癌患者中,同步放疗和顺铂为基础的化疗的HER2阳性患者治疗后完全缓解率显著降低。另有研究 [35] 指出,HER2在宫颈癌、卵巢癌、子宫内膜癌中均呈过表达状态。但在输卵管癌中是否存在过表达尚无定论。Shi等 [36] 发现HER2在宫颈癌中表达有明显差异。在卵巢癌中HER2基因与其他信号通路(Wnt/β-catenin) [37] ,共同促进癌细胞发生转移。Kalogiannidis [38] 等研究发现,HER2表达量在Ⅰ型子宫内膜癌的原发灶和转移灶中的表达不同,是其独立预后因素。HER2在子宫浆液性癌中也高度表达 [39] ,在HER2过表达的晚期或复发患者的化疗中加入曲妥珠单抗,可显著提高患者无进展生存期进而改善预后。而在脑膜瘤中,HER2的过表达调控相关信号传导通路,从而促进肿瘤细胞增殖和分化,并抑制肿瘤细胞凋亡 [40] 。同时HER2过表达也可影响VEGF水平,使血管内皮细胞增殖促进新生血管形成,为肿瘤细胞提供丰富的血流供应,进而增加脑膜瘤术后复发风险 [41] 。

3. TP63基因在乳腺癌中的应用及意义

3.1. TP63基因及其编码的p63蛋白

肿瘤蛋白63 (Tumor protein 63, p63)是p53基因家族的转录因子,由TP63基因编码,定位于染色体3q27-29上 [42] ,其下游为p53共有的靶基因,故与p53高度同源,该基因家族在肿瘤发生十分重要 [43] 。p63激活p53相关基因及信号通路诱发细胞凋亡,属于肿瘤抑制基因 [44] 。人TP63基因表达至少6种mRNA变体,编码6种不同的蛋白异构体 [45] 。根据有无完整的N端转录激活域(TAD),分为全长亚型(TAp63)和N端截断氨基缺失亚型(ΔNp63),后者在N端只有一段不完整的TAD [46] [47] ,二者表达的蛋白作用相反;根据C端的剪接方式不同,又分为α、β、γ三个亚型 [48] ,其中α为全长的亚型,β为在外显子12之后截断形成的亚型,γ为剪切掉外显子11~14后增加外显子15后所形成的亚型。

3.2. p63在乳腺癌中的意义及相关研究

在正常乳腺组织中,p63是一种特异的肌上皮细胞标记物,其表达提示肌上皮表型,有较强的特异性和敏感性,可用于乳腺病变的辅助诊断 [49] 。ΔNp63亚型(主要为ΔNp63α)主要表达于成年基底上皮细胞 [50] 和胸腺上皮细胞 [51] ,主要维持乳腺上皮细胞的基底细胞特性、调节腔细胞增殖和分化 [52] 。TAp63主要是一个封闭的二聚体,由于其C端和N端的特殊结构域阻断了寡聚结构域,故活性较低。先前的研究 [53] 也已经揭示TAp63亚型可以触发细胞凋亡和坏死,在上皮组织、神经元和生殖系中,TAp63亚型在DNA损伤或其他应激反应中表达 [42] ;而ΔNp63可以促进细胞活力和增殖。这两个亚型在肿瘤的发生和发展中发挥重要作用。p63主要参与细胞周期调控、增殖和发育、DNA损伤反应的相关代谢、介导p53相关的信号通路以及参与肿瘤的形成与凋亡等。其翻译产物对维持人上皮干细胞群至关重要 [54] ,对于包括乳腺在内的所有上皮组织的正常发育 [55] 也是必要的。

为了研究p63在基底细胞中的功能作用,Marta等人建立了诱导表达两种主要N端p63亚型TAp63α和ΔNp63α的MDA-MB468细胞株,从研究中得出结论 [56] ,在基础A型TNBC细胞中,ΔNp63α对基因表达的影响比TAp63α强得多。虽然p63主要与乳腺细胞分化和干细胞调节有关,但我们发现p63的一个主要作用是调节细胞粘附,这是肿瘤细胞转移和侵袭的重要过程。这种作用在间叶型TNBC细胞中未见,提示其功能依赖于谱系,反映了ΔNp63α在原发性乳腺癌中的表达。另有实验 [57] 表明,p63的缺失与乳腺癌的发展和转移具有相关性,但研究结果尚未统一,可能与p63基因具有两个启动子和多种内含子剪切方式,编码产生多种亚型p63蛋白有关,其相关作用有待进一步研究。苗洋洋等 [58] 研究也表明,在浸润性乳腺癌患者中p63几乎无表达,但针对淋巴结转移者,p63在无淋巴结转移中的表达高于淋巴结转移者,说明p63缺失与乳腺癌发展及转移有关。

3.3. p63在其他肿瘤中的表达情况及研究进展

不同组织器官、生长发育时期及病理生理条件的变化等均会影响p63基因的调控,从而导致蛋白亚型异常表达。p63在不同病理类型的肺癌中表达不同,在肺鳞癌的诊断的灵敏度高达93.75% [59] ,可较好的鉴别鳞癌和腺癌。食管癌组织中p63的阳性率明显高于癌旁组织 [60] ,同时有淋巴结转移的食管癌组织中p63的阳性表达率明显高于无淋巴结转移者。除此,p63可调节一组不同的miRNA,其中miR-205为公认靶点 [61] ,是膀胱癌和胰腺癌上皮–间充质转化及转移的抑制因子。Martens等 [62] 研究发现p63蛋白与HPV感染及宫颈癌密切相关,但各p63亚型的表达及作机制目前尚未明确。Tuppi M等研究 [63] 发现,通过干扰激活TAp63α激酶进一步抑制TAp63α,可以在卵巢癌治疗期间预防卵巢早衰。李冰等人研究 [64] 发现,p63在前列腺疾病中有鉴别作用,在大多良性增生或低级别上皮肉瘤中p63呈阳性,在高级别上皮肉瘤中p63表达间断性消失,而在前列腺癌中绝大多数呈阴性表达。基底细胞消失是前列腺癌的重要依据,但由于p63在基底细胞中呈间断性表达,其阴性结果不能直接诊断前列腺癌。Kumakura等的研究 [65] 进一步证实,p63与膀胱癌的进展及复发转移有直接相关性,p63阳性组患者的无复发生存率较p63阴性组低。

4. p63与HER2低表达的相关性

目前部分HER2低表达患者仍被归类于TNBC中,而ΔNp63就通常高表达于具有化生和基底样特征的乳腺癌,大多表现为TNBC [66] [67] 。HER2在乳腺癌的发生和转移中起着重要作用。在小鼠乳腺肿瘤病毒(MMTV)驱动的ERBB2转基因小鼠的肿瘤发生模型中,发现ΔNp63是HER2型乳腺癌肿瘤干细胞(The cancer stem cell, CSC)的主调节因子 [68] [69] 。钙粘连蛋白(E-cadherin)是转移抑制因子,有研究 [70] 指出,ΔNp63通过促进E-cadherin而发挥HER2诱导的细胞侵袭的抑制作用,在HER2调节的细胞侵袭和散射中发挥作用。但现有的理论及临床研究暂未明确二者间的相关性。

5. 讨论

p63是目前具有鉴别性的乳腺肌上皮细胞标记物,有较强的特异性和敏感性,能客观地展现腺泡和导管的细胞学结构,对乳腺疾病的诊断及鉴别起到较好的辅助作用。肌上皮细胞是否表达是诊断导管或小叶增生还是原位癌变、乳头状瘤或乳头状癌、原位癌或浸润癌,良性假浸润性病变或癌性浸润等的重要参考指标。HER2在乳腺癌的发生发展、侵袭预后及抗HER2靶向治疗中起着重要作用。HER2过表达对乳腺癌的预后评价及指导治疗有重要意义。近年来,抗HER2靶向治疗一直是乳腺癌研究的热点。这些研究结果加深了我们对低表达乳腺癌的分型与诊疗方案的认识,但目前还不够系统,HER2低表达也暂未被单独定义。由于HER2低表达乳腺癌患者的比例较大,只有开发精准医学策略才能提高这些患者的生存率,这也强调了这一亚群患者在未来实践中的重要性。目前p63在乳腺癌中的研究取得进展,与乳腺癌的诊断及患者预后相关,并对HER2低表达乳腺癌患者的治疗提供思路。但现阶段对p63的检测不统一,对不同p63亚型的生物学功能及作用机制缺乏完整、系统的认识,p63与肿瘤侵袭和转移的关系各文献报道不尽相同,目前尚无定论。这将成为今后对p63研究的主题,研究结果可以为HER2低表达乳腺癌提供更为精准的治疗方案。此外,对于在乳腺良恶性肿瘤的鉴别诊断以及分化程度的判定中,p63也发挥重要作用。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Cardoso, F., Kyriakides, S., Ohno, S., et al. (2021) Erratum to “Early Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up”: Annals of Oncology 30; 2019: 1194-1220. Annals of Oncology, 32, 284.
https://doi.org/10.1016/j.annonc.2020.08.2158
[3] Tarantino, P., Hamilton, E., Tolaney, S., et al. (2020) HER2-Low Breast Cancer: Pathological and Clinical Landscape. Journal of Clinical Oncology, 38, 1951-1962.
https://doi.org/10.1200/JCO.19.02488
[4] Najjar, M.K., Manore, S.G., Regua, A.T. and Lo, H.W. (2022) Anti-body-Drug Conjugates for the Treatment of HER2- Positive Breast Cancer. Genes, 13, Article 2065.
https://doi.org/10.3390/genes13112065
[5] Modi, S., Saura, C., Yamashita, T., et al. (2020) Abstract PD3-06: Updated Results from DESTINY-Breast01, a Phase 2 Trial of Trastuzumab Deruxtecan (T-DXd ) in HER2 Positive Metastatic Breast Cancer. Cancer Research, 81, PD3-06.
[6] Modi, S., Jacot, W., Yamashita, T., et al. (2022) Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. The New England Journal of Med-icine, 387, 9-20.
https://doi.org/10.1056/NEJMoa2203690
[7] Modi, S., Saura, C., Yamashita, T., et al. (2020) Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. The New England Journal of Medicine, 382, 610-621.
https://doi.org/10.1056/NEJMoa1914510
[8] Cortés, J., Kim, S., Chung, W., et al. (2022) Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. The New England Journal of Medicine, 386, 1143-1154.
https://doi.org/10.1056/NEJMoa2115022
[9] Yarden, Y. (2001) Biology of HER2 and Its Importance in Breast Cancer. Oncology, 61, 1-13.
https://doi.org/10.1159/000055396
[10] Hayes, D. (2019) HER2 and Breast Cancer—A Phenomenal Success Sto-ry. The New England Journal of Medicine, 381, 1284-1286.
https://doi.org/10.1056/NEJMcibr1909386
[11] Sliwkowski, M.X. (2003) Ready to Partner. Nature Structural Bi-ology, 10, 158-159.
https://doi.org/10.1038/nsb0303-158
[12] Niazi, S., Purohit, M., Sonawani, A. and Niazi, J.H. (2018) Revealing the Molecular Interactions of Aptamers That Specifically Bind to the Extracellular Domain of HER2 Cancer Biomarker Protein: An in silico Assessment. Journal of Molecular Graphics & Modelling, 83, 112-121.
https://doi.org/10.1016/j.jmgm.2018.06.003
[13] 马心迪, 张香梅, 刘运江. HER2低表达乳腺癌诊断和治疗研究进展[J]. 中华肿瘤防治杂志, 2022, 29(12): 873-879.
[14] Marchiò, C., Annaratone, L., Marques, A., et al. (2021) Evolving Concepts in HER2 Evaluation in Breast Cancer: Heterogeneity, HER2-Low Carcinomas and beyond. Seminars in Cancer Biology, 72, 123-135.
https://doi.org/10.1016/j.semcancer.2020.02.016
[15] Mccubrey, J., Steelman, L., Chappell, W., et al. (2012) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance. Oncotarget, 3, 1068-1111.
https://doi.org/10.18632/oncotarget.659
[16] 刘月平, 步宏, 杨文涛. 2019版中国乳腺癌HER2检测指南更新解读[J]. 中华病理学杂志, 2019, 48(3): 182-185.
[17] Defazio-Eli, L., Strommen, K., Dao-Pick, T., et al. (2011) Quantitative Assays for the Measurement of HER1-HER2 Heterodimerization and Phosphorylation in Cell Lines and Breast Tumors: Applications for Diagnostics and Targeted Drug Mechanism of Action. Breast Cancer Research, 13, R44.
https://doi.org/10.1186/bcr2866
[18] Onsum, M., Geretti, E., Paragas, V., et al. (2013) Single-Cell Quantita-tive HER2 Measurement Identifies Heterogeneity and Distinct Subgroups within Traditionally Defined HER2-Positive Patients. The American Journal of Pathology, 183, 1446-1460.
https://doi.org/10.1016/j.ajpath.2013.07.015
[19] Moutafi, M., Robbins, C., Yaghoobi, V., et al. (2022) Quantita-tive Measurement of HER2 Expression to Subclassify ERBB2 Unamplified Breast Cancer. Laboratory Investigation, 102, 1101-1108.
https://doi.org/10.1038/s41374-022-00804-9
[20] 黄香, 蒋梦萍, 包胜南, 等. 2021年CSCO《乳腺癌诊疗指南》更新要点解读[J]. 中国肿瘤外科杂志, 2021, 13(3): 209-215.
[21] Wolff, A.C., Hammond, M.E.H., Allison, K.H., et al. (2018) Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncolo-gy/College of American Pathologists Clinical Practice Guideline Focused Update. Journal of Clinical Oncology, 36, 2105-2122.
[22] Li, Y., Sun, Y., Kulke, M., et al. (2021) Targeted Immunotherapy for HER2-Low Breast Cancer with 17p Loss. Science Translational Medicine, 13, eabc6894.
https://doi.org/10.1126/scitranslmed.abc6894
[23] 姜聪, 黄元夕. 系统免疫炎性反应指数对乳腺癌新辅助化疗病理完全缓解的预测作用及其与p53的关系[J]. 肿瘤防治研究, 2020, 47(10): 756-760.
[24] 霍斌亮, 祝旭龙, 田有伏, 等. her2、ki67、EGFR表达与乳腺癌生物学行为的关系及其预测复发转移的ROC分析[J]. 现代医学, 2022, 50(10): 1248-1255.
[25] 娄立平. T1-2期伴1-3个腋窝淋巴结转移术后未行放射治疗的乳腺癌患者局部复发风险及生存分析[D]: [硕士学位论文]. 天津: 天津医科大学, 2019.
[26] 陈欣, 李兰, 张帆. HER2低表达乳腺癌的研究进展[J]. 临床与实验病理学杂志, 2023, 39(8): 972-976.
[27] Won, H.S., Ahn, J., Kim, Y., et al. (2022) Clinical Significance of HER2-Low Expression in Early Breast Cancer: A Nationwide Study from the Korean Breast Cancer Society. Breast Cancer Research, 24, Article No. 22.
https://doi.org/10.1186/s13058-022-01519-x
[28] Park, J., Hong, K., Kirpotin, D., et al. (1997) Anti-HER2 Im-munoliposomes for Targeted Therapy of Human Tumors. Cancer Letters, 118, 153-160.
https://doi.org/10.1016/S0304-3835(97)00326-1
[29] 姜晨霞, 黄华. HER-2在胃癌中的表达及临床意义[J]. 交通医学, 2023, 37(3): 252-254, 258.
[30] 李玲. HER-2联合血清肿瘤标志物检测在胃癌诊断中的临床价值[J]. 广州医药, 2023, 54(7): 30-34.
[31] Ross, J., Fakih, M., Ali, S., et al. (2018) Targeting HER2 in Colorectal Cancer: The Landscape of Amplification and Short Variant Mutations in ERBB2 and ERBB3. Cancer, 124, 1358-1373.
https://doi.org/10.1002/cncr.31125
[32] 鲁全芝, 等. EGFR、Her-2及VEGF在结直肠癌组织中的表达及对患者治疗效果的影响[J]. 医药论坛杂志, 2023, 44(10): 18-22.
[33] Patelli, G., Zeppellini, A., Spina, F., et al. (2022) The Evolving Panorama of HER2-Targeted Treatments in Metastatic Urothelial Cancer: A Systematic Review and Future Perspectives. Cancer Treatment Reviews, 104, Article ID: 102351.
https://doi.org/10.1016/j.ctrv.2022.102351
[34] 陶铸磊, 方立, 马琪. 靶向HER2治疗药物在转移性尿路上皮癌中的研究进展[J]. 实用药物与临床, 2023, 26(9): 847-851.
[35] 李科翰, 黄文斌, 朱雪琼. 人表皮生长因子受体2基因在妇科恶性肿瘤中的研究进展[J]. 浙江医学, 2022, 44(17): 1901-1904, 1910.
[36] Shi, H., Shao, Y., Lu, W. and Lu, B.J. (2021) An Analysis of HER2 Amplification in Cervical Adenocarcinoma: Correlation with Clinical Out-comes and the International Endocervical Adenocarcinoma Criteria and Classification. The Journal of Pathology Clinical Research, 7, 86-95.
https://doi.org/10.1002/cjp2.184
[37] 刘芬芬, 高倩, 程民, 等. 人表皮生长因子受体2与wnt/β-catenin信号相互作用促进卵巢癌细胞转移[J]. 安徽医科大学学报, 2018, 53(3): 331-338.
[38] Kalogiannidis, I., Petousis, S., Bobos, M., et al. (2014) HER-2/Neu Is an Independent Prognostic Factor in Type I Endometrial Adeno-carcinoma. Archives of Gynecology and Obstetrics, 290, 1231-1237.
https://doi.org/10.1007/s00404-014-3333-2
[39] Fader, A., Roque, D., Siegel, E., et al. (2018) Randomized Phase II Trial of Carboplatin-Paclitaxel versus Carboplatin-Paclitaxel-Trastuzumab in Uterine Serous Carcinomas That Overex-press Human Epidermal Growth Factor Receptor 2/neu. Journal of Clinical Oncology, 36, 2044-2051.
https://doi.org/10.1200/JCO.2017.76.5966
[40] Yamanouchi, K., Kuba, S. and Eguchi, S. (2020) Hormone Recep-tor, Human Epidermal Growth Factor Receptor-2, and Ki-67 Status in Primary Breast Cancer and Corresponding Recur-rences or Synchronous Axillary Lymph Node Metastases. Surgery Today, 50, 657-663.
https://doi.org/10.1007/s00595-019-01831-8
[41] Li, G., Jia, X., Zhao, Q., et al. (2020) The Expression of Epi-dermal Growth Factor Receptor 1 and Human Epidermal Growth Factor Receptor 2 Based on Tumor Location Affect Survival in Gastric Cancer. Medicine, 99, e20460.
https://doi.org/10.1097/MD.0000000000020460
[42] Fisher, M.L., Balinth, S. and Mills, A.A. (2020) p63-Related Signaling at a Glance. Journal of Cell Science, 133, jcs228015.
https://doi.org/10.1242/jcs.228015
[43] Finlan, L. and Hupp, T. (2007) p63: The Phantom of the Tumor Suppressor. Cell Cycle, 6, 1062-1071.
https://doi.org/10.4161/cc.6.9.4162
[44] Harikrishnan, V., Titus, A.S., Cowling, R.T. and Kailasam, S. (2019) Collagen Receptor Cross-Talk Determines α- Smooth Muscle Actin-Dependent Collagen Gene Expression in Angioten-sin II-Stimulated Cardiac Fibroblasts. The Journal of Biological Chemistry, 294, 19723-19739.
https://doi.org/10.1074/jbc.RA119.009744
[45] King, K. and Weinberg, W. (2007) p63: Defining Roles in Mor-phogenesis, Homeostasis, and Neoplasia of the Epidermis. Molecular Carcinogenesis, 46, 716-724.
https://doi.org/10.1002/mc.20337
[46] Bourdon, J.C. (2007) p53 and Its Isoforms in Cancer. British Journal of Cancer, 97, 277-282.
https://doi.org/10.1038/sj.bjc.6603886
[47] Irwin, M. and Kaelin, W. (2001) Role of the Newer p53 Family Pro-teins in Malignancy. Apoptosis, 6, 17-29.
https://doi.org/10.1023/A:1009663809458
[48] 罗志刚, 朱明华, 宝建中. p63基因的研究进展[J]. 医学综述, 2005, 11(5): 441-443.
[49] 刘国新, 马沛, 易建华. 34βE12、CK5/6、p63、SMA在乳腺增生、不典型增生与原位癌鉴别诊断中的价值[J]. 实用癌症杂志, 2013, 28(1): 28-30.
[50] Mills, A., Zheng, B., Wang, X., et al. (1999) p63 Is a p53 Homologue Required for Limb and Epidermal Morphogenesis. Nature, 398, 708-713.
https://doi.org/10.1038/19531
[51] Crum, C.P. and Mckeon, F.D. (2010) p63 in Epithelial Survival, Germ Cell Surveillance, and Neoplasia. Annual Review of Pathology-Mechanisms of Disease, 5, 349-371.
https://doi.org/10.1146/annurev-pathol-121808-102117
[52] Yalcin-Ozuysal, O., Fiche, M., Guitierrez, M., et al. (2010) Antagonistic Roles of Notch and p63 in Controlling Mammary Epithelial Cell Fates. Cell Death and Differentia-tion, 17, 1600-1612.
https://doi.org/10.1038/cdd.2010.37
[53] Koga, F., Kawakami, S., Kumagai, J., et al. (2003) Impaired Delta Np63 Expression Associates with Reduced β-Catenin and Aggressive Phenotypes of Urothelial Neo-plasms. British Journal of Cancer, 88, 740-747.
https://doi.org/10.1038/sj.bjc.6600764
[54] Yang, A., Schweitzer, R., Sun, D., et al. (1999) p63 Is Essential for Regenerative Proliferation in Limb, Craniofacial and Epithelial Development. Nature, 398, 714-718.
https://doi.org/10.1038/19539
[55] Mckeon, F. (2004) p63 and the Epithelial Stem Cell: More than Status Quo? Genes & Development, 18, 465-469.
https://doi.org/10.1101/gad.1190504
[56] Nekulova, M., Holcakova, J., Gu, X., et al. (2016) ΔNp63α Expression Induces Loss of Cell Adhesion in Triple-Negative Breast Cancer Cells. BMC Cancer, 16, Article No. 782.
https://doi.org/10.1186/s12885-016-2808-x
[57] 赵海燕, 沈卫达. p63蛋白在年轻乳腺癌不同分子分型中的表达及与腋淋巴结转移的相关性研究[J]. 中国妇幼保健, 2017, 32(16): 3769-3770.
[58] 苗洋洋. 免疫组化双染法在乳腺早期浸润癌病理诊断中的应用[D]: [硕士学位论文]. 郑州: 郑州大学, 2016.
[59] 王建国, 史春云, 王建飞, 等. 癌组织 TTF-1、CK7及p63蛋白检测对不同病理类型NSCLC的鉴别诊断价值[J]. 山东医药, 2016, 56(45): 60-62.
[60] 赵震, 胡惠军, 古彩红. 食管癌组织中BDNF、TrkB、Ki-67和p63蛋白的表达及临床意义[J]. 海南医学, 2021, 32(24): 3141-3144.
[61] Yoh, K. and Prywes, R. (2015) Pathway Regulation of p63, a Director of Epitheli-al Cell Fate. Frontiers in Endocrinology, 6, Article 51.
https://doi.org/10.3389/fendo.2015.00051
[62] Martens, J., Arends, J., Van Der Linden, P., et al. (2004) Cytokeratin 17 and p63 Are Markers of the HPV Target Cell, the Cervical Stem Cell. Anticancer Research, 24, 771-775.
[63] Tuppi, M., Kehrloesser, S., Coutandin, D., et al. (2018) Oocyte DNA Damage Quality Control Requires Consecutive Interplay of CHK2 and CK1 to Activate p63. Nature Structural & Molecular Biology, 25, 261-269.
https://doi.org/10.1038/s41594-018-0035-7
[64] 李冰. 免疫组化在前列腺穿刺活检中的诊断意义[J]. 首都食品与医药, 2019, 26(24): 13.
[65] Kumakura, Y., Rokudai, S., Iijima, M., et al. (2017) Elevated Expression of ΔNp63 in Advanced Esophageal Squamous Cell Carcinoma. Cancer Science, 108, 2149-2155.
https://doi.org/10.1111/cas.13394
[66] Du, Z., Li, J., Wang, L., et al. (2010) Overexpression of ΔNp63α Induces a Stem Cell Phenotype in MCF7 Breast Carcinoma Cell Line through the Notch Pathway. Cancer Science, 101, 2417-2424.
https://doi.org/10.1111/j.1349-7006.2010.01700.x
[67] Koker, M. and Kleer, C. (2004) p63 Expression in Breast Cancer: A Highly Sensitive and Specific Marker of Metaplastic Carcinoma. The American Journal of Surgical Pathology, 28, 1506-1512.
https://doi.org/10.1097/01.pas.0000138183.97366.fd
[68] Yallowitz, A., Alexandrova, E., Talos, F., et al. (2014) p63 Is a Prosurvival Factor in the Adult Mammary Gland during Post-Lactational Involution, Affecting PI-MECs and ErbB2 Tumorigenesis. Cell Death and Differentiation, 21, 645-654.
https://doi.org/10.1038/cdd.2013.199
[69] Memmi, E., Sanarico, A., Giacobbe, A., et al. (2015) p63 Sustains Self-Renewal of Mammary Cancer Stem Cells through Regulation of Sonic Hedgehog Signaling. Proceedings of the Na-tional Academy of Sciences of the United States of America, 112, 3499-3504.
https://doi.org/10.1073/pnas.1500762112
[70] Liang, S., Tang, X., Ye, T., et al. (2022) HER2 Induces Cell Scat-tering and Invasion through ∆Np63α and E-Cadherin. Biochemistry and Cell Biology, 100, 403-412.
https://doi.org/10.1139/bcb-2022-0099