炎症与氧化应激在急性肺损伤中的作用研究进展
Research Progress on the Role of Inflammation and Oxidative Stress in Acute Lung Injury
DOI: 10.12677/HJBM.2024.141005, PDF, HTML, XML, 下载: 96  浏览: 210  国家自然科学基金支持
作者: 朱钰珊, 彭学容, 范苏苏, 孙亚茹, 张 旋*:昆明医科大学药学院暨云南省天然药物药理重点实验室/现代生物医药产业学院,云南 昆明
关键词: 急性肺损伤急性呼吸窘迫综合征炎症反应氧化应激Acute Lung Injury Acute Respiratory Distress Syndrome Inflammatory Response Oxidative Stress
摘要: 急性肺损伤(ALI)/急性呼吸窘迫综合征(ARDS)一种以肺实质弥漫性炎症和顽固性低氧血症为特征的临床危重症疾病。尽管近几年国内外对ALI/ARDS进行深入研究,但由于其病因复杂、发病机制尚不明确,临床上亦无明确的可治愈药物,使得ALI/ARDS患者的总体生存质量和生存率均较低。近年来,大量文献报道炎症反应以及氧化应激与ALI/ARDS的发展密切相关,本文就炎症反应和氧化应激反应在ALI/ARDS发生发展中的作用进行综述,以期为ALI/ARDS的治疗和药物研发提供相关理论依据。
Abstract: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a clinical critical disease characterized by diffuse inflammation of lung parenchyma and intractable hypoxemia. Although ALI/ARDS has been studied deeply in recent years, the overall quality of life and survival rate of ALI/ARDS patients are low due to its complex etiology, unclear pathogenesis and no clear clinical cure. In recent years, it has been reported that inflammation and oxidative stress are closely related to the development of ALI/ARDS. This paper reviews the role of inflammation and oxidative stress in the occurrence and development of ALI/ARDS, in order to provide relevant theoretical basis for developing drugs and treatment of ALI/ARDS.
文章引用:朱钰珊, 彭学容, 范苏苏, 孙亚茹, 张旋. 炎症与氧化应激在急性肺损伤中的作用研究进展[J]. 生物医学, 2024, 14(1): 48-55. https://doi.org/10.12677/HJBM.2024.141005

1. 引言

急性肺损伤(Acute lung injury, ALI)是一种以肺实质弥漫性炎症和顽固性低氧血症为特征的临床危重疾病 [1] ,临床主要表现为呼吸窘迫、肺水肿、气体交换受损、炎症、低氧血症和肺顺应性降低,可进展为更严重的急性呼吸窘迫综合征(Acute respiratory distress syndrome, ARDS) [2] 。ALI/ARDS的致病因素分为直接因素和间接因素,直接因素包括肺炎、胃酸吸入、淹溺、肺部严重感染、创伤等,可直接引起肺泡病变;间接因素包括败血症、休克、脓毒症、外伤、急性胰腺炎、脂肪栓塞和药物过量等,首先引起全身性炎症反应,继而引起血管内皮损伤、炎症细胞浸润和肺泡病变 [3] 。ALI/ARDS多发于中老年人(60~85岁),发病急骤、死亡率高达30%~40%,给患者的生命和生活质量带来严重威胁 [4] 。

ALI/ARDS研究己经取得一定进展,但因其病因和发病机制复杂,一直以来,没有药物和治疗措施能从根本上治愈ALI/ARDS。目前ALI/ARDS的临床治疗措施包括积极控制感染、机械通气、氧疗等策略治疗或者使用糖皮质激素类抗炎药如地塞米松、泼尼松龙等药物治疗 [5] ,但激素类用药过程中患者会出现肌无力和肌萎缩、骨质疏松 [6] 、十二指肠溃疡、胃肠道不适等问题 [7] 。因此,深入研究ALI/ARDS的发病机制,发现新的药物靶点,研发新的特效药物非常必要。炎症反应与氧化应激反应在ALI/ARDS疾病中扮演着重要角色,抑制炎症反应与氧化应激能够减轻ALI/ARDS。本文基于炎症反应与氧化应激在ALI/ARDS疾病中的研究为切入点进行综述,以期为ALI/ARDS的治疗和药物研发提供相关理论依据。

2. 炎症反应在ALI/ARDS中的作用

2.1. 炎症反应概述

炎症反应是免疫系统对有害刺激的适应性反应,是一种复杂且重要的生理和病理反应,如感染、病原体、受损细胞、有毒化合物和自身免疫都可能引起炎症 [8] 。炎症可分为急性炎症和慢性炎症。急性炎症反应迅速,持续时间短,通常以渗出性病变为主,浸润的炎症细胞主要为中性粒细胞,临床主要表现为红、肿、热、痛和功能障碍;而慢性炎症持续时间长,以淋巴细胞浸润为主,有明显的成纤维细胞和血管内皮细胞增生,以增生性病变为主要特征 [9] 。炎症反应对机体具有双重作用:一方面,适度的炎症反应可以杀灭病原体、抑制感染或修复受损组织,是一种先天性的免疫机制 [10] ;另一方面,过度的炎症反应会导致组织器官损伤,甚至发生脓毒症、多器官衰竭,增加死亡风险 [11] 。

2.2. 炎症相关信号转导通路在ALI/ARDS中的作用

大量文献证明炎症与多种疾病的发生有关,包括肺部疾病、心血管、肠道疾病、糖尿病、关节炎和癌症等 [12] 。目前普遍认为,肺部或全身失控性炎症是ALI/ARDS的主要发病机制 [13] ,当机体受到刺激时,大多数炎症细胞(包括巨噬细胞、中性粒细胞、淋巴细胞)释放大量促炎因子,如IL-1、IL-6和TNF-α,这些因子可以相互作用来介导炎症,使得大量炎症细胞向肺组织聚集和浸润,并激活细胞内信号转导通路,释放更多的炎症细胞因子,又进一步激活炎症细胞,形成恶性循环,最终导致细胞因子风暴 [14] 。在ALI/ARDS的炎症过程中有多种炎症信号通路参与,包括核因子-κB (Nuclear Factor Kappa B, NF-κB)、丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)、toll样受体(TLR)和JAK/STAT等 [15] 。

2.2.1. NF-κB信号通路与ALI/ARDS

NF-κB信号通路是多种免疫转录程序的重要组成部分,参与机体免疫应答、炎症反应 [16] 、调节细胞凋亡、应激反应 [17] 。NF-κB信号通路可分为经典型和非经典型信号通路。NF-κB经典信号通路拥有广泛的激活途径,多种细胞因子受体如肿瘤坏死因子受体(TNFR)、表面受体和IL-1受体(IL-1R)、Toll样微生物模式识别受体(TLRs)均可激活NF-κB信号通路,其常见激活形式是二聚体P65/P50 [18] 。NF-κB家族包括五个相关的转录因子:P50 (NF-κB1)、P52 (NF-κB2)、RelA (P65)、RelB和c-Re [19] 。

NF-κB在静止状态下与细胞质中的NF-κB抑制蛋白(IκB)结合,不具有转录活性。当受到外部刺激时,IκB激酶(IKK)被激活,它由两个亚基组成,即IKKα、IKKβ以及一个调节亚基,如IKKγ [20] 。IKK通过IκB的磷酸化激活NF-κB途径,IκB的磷酸化导致其被蛋白酶体降解,产生p50/RelA复合物,随后释放NF-κB用于核转位和基因转录,调节促炎因子的产生和炎症细胞的募集,从而促进炎症反应,释放IL-1、IL-6等炎症因子进一步激活NF-κB通路,级联放大炎症反应 [21] 。与经典信号通路相比,非经典信号通路的激活方式依赖于磷酸化诱导的P100,而P100是由肿瘤坏死因子家族的特定成员(包括CD40配体、B淋巴细胞激活因子受体BAFFR、淋巴毒素β受体LTβR和核因子-κB受体激活剂RANK)诱导 [22] 。该途径依赖于NIK和IKKα,而不依赖于三聚体IKK复合体,独立于NEMO,进而介导RelB/p52复合体的持续激活从而产生p52/RelB复合物 [23] 。NF-κB信号被激活后可通过调节各种炎症因子的表达募集炎症细胞,产生大量炎症介质 [24] 。研究表明,当肺部长期受到外环境病原微生物、污染物以及有害气体等刺激时,NF-κB通路不断激活,持续引发炎症反应,导致肺部组织病理损伤 [25] 。研究发现,NF-κB通路在多种炎症性呼吸疾病中发挥重要作用,包括肺纤维化、哮喘、肺癌、阻塞性疾病 [26] 。NF-κB可调控ALI相关基因表达,在ALI病情进展中起关键作用 [27] 。因此,阻断或抑制NF-κB信号通路可能是ALI/ARDS的治疗靶点。

2.2.2. MAPK信号通路与ALI/ARDS

MAPK通路广泛参与细胞增殖、分化、凋亡、代谢等生物学过程 [28] 。哺乳动物MAPK家族分子分为经典MAPK分子和非经典MAPK分子,经典MAPK分子有:细胞外信号调节激酶1/2 (ERK1/2)、c-Jun氨基末端激酶家族(JNK)、p38 MAP激酶和细胞外信号调节激酶5 (ERK5) [29] ;非经典MAPK分子有:Nemo样激酶(NLK)、细胞外信号调节激酶3 (ERK3)、细胞外信号调节激酶4 (ERK4)和细胞外信号调节激酶7/8 (ERK7/8) [30] 。经典MAPK分子通过三层激酶级联反应以高效率和高保真度的方式传递信号,此过程依赖三种核心激酶:MAPK激酶激酶(MAP kinase kinase kinase, MAPKKK)、MAPK激酶(MAP kinase kinase, MAPKK)和MAPK;MAPKKK磷酸化并激活MAPKK,MAPKK进而磷酸化并激活MAPKs,三种激酶依次激活,共同调节细胞生长、分化、对环境的应激适应、炎症反应等重要的生理/病理过程 [31] 。研究发现,通过阻断MAPK信号通路,可抑制LPS诱导的炎症反应,减轻肺组织病理损伤,进而发挥抗小鼠急性肺损伤的作用 [32] 。文献报道,MAPK信号通路在ALI发生发展中发挥了重要作用,抑制MAPK的表达可以减少促炎细胞因子分泌,改善肺组织损伤程度 [33] 。

2.2.3. JAK2/STAT3信号通路与ALI/ARDS

Janus激酶信号转导与转录激活子(Janus kinase/signal transducer and activator of transcription, JAK-STAT)信号通路是一条由细胞因子刺激的信号转导通路,可调控多种重要的生物反应,包括细胞的生长、分化、凋亡以及免疫反应等。此通路涉及到IL-6受体家族,IL-6是细胞因子风暴的中心和重要标志物,会引发级联放大的炎症反应 [34] 。此通路主要由酪氨酸激酶相关受体、酪氨酸激酶JAK和产生效应的转录因子STAT组成。酪氨酸激酶受体本身不具有激酶活性,但是细胞内有酪氨酸激酶JAK的结合位点,受体与配体结合后,活化与之结合的JAK,磷酸化靶蛋白的酪氨酸残基,将信号从细胞外传递到细胞内;STATs被称为信号转导子和转录激活子,在信号转导和转录激活上发挥重要作用,是JAKs的直接下游蛋白 [35] 。目前,哺乳动物中JAK家族有四个成员,分别是JAK 1、JAK 2、JAK 3、Tyk 2,JAK1、JAK2和Tyk 2广泛表达,而JAK3的表达仅限于髓系和淋巴细胞 [36] 。STAT家族有七个STAT基因,分别是:STAT1,STAT2,STAT3,STAT4,STAT5A,STAT5B和STA6 [37] 。JAKs的激活发生在配体介导的受体多聚化过程中,因为两个JAK靠近,允许反式磷酸化,激活的JAKs迅速活化其他靶点,包括受体和主要底物STATs。它们在近C端都含有保守的酪氨酸残基,可以被JAKs磷酸化,这种磷酸化的STATs通过与保守的SH2结构域相互作用可以使STATs发生二聚化形成二聚体复合物。在细胞核内聚合体STATs与特定的调控序列结合,从而激活或抑制目的基因的转录 [38] 。研究表明,IL-6通过JAK-STAT通路,激活Janus激酶并磷酸化其下游的STAT3,从而启动STAT3靶基因的转录,在LPS介导的ALI/ARDS中发挥重要作用 [39] 。抑制JAK2/STAT3通路激活,可以减少炎症介质分泌,是LPS引起ALI/ARDS的治疗靶点 [40] 。对于脓毒症介导的ALI,抑制JAK2/STAT3和IKKα/NF-κB炎症信号转导通路的持续活化,可以减少炎症细胞因子的释放,减轻炎症的级联反应,改善急性肺组织损伤的症状,是治疗脓毒症ALI的一个新思路 [41] 。

3. 氧化应激在ALI/ARDS中的作用

3.1. 氧化应激反应概述

氧化应激反应是过度的活性氧(reactive oxygen species, ROS)产生使机体氧化–抗氧化系统失衡,导致中性粒细胞浸润,细胞结构分子如核酸、蛋白质、脂质的破坏和酶解,产生大量氧化中间产物 [42] 。氧化应激在ALI/ARDS的发展中起着重要作用,当机体受到ALI/ARDS危险因素的刺激时,会产生过量的ROS,刺激肺组织,使血液中诱导型一氧化氮合酶(iNOS)活性升高,产生过量的一氧化氮(NO)。肺组织产生大量NO时,会引发严重的炎症风暴,破坏肺微血管内皮细胞和肺上皮细胞,导致肺水肿,在ALI/ARDS的演变过程中起重要作用 [43] 。

3.2. ROS与ALI/ARDS

正常细胞中,ROS水平处于动态且稳定的平衡状态 [44] 。ROS是正常氧代谢的副产物,在细胞信号传导和体内平衡中起着重要作用,是机体应对外部信号如病原体或内源性信号如细胞因子的反应产物 [45] 。ROS的抗氧化体系分为酶系和非酶系,酶系有超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物(GPx)等,非酶系主要是还原型谷胱甘肽(GSH)、维生素C/E等;细胞内高水平GSH,CAT、GPx、SOD等可下调ROS水平,保护细胞免受氧化损伤 [46] 。受损的内皮/上皮以及募集的白细胞产生的过量ROS在ALI/ARDS中起主要作用,ROS可以使促炎细胞因子和粘附分子的表达上调,放大组织损伤和肺水肿;在ALI中,当过量ROS超出自身抗氧化清除能力时,氧化剂/抗氧化剂的平衡被打破,大量ROS积累,丙二醛(MDA)形成,同时抗氧化酶(如SOD)表达降低,发生严重的氧化应激,使细胞膜中脂肪酸不饱和,降低膜流动性并增加膜通透性,导致肺水肿和肺扩张 [47] 。ROS还会刺激肺组织炎症细胞激活,介导肺泡上皮细胞和血管内皮细胞损伤。因此,抑制ROS诱导的氧化应激,恢复氧化/抗氧化平衡,己成为治疗ALI/ARDS新的策略 [48] 。

3.3. Keap1/Nrf2/HO-1信号通路与ALI/ARDS

Keap1/Nrf2/HO-1信号通路被认为是关键的内源性抗氧化应激通路之一,是炎症相关疾病的重要靶标。Keap1是Nrf2的主要阻遏蛋白,Nrf2是机体应对氧化应激的关键防御机制,HO-1是Nrf2的下游基因,是重要的氧化应激反应蛋白 [49] 。正常情况下,Nrf2与Keap1结合形成复合物,被细胞质中的肌动蛋白锚定,使Nrf2处于非活性状。在氧化应激或其他病理刺激下,Keap1的半胱氨酸残基被修饰,从而诱导Nrf2磷酸化,Nrf2从复合物中释放并易位到细胞核中,与Maf蛋白形成异二聚体(Nrf2-Maf)。核内抗氧化反应元件(AREs)序列可以准确识别Nrf2-Maf,并与Nrf2的Neh4和Neh5结构域结合,然后借助c AMP反应元件结合蛋白(CREB)、转录激活因子等启动Nrf2介导的转录过程调控下游基因表达,激活一系列抗氧化酶,如HO-1、醌氧化还原酶(NQO1)、SOD、GSH-Px,进而清除ROS和其他有害物质并启动抗氧化、抗炎、抗凋亡等细胞保护机制 [50] 。研究发现,虾青素可以通过调节Keap1-Nrf2/HO-1信号传导通路,抑制LPS诱导的铁死亡和炎症,从而减轻LPS诱导的ALI [51] 。一种人工合成的齐墩果烷三萜类化合物CDDO-Im,可作为强效Nrf2激活剂,诱导Nrf2从Keap1解离,上调SOD和GSH活性,降低MDA和ROS水平,明显减轻脓毒症诱导的ALI [52] 。在LPS诱导的ALI模型中,异卢嗪(Isoorientin)可显著上调Nrf2、HO-1的表达和下调Keap1的表达;同时抑制NLRP3,caspase-1、凋亡相关斑点样蛋白(ASC)以及促炎细胞因子的过表达 [53] 。这一系列研究表明,靶向抑制Keap1/Nrf2/HO-1信号通路是ALI/ARDS防治的新策略。

4. 总结与展望

综上所述,NF-κB、MAPK、JAK/STAT以及Keap1/Nrf2/HO-1信号通路在以肺部过度炎症反应和氧

Figure 1. Possible signal transduction pathway mechanisms in the development of ALI

图1. ALI发展进程中可能的信号转导通路机制

化应激为特征的ALI/ARDS中发挥着关键作用,上述信号通路在ALI/ARDS中存在交互作用,关系错综复杂,但都有一个共同点是当这些信号通路被阻断或抑制后,肺部炎症反应和氧化应激均可减轻,其机制可能如图1。但ALI/ARDS的发病机制复杂,还需要更深入的研究,ALI/ARDS与炎症反应及氧化应激的关系可以作为抗ALI/ARDS新的思路,以期为ALI/ARDS的预防治疗和新药的开发提供新的方向。

基金项目

国家自然科学基金项目(82260727);云南省科技厅–昆明医科大学应用基础研究联合专项重点项目(202101AY070001-010);昆明医科大学抗炎与免疫调节药物研究科技创新团队(CXTD2022003)。

参考文献

[1] Swenson, K.E. and Swenson, E.R. (2021) Pathophysiology of Acute Respiratory Distress Syndrome and COVID-19 Lung Injury. Critical Care Clinics, 37, 749-776.
https://doi.org/10.1016/j.ccc.2021.05.003
[2] Long, M.E., Mallampalli, R.K. and Horowitz, J.C. (2022) Pathogenesis of Pneumonia and Acute Lung Injury. Clinical Science, 136, 747-769.
https://doi.org/10.1042/CS20210879
[3] Ning, L., Shishi, Z., Bo, W. and Lin, H.Q. (2023) Targeting Immunometabolism against Acute Lung Injury. Clinical Immunology, 249, Article ID: 109289.
https://doi.org/10.1016/j.clim.2023.109289
[4] Hu, Q., Zhang, S., Yang, Y., et al. (2022) Extracellular Vesicles in the Pathogenesis and Treatment of Acute Lung Injury. Military Medical Research, 9, Article No. 61.
https://doi.org/10.1186/s40779-022-00417-9
[5] Mokra, D. (2020) Acute Lung Injury—From Pathophysiology to Treatment. Physiological Research, 69, S353-S66.
https://doi.org/10.33549/physiolres.934602
[6] Kan, M. and Himes, B.E. (2021) Insights into Glucocorticoid Responses Derived from Omics Studies. Pharmacology & Therapeutics, 218, Article ID: 107674.
https://doi.org/10.1016/j.pharmthera.2020.107674
[7] Prete, A. and Bancos, I. (2021) Glucocorticoid Induced Adrenal Insufficiency. BMJ, 374, n1380.
https://doi.org/10.1136/bmj.n1380
[8] Arulselvan, P., Fard, M.T., Tan, W.S., et al. (2016) Role of Antioxidants and Natural Products in Inflammation. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 5276130.
https://doi.org/10.1155/2016/5276130
[9] Chen, L., Deng, H., Cui, H., et al. (2018) Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget, 9, 7204-7218.
https://doi.org/10.18632/oncotarget.23208
[10] Wang, P., Qiao, Q., Li, J., et al. (2016) Inhibitory Effects of Geraniin on LPS-Induced Inflammation via Regulating NF-κB and Nrf2 Pathways in RAW 264.7 Cells. Chemico-Biological Interactions, 253, 134-142.
https://doi.org/10.1016/j.cbi.2016.05.014
[11] Turner, M.D., Nedjai, B., Hurst, T. and Pennington, D.J. (2014) Cytokines and Chemokines: At the Crossroads of Cell Signalling and Inflammatory Disease. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1843, 2563-2582.
https://doi.org/10.1016/j.bbamcr.2014.05.014
[12] Dinarello, C.A. (2011) Interleukin-1 in the Pathogenesis and Treatment of Inflammatory Diseases. Blood, 117, 3720-3732.
https://doi.org/10.1182/blood-2010-07-273417
[13] Dechert, R.E., Haas, C.F. and Ostwani, W. (2012) Current Knowledge of Acute Lung Injury and Acute Respiratory Distress Syndrome. Critical Care Nursing Clinics of North America, 24, 377-401.
https://doi.org/10.1016/j.ccell.2012.06.006
[14] Zhang, X., Zhang, Y., Qiao, W., et al. (2020) Baricitinib, a Drug with Potential Effect to Prevent SARS-COV-2 from Entering Target Cells and Control Cytokine Storm Induced by COVID-19. International Immunopharmacology, 86, Article ID: 106749.
https://doi.org/10.1016/j.intimp.2020.106749
[15] Yeung, Y.T., Aziz, F., Guerrero-Castilla, A., et al. (2018) Signaling Pathways in Inflammation and Anti-Inflammatory Therapies. Current Pharmaceutical Design, 24, 1449-1484.
https://doi.org/10.2174/1381612824666180327165604
[16] Wibisana, J.N. and Okada, M. (2022) Encoding and Decoding NF-κB Nuclear Dynamics. Current Opinion in Cell Biology, 77, Article ID: 102103.
https://doi.org/10.1016/j.ceb.2022.102103
[17] Poma, P. (2020) NF-κB and Disease. International Journal of Molecular Sciences, 21, Article 9181.
https://doi.org/10.3390/ijms21239181
[18] Yuan, S.N., Wang, M.X., Han, J.L., et al. (2023) Improved Colonic Inflammation by Nervonic Acid via Inhibition of NF-κB Signaling Pathway of DSS-Induced Colitis Mice. Phytomedicine, 112, Article ID: 154702.
https://doi.org/10.1016/j.phymed.2023.154702
[19] Gomez-Chavez, F., Correa, D., Navarrete-Meneses, P., et al. (2021) NF-κB and Its Regulators during Pregnancy. Frontiers in Immunology, 12, Article 679106.
https://doi.org/10.3389/fimmu.2021.679106
[20] Wang, B. and Shen, J. (2022) NF-κB Inducing Kinase Regulates Intestinal Immunity and Homeostasis. Frontiers in Immunology, 13, Article 895636.
https://doi.org/10.3389/fimmu.2022.895636
[21] Didonato, J.A., Mercurio, F. and Karin, M. (2012) NF-κB and the Link between Inflammation and Cancer. Immunological Reviews, 246, 379-400.
https://doi.org/10.1111/j.1600-065X.2012.01099.x
[22] Sun, S.C. (2011) Non-Canonical NF-κB Signaling Pathway. Cell Research, 21, 71-85.
https://doi.org/10.1038/cr.2010.177
[23] Claudio, E., Brown, K., Park, S., et al. (2002) BAFF-Induced NEMO-Independent Processing of NF-κ B2 in Maturing B Cells. Nature Immunology, 3, 958-965.
https://doi.org/10.1038/ni842
[24] Sun, S.C. (2017) The Non-Canonical NF-κB Pathway in Immunity and Inflammation. Nature Reviews Immunology, 17, 545-558.
https://doi.org/10.1038/nri.2017.52
[25] 刘建国. NF-κB信号通路在稀土氧化钕颗粒物致大鼠肺泡巨噬细胞(NR8383)分泌细胞因子过程中的作用研究[D]: [硕士学位论文]. 包头: 内蒙古科技大学包头医学院, 2016.
[26] Williams, A. and Scharf, S.M. (2007) Obstructive Sleep Apnea, Cardiovascular Disease, and Inflammation—Is NF-κB the Key? Sleep Breath, 11, 69-76.
https://doi.org/10.1007/s11325-007-0106-1
[27] 陈永生, 付斌, 郑永先. 金荞麦提取物对百草枯中毒大鼠急性肺损伤和MAPK/NF-κB信号通路的影响[J]. 遵义医科大学学报, 2022, 45(6): 736-742.
[28] Park, H.B. and Baek, K.H. (2022) E3 Ligases and Deubiquitinating Enzymes Regulating the MAPK Signaling Pathway in Cancers. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1877, Article ID: 188736.
https://doi.org/10.1016/j.bbcan.2022.188736
[29] Moon, H. and Ro, S.W. (2021) MAPK/ERK Signaling Pathway in Hepatocellular Carcinoma. Cancers, 13, Article 3026.
https://doi.org/10.3390/cancers13123026
[30] Severin, S., Ghevaert, C. and Mazharian, A. (2010) The Mitogen-Activated Protein Kinase Signaling Pathways: Role in Megakaryocyte Differentiation. Journal of Thrombosis and Haemostasis, 8, 17-26.
https://doi.org/10.1111/j.1538-7836.2009.03658.x
[31] Yang, R., Piperdi, S. and Gorlick, R. (2008) Activation of the RAF/Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase Kinase/Extracellular Signal-Regulated Kinase Pathway Mediates Apoptosis Induced by Chelerythrine in Osteosarcoma. Clinical Cancer Research, 14, 6396-6404.
https://doi.org/10.1158/1078-0432.CCR-07-5113
[32] Li, T., Wu, Y.N., Wang, H., et al. (2020) Dapk1 Improves Inflammation, Oxidative Stress and Autophagy in LPS-Induced Acute Lung Injury via p38MAPK/NF-κB Signaling Pathway. Molecular Immunology, 120, 13-22.
https://doi.org/10.1016/j.molimm.2020.01.014
[33] Lv, X., Yao, T., He, R., et al. (2021) Protective Effect of Fluorofenidone against Acute Lung Injury through Suppressing the MAPK/NF-κB Pathway. Frontiers in Pharmacology, 12, Article 772031.
https://doi.org/10.3389/fphar.2021.772031
[34] Huang, B., Lang, X. and Li, X. (2022) The Role of IL-6/JAK2/STAT3 Signaling Pathway in Cancers. Frontiers in Oncology, 12, Article 1023177.
https://doi.org/10.3389/fonc.2022.1023177
[35] Zhong, Y., Yin, B., Ye, Y., et al. (2021) The Bidirectional Role of the JAK2/STAT3 Signaling Pathway and Related Mechanisms in Cerebral Ischemia-Reperfusion Injury. Experimental Neurology, 341, Article ID: 113690.
https://doi.org/10.1016/j.expneurol.2021.113690
[36] Rah, B., Rather, R.A., Bhat, G.R., et al. (2022) JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Frontiers in Pharmacology, 13, Article 821344.
https://doi.org/10.3389/fphar.2022.821344
[37] Zheng, Q., Dong, H., Mo, J., et al. (2021) A Novel STAT3 Inhibitor W2014-S Regresses Human Non-Small Cell Lung Cancer Xenografts and Sensitizes EGFR-TKI Acquired Resistance. Theranostics, 11, 824-840.
https://doi.org/10.7150/thno.49600
[38] Montero, P., Milara, J., Roger, I., et al. (2021) Role of JAK/STAT in Interstitial Lung Diseases; Molecular and Cellular Mechanisms. International Journal of Molecular Sciences, 22, Article 6211.
https://doi.org/10.3390/ijms22126211
[39] 张丽敏, 祁亚锋, 韩冰阁, 等. 白细胞介素-6和JAK2/STAT3信号通路在急性肺损伤中的作用[J]. 中国急救医学, 2022, 42(5): 453-457.
[40] 石青青, 苏湘川, 杨小平, 等. 基于JAK2/STAT3信号通路探讨姜黄素改善脂多糖诱导的小鼠急性肺损伤的作用研究[J]. 中国中医急症, 2019, 28(5): 797-800.
[41] 王国全, 李莎, 余林中, 等. 基于JAK2/STAT3和IKKα/NF-κB信号通路探讨清瘟败毒饮对脓毒症急性肺损伤大鼠的保护作用及机制研究[J]. 中药药理与临床, 2018, 34(3): 2-5.
[42] Nadeem, A., Al-Harbi, N.O., Ahmad, S.F., et al. (2018) Glucose-6-Phosphate Dehydrogenase Inhibition Attenuates Acute Lung Injury through Reduction in NADPH Oxidase-Derived Reactive Oxygen Species. Clinical and Experimental Immunology, 191, 279-287.
https://doi.org/10.1111/cei.13097
[43] Zhou, J., Peng, Z. and Wang, J. (2021) Trelagliptin Alleviates Lipopolysaccharide (LPS)-Induced Inflammation and Oxidative Stress in Acute Lung Injury Mice. Inflammation, 44, 1507-1517.
https://doi.org/10.1007/s10753-021-01435-w
[44] Kelley, E.E., Khoo, N.K., Hundley, N.J., et al. (2010) Hydrogen Peroxide Is the Major Oxidant Product of Xanthine Oxidase. Free Radical Biology and Medicine, 48, 493-498.
https://doi.org/10.1016/j.freeradbiomed.2009.11.012
[45] Gluschko, A., Herb, M., Wiegmann, K., et al. (2018) The β2 Integrin Mac-1 Induces Protective LC3-Associated Phagocytosis of Listeria monocytogenes. Cell Host Microbe, 23, 324-337.E5.
https://doi.org/10.1016/j.chom.2018.01.018
[46] Mittler, R. (2017) ROS Are Good. Trends in Plant Science, 22, 11-19.
https://doi.org/10.1016/j.tplants.2016.08.002
[47] Zemans, R.L. and Matthay, M.A. (2017) What Drives Neutrophils to the Alveoli in ARDS? Thorax, 72, 1-3.
https://doi.org/10.1136/thoraxjnl-2016-209170
[48] Kellner, M., Noonepalle, S., Lu, Q., et al. (2017) ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Advances in Experimental Medicine and Biology, 967, 105-137.
https://doi.org/10.1007/978-3-319-63245-2_8
[49] Lu, M.C., Zhao, J., Liu, Y.T., et al. (2019) CPUY192018, a Potent Inhibitor of the Keap1-Nrf2 Protein-Protein Interaction, Alleviates Renal Inflammation in Mice by Restricting Oxidative Stress and NF-κB Activation. Redox Biology, 26, Article ID: 101266.
https://doi.org/10.1016/j.redox.2019.101266
[50] Liu, S., Pi, J. and Zhang, Q. (2022) Signal Amplification in the KEAP1-NRF2-ARE Antioxidant Response Pathway. Redox Biology, 54, Article ID: 102389.
https://doi.org/10.1016/j.redox.2022.102389
[51] Luo, L., Huang, F., Zhong, S., et al. (2022) Astaxanthin Attenuates Ferroptosis via Keap1-Nrf2/HO-1 Signaling Pathways in LPS-Induced Acute Lung Injury. Life Sciences, 311, Article ID: 121091.
https://doi.org/10.1016/j.lfs.2022.121091
[52] 刘雅晶. CDDO-Im通过增强线粒体自噬抑制焦亡减轻脓毒症诱导的急性肺损伤[D]: [硕士学位论文]. 锦州: 锦州医科大学, 2022.
[53] Zhang, L., Zhu, X.Z., Badamjav, R., et al. (2022) Isoorientin Protects Lipopolysaccharide-Induced Acute Lung Injury in Mice via Modulating Keap1/Nrf2-HO-1 and NLRP3 Inflammasome Pathways. European Journal of Pharmacology, 917, Article ID: 174748.
https://doi.org/10.1016/j.ejphar.2022.174748