靶向HPV E5蛋白治疗宫颈癌的相关研究进展
Research Progress on Targeting HPV E5 Protein in the Treatment of Cervical Cancer
DOI: 10.12677/ACM.2023.13122672, PDF, HTML, XML, 下载: 110  浏览: 164 
作者: 贺艳容*:新疆医科大学研究生学院,新疆 乌鲁木齐;王 琳#, 朱开春:新疆宫颈癌防治临床医学研究中心,新疆 乌鲁木齐
关键词: E5蛋白HPV免疫逃逸免疫疗法E5 Protein HPV Immune Evasion Immunotherapy
摘要: 宫颈癌发病率在全球范围内女性恶性肿瘤中位居第四位,是女性高发的恶性肿瘤之一,全球每年约有29万女性死于宫颈癌,是发展中国家女性癌症死亡的主要原因,宫颈癌好发于15~44岁年龄段的女性,近年来的数据表明宫颈癌的发生越来越年轻化。目前研究已经证明高危型HPV病毒持续感染是宫颈癌发生的重要诱因。HPV病毒能够逃脱宿主免疫清除是造成持续感染的重要原因,HPV E5蛋白在病毒免疫逃逸中发挥了重要作用。明确E5蛋白的作用,对于HPV感染的预防与治疗、避免宫颈癌前病变的进一步发展有重要意义,本文主要综述HPV E5蛋白协助HPV病毒逃避宿主免疫监控的机制及以E5蛋白为靶点治疗宫颈癌的研究进展。
Abstract: The incidence of cervical cancer ranks fourth among female malignant tumors in the world, and it is one of the most common malignant tumors in women. About 290,000 women die of cervical cancer every year, which is the main cause of cancer death among women in developing countries. Cervical cancer kills about 290,000 women worldwide every year, making it the leading cause of cancer death among women in developing countries. Cervical cancer is more common in women aged 15~44 years, and data from recent years show that cervical cancer is occurring at a younger age. At present, studies have proved that persistent infection of high-risk HPV virus is an important cause of cervical cancer. The ability of HPV virus to escape host immune clearance is an important cause of persistent infection, and HPV E5 protein plays an important role in viral immune escape. Clarifying the role of E5 protein is of great significance for the prevention and treatment of HPV infection and avoiding the further development of cervical precancerous lesions, and this article mainly reviews the mechanism of HPV E5 protein to assist HPV virus to evade host immune surveillance and the research progress of E5 protein as the target in the treatment of cervical cancer.
文章引用:贺艳容, 王琳, 朱开春. 靶向HPV E5蛋白治疗宫颈癌的相关研究进展[J]. 临床医学进展, 2023, 13(12): 18998-19003. https://doi.org/10.12677/ACM.2023.13122672

1. HPV E5蛋白功能

HPV16 E5蛋白是一种由83个氨基酸组成的一种具有孔蛋白的六聚体结构模型,主要定位在内质网以及高尔基体以及质膜中 [1] ,在病毒基因组整合到宿主染色体中后,HPV E5蛋白通常不再表达 [2] ,即E5蛋白在建立HPV感染启动细胞转化中发挥作用。

病毒通道蛋白定位于宿主膜(如内质网)并调节离子稳态,为病毒感染创造有利环境。病毒通道蛋白还通过多种机制促进病毒免疫逃避 [3] 。不同类型的HPV表达的E5蛋白也不同,他们所表现出来的致癌作用也不相同,高危型的HPV一般编码E5α,具有很强的转化作用,最终导致肿瘤的发生,低危型的HPV大多缺乏E5蛋白或编码转化作用弱的E5蛋白(β, γ, δ),一般不会导致肿瘤的进展 [4] 。HPV E5蛋白与表皮生长因子受体(EGFR)结合后,可激活磷酸肌醇-3激酶(PI3K-AKT)和细胞外信号调节激酶(ERK1/2 MAPK)信号通路,影响周期蛋白及周期蛋白激酶(CDKs)的活性,诱导细胞恶性增殖 [5] ,E5蛋白可以下调自噬相关蛋白的表达进而抑制角质形成细胞生长因子诱导的细胞自噬 [6] ,上调EGFR信号通路干扰角质形成细胞分化使角质形成细胞过度增殖 [7] ,EGFR可诱导环氧合酶(COX-2)和血管生成因子(VEGF)表达,COX-2介导的活化前列素E2 (PGE2)信号传导参与刺激血管生成、细胞增殖、细胞侵袭性建立、抑制免疫应答和细胞凋亡,COX-2的异常过度表达已在各种人类恶性肿瘤中报道,有大量证据表明COX-2在宫颈癌中频繁过表达 [8] 。

HPV16 E5蛋白可结合V-H-ATP酶的16 kDa亚基抑制内体的酸化从而促进内体的EGFR循环至细胞表面,E5蛋白也被证明能够以与PH无关的方式抑制囊泡融合间接增加细胞表面EGFR的数量,此外,E5蛋白还能抑制EGFR的降解。c-Cbl是一种泛素连接酶,与活化的EGFR相关并靶向降解EGFR,当E5蛋白存在时,泛素化的EGFR数量显著降低,表明HPV16 E5蛋白抑制c-Cbl介导的EGFR降解 [9] [10] 。E5蛋白激活EGFR和下游信号靶标可导致受体酪氨酸激酶(Met)表达增加,Met是一种生长因子受体,有助于肿瘤细胞侵袭、转移,促进癌基因的表达维持病毒的生命周期、复制和转录等 [11] 。HPV E5蛋白诱导宿主细胞形成四倍体细胞,促进细胞转化为肿瘤,E5蛋白自身具有致癌性,同时也可以协助增强E6蛋白、E7蛋白的致癌作用 [12] [13] ,Maufort等人通过对稳定表达E5蛋白、同时表达E5、E6蛋白及同时表达E5、E7蛋白的三组小鼠给予长期外源性雌激素治疗,结果显示同时表达E5、E6蛋白或同时表达E5、E7蛋白的小鼠较仅表达E5蛋白的小鼠所形成的肿瘤体积更大,致癌作用更强 [14] ,并且E5、E6、E7蛋白共同作用能增加双核细胞的形成率,影响细胞的稳定性 [15] 。

2. HPV E5蛋白在病毒免疫逃逸中的作用

HPV通过受损的宫颈上皮细胞到达基底层,病毒感染后的第一道防线是先天免疫介导的,早期先天免疫细胞会募集细胞到HPV感染的微环境中,T细胞介导的免疫反应也发挥了重要作用 [16] 。HPV16 E5蛋白可抑制宿主细胞自噬功能,是病毒在感染早期阶段常用的策略,以确保病毒在受感染的细胞里继续生存以及随后的复制活动,既不会向免疫细胞呈递病毒抗原,也不会诱发炎症 [6] 。Suprynowicz等人的研究结果表明在HPV16 E5蛋白表达细胞中,微囊蛋白-1 (caveolin-1)和神经节苷脂(GM1)的结合显着增加,GM1能强烈抑制细胞毒性T淋巴细胞阻断免疫突触形成,诱导免疫耐受 [17] ;CD1分子是一种具有抗原呈递功能的糖蛋白,为自然杀伤T细胞呈递自身或微生物脂类抗原 [18] ,HPV E5蛋白抑制CD1d分子介导的免疫作用,但其mRNA水平不受影响,说明CD1d的转录并未被抑制,可能是E5蛋白抑制钙连接蛋白(calnexin)的折叠,中断了CD1d 分子向细胞表面的转运,最终导致CD1d分子被降解,阻断了细胞因子IL-12、IFNγ、NK、NKT、辅助T细胞和细胞毒性T细胞的功能 [19] 。此外,Ashrafi等人的研究表明,HPV16 E5蛋白下调细胞表面HLA I的表达并且E5蛋白只下调经典HLA,不干扰非经典HLA。HPV16 E5蛋白通过其N端第一个疏水区与HLA I分子的重链相互作用,诱导高尔基体膜腔内碱化使HLA I类分子滞留在高尔基体内,抑制了HLA I对内源性抗原的提呈作用,避免受病毒感染的细胞被机体细胞毒性T淋巴细胞(CTL)和自然杀伤细胞(NK)清除,且HPV16 E5蛋白对HLA I类分子的抑制作用可以通过干扰素(IFN)逆转 [20] [21] 。干扰素(IFN)反应是宿主先天免疫功能的关键组成部分。HPV E5蛋白抑制干扰素-κ (IFN-κ)的转录同时抑制干扰素诱导基因产物(ISG)的表达,且可以通过旁分泌抑制基质成纤维细胞中的IFN,表明HPV16 E5蛋白不仅可以抑制宿主细胞的免疫作用,还可以抑制基质中的免疫反应 [22] [23] 。干扰素基因刺激蛋白(stimulator of interferon genes, STING)信号通路为天然免疫通路,通过一系列下游信号通路,促进IFN产生,是机体抗肿瘤免疫的中心组成部分 [24] ,E5蛋白结合线粒体抗病毒信号蛋白(MAVS)和STING,抑制IFN启动子的激活和随后的转录,削弱了STING的抗肿瘤活性,促进肿瘤细胞免疫耐受 [25] ,以上这些机制可能是HPV逃避宿主免疫监视的潜在机制。

3. HPV E5肽疫苗

免疫疗法是靶向HPV癌蛋白,特异性地定位表达HPV癌蛋白的癌细胞和肿瘤组织,目前研究主要是针对于E6、E7蛋白 [26] 。通过研发针对病毒基因组蛋白的肽疫苗,这类疫苗依赖于免疫原性表位的识别,但仅限于特定HLA的高度靶向免疫反应,目的在刺激细胞介导的免疫功能而不是中和抗体,从而靶向并杀死受感染的细胞 [27] 。Liao等人制作了含有HPV16 E5表位的合成肽疫苗,实验结果表明HPV 16 E5肽疫苗无论在小鼠体内或体外均能明显抑制肿瘤的生长同时延长小鼠的存活时间 [28] ,利用腺病毒为载体的E5疫苗也同样可以抑制肿瘤的生长,并且证实E5疫苗是过诱导CD8+ T细胞发挥作用的 [29] ,CpG寡脱氧核苷酸(CpG ODN 5)作为佐剂在辅助E5肽时能增强细胞毒性T淋巴细胞活性,是一种更加高效的组合 [30] 。HPV16 E5蛋白多表位肽段E5aa28-46可诱导细胞产生E5特异性免疫反应 [31] ,HPV16 E5蛋白N端1-17氨基酸序列(MTNLDTASTTLLACFLL)也可诱导细胞产生高水平、E5蛋白特异性IgG抗体,并且根据优势肽段制备的特异性抗体可以特异性识别结合HPV E5蛋白稳转的细胞株(TC-1-E5)内表达的E5蛋白 [32] ,以上结果表明,HPV E5蛋白疫苗的研发对于治疗宫颈癌及宫颈病变很有发展前景,靶向HPV E5蛋白的疫苗可能是治疗宫颈癌的新兴方案。

4. HPV E5蛋白介导PD-L1免疫疗法耐受的有效治疗

程序性死亡蛋白1 (PD-1)属于免疫抑制受体,与配体程序性死亡配体1 (PD-L1)结合可以抑制T细胞的增殖与功能,降低抗原呈递细胞和T淋巴细胞的清除作用,参与肿瘤免疫逃逸与免疫耐受 [33] 。研究表明宫颈癌患者中存在PD-1、PD-L过表达,PD-L1在宫颈鳞状细胞癌中的表达率显著增加(56/70 = 80%),在正常宫颈组织中很少发现(0/55) [34] ,PD-1/PD-L1抑制剂是治疗宫颈癌的有效靶标。

Miyauchi等人实验中发现,HPV E5蛋白可以消除或抑制抗PD-L1免疫疗法的作用,促进肿瘤的发生与进展,其机制可能是由于HPV E5蛋白下调宿主细胞MHC的表达,HPV E5蛋白高表达患者的预后及生存率更差 [35] 。E5蛋白通道蛋白抑制剂金刚烷胺、金刚乙胺及MV006可减少丝裂原活化蛋白激酶(ERK-MAPK)磷酸化,降低细胞周期蛋白B1表达,诱导细胞周期停滞、抑制细胞增殖,达到逆转HPV E5蛋白的作用 [36] [37] 。

宫颈癌目前的治疗方案主要是手术加辅助放化疗,对E6、E7癌蛋白研究比较深入,而E5蛋白的研究相对较少,E5蛋白的致癌作用不如E6、E7蛋白明确,但E5蛋白可以致癌是确定的,E5蛋白自身孔蛋白活性可以促进癌症的发生,E5蛋白上调EGFR信号通路导致细胞异常增殖,并且明确E5蛋白在病毒逃脱宿主免疫监视中是发挥重要作用的,虽然其具体作用机制并不清楚,E5蛋白还可以介导抗PD-L1免疫疗法的治疗,解决了PD-L1免疫疗法耐受的难题,HPV病毒通道蛋白抑制剂金刚烷胺等可用于病毒整合前HPV相关病变的治疗,早期抑制疾病进一步发展。目前已研发出靶向HPV E5蛋白的相关疫苗,实验证明E5蛋白对于治疗宫颈癌及宫颈病变是有明确作用的,但具体作用及效果有待临床进一步研究。以上结果表明靶向HPV E5蛋白治疗HPV相关疾病是很有发展潜力的,通过对E5蛋白的进一步研究,明确E5蛋白致癌机制,明确E5蛋白和机体免疫功能之间的相互作用,若在HPV感染早期阶段检测到E5蛋白的表达,可以靶向E5蛋白阻止疾病的进一步进展,为治疗宫颈癌提供新兴、高效的方案。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 于淼, 孙峥嵘. 人乳头瘤病毒致癌关键因素的研究进展[J]. 现代肿瘤医学, 2020, 28(5): 851-854.
[2] Graham Sheila, V. (2017) The Human Papillomavirus Replication Cycle, and Its Links to Cancer Progression: A Comprehensive Review. Clinical Science, 131, 2201-2221.
https://doi.org/10.1042/CS20160786
[3] Gargan, S. and Stevenson, N.J. (2021) Unravelling the Immunomodulatory Effects of Viral Ion Channels, towards the Treatment of Disease. Virus-es, 13, Article 2165.
https://doi.org/10.3390/v13112165
[4] Bravo, I.G. and Alonso, A. (2004) Mucosal Human Papillomaviruses Encode Four Different E5 Proteins Whose Chemistry and Phylogeny Correlate with Malignant or Be-nign Growth. Journal of Virology, 78, 13613-13626.
https://doi.org/10.1128/JVI.78.24.13613-13626.2004
[5] Fehrmann, F., Klumpp, D.J. and Laimins, L.A. (2003) Human Papillomavirus Type 31 E5 Protein Supports Cell Cycle Progression and Activates Late Viral Functions upon Epithelial Differentiation. Journal of Virology, 77, 2819-2831.
https://doi.org/10.1128/JVI.77.5.2819-2831.2003
[6] 付广红, 龚丹, 万佳. 人乳头瘤病毒16 E5(HPV16 E5)蛋白抑制角质形成细胞生长因子诱导的细胞自噬[J]. 细胞与分子免疫学杂志, 2016, 32(11): 1517-1521.
[7] Ilahi, N.E. and Bhatti, A. (2019) Impact of HPV E5 on Viral Life Cycle via EGFR Signaling. Microbial Pathogenesis, 139, Article ID: 103923.
https://doi.org/10.1016/j.micpath.2019.103923
[8] Jawanjal, P., Salhan, S., Dhawan, I., et al. (2016) Augmented Activity of Cyclooxygenase-2 in Tissue and Serum of Patients with Cervical Cancer. Journal of Clin-ical Laboratory Analysis, 30, 1198-1207.
https://doi.org/10.1002/jcla.22003
[9] Suprynowicz, F.A., Krawczyk, E., Hebert, J.D., et al. (2010) The Human Papillomavirus Type 16 E5 Oncoprotein Inhibits Epidermal Growth Factor Trafficking Independently of Endosome Acidification. Journal of Virology, 84, 10619-10629.
https://doi.org/10.1128/JVI.00831-10
[10] Zhang, B., Srirangam, A., Potter, D.A. and Roman, A. (2005) HPV16 E5 Protein Disrupts the c-Cbl-EGFR Interaction and EGFR Ubiquitination in Human Foreskin Keratinocytes. Oncogene, 24, 2585-2588.
https://doi.org/10.1038/sj.onc.1208453
[11] Scott, M.L., Coleman, D.T., Kelly, K.C., et al. (2018) Human Papillo-mavirus Type 16 E5-Mediated Upregulation of Met in Human Keratinocytes. Virology, 519, 1-11.
https://doi.org/10.1016/j.virol.2018.03.021
[12] Bagarazzi, M.L., Yan, J., et al. (2012) Immunotherapy against HPV16/18 Generates Potent TH1 and Cytotoxic Cellular Immune Responses. Science Translational Medicine, 4, 155ra138.
https://doi.org/10.1126/scitranslmed.3004414
[13] Paolini, F., Curzio, G., Cordeiro, M.N., et al. (2017) HPV 16 E5 Oncoprotein Is Expressed in Early Stage Carcinogenesis and Can Be a Target of Immunotherapy. Human Vaccines & Immunotherapeutics, 13, 291-297.
https://doi.org/10.1080/21645515.2017.1264777
[14] Maufort, J.P., Shai, A., Pitot, H.C. and Lambert, P.F. (2010) A Role for HPV16 E5 in Cervical Carcinogenesis. Cancer Research, 70, 2924-2931.
https://doi.org/10.1158/0008-5472.CAN-09-3436
[15] Hu, L. and Ceresa, B.P. (2009) Characterization of the Plasma Membrane Localization and Orientation of HPV16 E5 for Cell-Cell Fusion. Virology, 393, 135-143.
https://doi.org/10.1016/j.virol.2009.07.034
[16] 唐志坚, 赵超, 李明珠, 等. 高危型人乳头瘤病毒感染的不同级别子宫颈病变患者细胞免疫状态分析[J]. 中国实用妇科与产科杂志, 2023, 39(10): 1024-1029.
[17] Suprynowicz, F.A., Disbrow, G.L., Krawczyk, E., et al. (2008) HPV-16 E5 Oncoprotein Upregulates Lipid Raft Components Caveolin-1 and Ganglioside GM1 at the Plasma Membrane of Cervical Cells. Oncogene, 27, 1071-1078.
https://doi.org/10.1038/sj.onc.1210725
[18] Speak, A.O., Cerundolo, V. and Platt, F.M. (2008) CD1d Presentation of Glycolipids. Immunology and Cell Biology, 86, 588-597.
https://doi.org/10.1038/icb.2008.42
[19] Miura, S., Kawana, K., Schust, D.J., et al. (2010) CD1d, a Sentinel Molecule Bridging Innate and Adaptive Immunity, Is Downreg-ulated by the Human Papillomavirus (HPV) E5 Protein: A Possible Mechanism for Immune Evasion by HPV. Journal of Virology, 84, 11614-11623.
https://doi.org/10.1128/JVI.01053-10
[20] Ashrafi, G.H., Haghshenas, M., Marchetti, B. and Campo, M.S. (2006) E5 Protein of Human Papillomavirus 16 Downregulates HLA Class I and Interacts with the Heavy Chain via Its First Hydrophobic Domain. International Journal of Cancer, 119, 2105-2112.
https://doi.org/10.1002/ijc.22089
[21] Ashrafi, G.H., Haghshenas, M.R., Marchetti, B., et al. (2005) E5 Protein of Human Papillomavirus Type 16 Selectively Downregulates Surface HLA Class I. International Journal of Cancer, 113, 276-283.
https://doi.org/10.1002/ijc.20558
[22] Scott, M.L., Woodby, B.L., Ulicny, J., et al. (2020) Human Papil-lomavirus 16 E5 Inhibits Interferon Signaling and Supports Episomal Viral Maintenance. Journal of Virology, 94, e01582-19.
https://doi.org/10.1128/JVI.01582-19
[23] Raikhy, G., Woodby, B.L., Scott, M.L., et al. (2019) Sup-pression of Stromal Interferon Signaling by Human Papillomavirus 16. Journal of Virology, 93, e00458-19.
https://doi.org/10.1128/JVI.00458-19
[24] 张展, 刘朝晖. STING信号通路在HPV相关恶性肿瘤中的作用[J]. 国际妇产科学杂志, 2023, 50(1): 30-34.
[25] Miyauchi, S., Kim, S.S., Jones, R.N., et al. (2023) Human Papilloma-virus E5 Suppresses Immunity via Inhibition of the Immunoproteasome and STING Pathway. Cell Reports, 42, Article ID: 112508.
https://doi.org/10.1016/j.celrep.2023.112508
[26] Bhattacharjee, R., Das, S.S., Biswal, S.S., et al. (2022) Mecha-nistic Role of HPV-Associated Early Proteins in Cervical Cancer: Molecular Pathways and Targeted Therapeutic Strate-gies. Critical Reviews in Oncology/Hematology, 174, Article ID: 103675.
https://doi.org/10.1016/j.critrevonc.2022.103675
[27] Gupta, B., Kumar, A. and Sridevi, P. (2021) A Comprehen-sive in Silico Analysis for Identification of Immunotherapeutic Epitopes of HPV-18. International Journal of Peptide Research and Therapeutics, 27, 2717-2726.
https://doi.org/10.1007/s10989-021-10285-x
[28] Liao, S.J., Deng, D.R., Zeng, D., et al. (2013) HPV16 E5 Pep-tide Vaccine in Treatment of Cervical Cancer in vitro and in vivo. Journal of Huazhong University of Science and Tech-nology, 33, 735-742.
https://doi.org/10.1007/s11596-013-1189-5
[29] Liu, D.W., Tsao, Y.P., Hsieh, C.H., et al. (2000) Induction of CD8 T Cells by Vaccination with Recombinant Adenovirus Expressing Human Papillomavirus Type 16 E5 Gene Re-duces Tumor Growth. Journal of Virology, 74, 9083-9089.
https://doi.org/10.1128/JVI.74.19.9083-9089.2000
[30] Chen, Y.F., Lin, C.W., Tsao, Y.P. and Chen, S.L. (2004) Cytotoxic-T-Lymphocyte Human Papillomavirus Type 16 E5 Peptide with CpG-Oligodeoxynucleotide Can Eliminate Tumor Growth in C57BL/6 Mice. Journal of Virology, 78, 1333-1343.
https://doi.org/10.1128/JVI.78.3.1333-1343.2004
[31] 张静, 李青峰, 汪琪, 朱珊丽, 陈韶, 张丽芳. HPV16 E5多表位肽免疫原性研究[J]. 免疫学杂志, 2023, 39(4): 341-347.
[32] 唐婉林, 王路得, 顾美萍, Kamara Saidu, 汪琪, 李明洋, 陈韶, 张丽芳. HPV16 E5蛋白免疫优势肽段分析及其多克隆抗体的制备[J]. 中国生物制品学杂志, 2021, 34(6): 725-729, 739.
[33] Qiao, X.W., Jiang, J., Pang, X., et al. (2020) The Evolving Landscape of PD-1/PD-L1 Path-way in Head and Neck Cancer. Frontiers in Immunology, 11, Article 1721.
https://doi.org/10.3389/fimmu.2020.01721
[34] Mezache, L., Paniccia, B., Nyinawabera, A. and Nuovo, G.J. (2015) Enhanced Expression of PD L1 in Cervical Intraepithelial Neoplasia and Cervical Cancers. Modern Pathology, 28, 1594-1602.
https://doi.org/10.1038/modpathol.2015.108
[35] Miyauchi, S., Sanders, P.D., Guram, K., et al. (2020) HPV16 E5 Mediates Resistance to PD-L1 Blockade and Can Be Targeted with Rimantadine in Head and Neck Cancer. Cancer Re-search, 80, 732-746.
https://doi.org/10.1158/0008-5472.CAN-19-1771
[36] Wetherill, L.F., Holmes, K.K., Verow, M., et al. (2012) High-Risk Human Papillomavirus E5 Oncoprotein Displays Channel-Forming Activity Sensitive to Small Molecule In-hibitors. Journal of Virology, 86, 5341-5351.
https://doi.org/10.1128/JVI.06243-11
[37] Wetherill, L.F., Wasson, C.W., Gemma, S., et al. (2018) Alkyl-Imino Sugars Inhibit the Pro-Oncogenic Ion Channel Function of Human Papillomavirus (HPV) E5. Antiviral Research, 158, 113-121.
https://doi.org/10.1016/j.antiviral.2018.08.005