硅油在视网膜脱离应用中对视网膜的影响
Effect of Silicone Oil on the Retina in Retinal Detachment Applications
DOI: 10.12677/ACM.2024.141197, PDF, HTML, XML, 下载: 59  浏览: 117 
作者: 程 静:吉首大学医学院,湖南 吉首;于 兰*:吉首大学第四临床学院眼科,湖南 吉首
关键词: 硅油视网膜视网膜脱离乳化并发症Silicone Oil Retina Retinal Detachment Emulsification Complication
摘要: 硅油(SO)在视网膜脱离手术中的应用已有60余年的历史,经过了硅油本身材料的改进和手术技术的发展,硅油已经成为眼科常用的材料之一,但其仍有临床上难以解释的并发症。我们在PubMed上搜索了自1962年硅油的第一篇报道后的与硅油视网膜相关的文献,特别是对相对权威的综述文献和基础实验文献,总结了硅油的特性、特别是乳化作用和小分子化合物的负面作用。分析了视网膜的结构,硅油对于视网膜组织的病理免疫影响以及最后临床并发症。最后对正在研发的玻璃体替代物进行简单的叙述,使眼科医生重视硅油所带来的负面效应,确保在使用硅油时考虑其性质及临床收益,并对硅油术后并发症的底层改变有新的认识。
Abstract: Silicone oil (SO) has been used in retinal detachment surgery for more than 60 years. Through the improvement of silicone oil material and the development of surgical technology, silicone oil has become one of the commonly used materials in ophthalmology, but there are still complications that are difficult to explain in clinical practice. We searched PubMed for the literature related to sil-icone oil retina since the first report of silicone oil in 1962, especially the relative authoritative re-view literature and basic experimental literature, summarizing the characteristics of silicone oil, especially the emulsification effect and the negative effects of small molecular compounds. The structure of the retina, the pathological and immunological effects of silicone oil on retinal tissue and the final clinical complications were analyzed. Finally, the developing of vitreous substitutes for simple narrative, make an eye doctor attaches great importance to the negative effects brought by the silicone oil, to ensure that consider its properties and clinical benefits when using silicone oil, and the underlying change of silicone oil postoperative complications have a new understanding.
文章引用:程静, 于兰. 硅油在视网膜脱离应用中对视网膜的影响[J]. 临床医学进展, 2024, 14(1): 1362-1374. https://doi.org/10.12677/ACM.2024.141197

1. 引言

视网膜脱离(RD)是指各种原因所致的视网膜神经上皮层和色素上皮层的分离,其中孔源性视网膜脱离(RRD)为最常见的视网膜脱离形式,即玻璃体腔内液体通过断裂的网膜处进入视网膜下间隙,导致的视网膜脱离 [1] 。根据Mitry的文献报道 [2] ,视网膜脱离有很强的地域性和民族性,各个地区患病率均有不同,波动于6.3~17.9/10万人。根据Chen的报道 [3] ,在50~69岁为患病率的高峰,其中高度近视和白内障手术史为高风险因素。在治疗视网膜脱离的手术中,硅油扮演了重要的作用。

从1962年Cibis第一次将硅油(SO)作为眼内植入物在视网膜脱离手术中使用 [4] ,后续的许多眼科医生开始将硅油玻璃体腔充填作为眼内手术方法之一 [5] [6] [7] 。但在20世纪60年代末期,因硅油带来的并发症和术后视力恢复欠佳,导致其在美国的使用减少 [8] 。随着硅油材料的改进及玻璃体切除手术技术的发展,与同时代的玻璃填充物六氟化硫(SF6)相比,硅油显示出更加良好的视网膜复位解剖结果 [9] [10] [11] ,并经过1994年的联合研究评估,硅油在美国被美国食品和药物管理局(FDA)批准为眼内填塞物 [12] 。在欧盟中被归类为IIb类医疗器械,即长期使用(>30天)的植入物。

时至今日,硅油在全球范围内被广泛使用,尤其是在复杂性的玻璃体视网膜手术中具有不可替代的作用。虽然硅油的使用历史已有60余年,但其本身的性质常常被眼科医生们忽略,同时因为眼部影像技术的限制,对于眼内组织和视网膜通过非入侵的方式获得组织信息及高清图片的方法较少,这对于手术中使用硅油后出现并发症及视力恢复欠佳无较好的解释。现如今随着科技的进步及动物模型的成熟,越来越多的硅油对眼内组织的影响的研究越来越多,我们对于视网膜脱离和硅油的认识也更加深入 [13] [14] [15] [16] 。本次综述的目的是对硅油的基本特性、在视网膜脱离中的应用及硅油对视网膜的影响进行更新和全面概述。

2. 硅油的基本特性

2.1. 基础概念介绍

在介绍硅油的基本特性之前,容我先解释在视网膜脱离手术中玻璃体腔替代物需要的重要参数,这对于后面硅油性质和作用的理解有重要的作用。

1) 比重:我们把水的比重视为1,那么比重小于1的物质会漂浮于水上,反之小于1的物质则会下沉。房水和玻璃腔液的比重略高于1,而硅油的比重为0.97,因此硅油为漂浮在玻璃腔内。

2) 浮力:硅油在眼内主要受到两个力,向上的浮力和向下的重力,最终综合的力为向上的浮力,其向上力量的大小决定了对视网膜的压力。根据阿基米德原理,浮在液体上的物体所受到的向上浮力等于该物体所排开的液体的重量,而硅油的比重仅略重于房水,排开液体较少,故对视网膜产生的压力也在相对安全的范围内。

3) 表面张力:当两种不同物质接触在一起时,这些物质表面发生的相互作用力称为表面张力,它决定了液体的形状。高表面张力的物质更加倾向于一个圆形气泡,其中气体或空气对水的表面张力最高(约80 mN/m),而硅油的表面张力较低,约为35 mN/m。

4) 粘性:用于衡量物质对剪切应力逐渐变形的抵抗力,物质乳化并分散成液滴的趋势,物质的粘度越低,大液泡分散成小液滴所需的能量就越低。硅油具有高粘度(1.000~5.000 cs),乳化较慢,且乳化的小液滴也会重新聚结成一个大液泡。

2.2. 硅油的性质

硅油是指一类由硅氧键构成的疏水性聚合物和单体化合物,术语称为有机硅氧烷,因其粘度和疏水性,故被称为“硅油” [17] 。硅油的结构是硅氧烷单元(-Si-O)的链接和各种侧链的线性链构成(可见于图1),不同硅油之间的主要区别取决于分子量(MW)、线性链的长度、侧链的化学结构、聚合物链的自由基末端终止以及链的尺寸分布。因此,每种类型的硅油都具有特定的化学和物理特性。

Figure 1. Standard silicone oil: Chemical structure of polydimethylsiloxane (PDMS), n meaning the repeating units

图1. 标准硅油:聚二甲基硅氧烷(PDMS)的化学结构,n为重复的单元

如前面基础概念的介绍,硅油具有高粘性,略低于房水的比重,较低的表面张力,使得在视网膜脱离硅油注入术后,患者保持眼球向下姿态,使硅油在视网膜上产生上浮的压力。同时,因低表面张力,相较于气泡,硅油的展开面积更大,对视网膜产生压力的范围也更大,另外,略低于房水的比重,使其产生的压力适中,同气体注入相比,硅油的压力更加稳定,变化较小,而气体会随着吸收,对单个点位的压力增加,因其高压力可能会导致视网膜断裂的发生,最后,硅油的高粘性,可以让其在眼内持续长久的存在而不发生乳化变形,减少硅油的并发症,也为眼内取出硅油提供良好的条件。

根据上述的介绍,高粘度可以减少乳化,那是不是使用更高粘度的硅油对于患者的获益就更多呢?例如在粘度在1.000~5.000 cs之间,我们使用5.000 cs的硅油比1.000 cs的硅油获益更多?根据文献显示,两种硅油在临床上的乳化程度并没有实质性的差异 [18] [19] [20] [21] [22] ,且两种硅油的表面分子张力也相差无几(21.2 mN/m和21.3 mN/m) [17] ,因此我们在临床的治疗中,对于硅油的粘度并不需要做区别对待。相反,血液、胆固醇、蛋白质等生物分子和曲安奈德等药物颗粒都是乳化剂成分,这些物质与硅油接触后会导致表面张力和粘度的降低,从而导致硅油乳化的发生,因此在术中使用曲安奈德后尽可能的吸出减少硅油乳化 [23] ,在硅油注入术后,对出血和炎症的管理可以更好降低硅油的乳化 [17] [24] 。

硅油粘度的不同对于其注入和取出有诸多影响。随着微创理念的传播,23G、25G玻璃体切除手术技术广泛使用 [25] [26] [27] [28] ,同时27G玻璃体切除也逐渐推广 [29] [30] [31] [32] [33] ,低粘度的硅油更加容易通过小管径的仪器注入和取出,因此部分眼科医生更加青睐低粘度硅油。虽然上一段我们显示了粘度不同的硅油在眼内乳化方面无差异,但理论上,粘度越低,越易乳化,因此,研究拉伸粘度增加的是新型硅油的研究方向 [34] [35] ,即通过在普通硅油中添加少量的超长链硅油分子而获得的拉伸粘度的增加,这可以使硅油在保持低粘度的同时,保持抗乳化性。然而到目前为止,很少有文献报道新型硅油,且以体外测试为主,因此,新型硅油有待进一步研发和实验。

2.3. 硅油的生物相容性

在说生物相容性之前,不得不先提到低分子化合物(LMWC),它是指不同分子长度和低分子量的链状或者环状的化合物。在硅油的合成中不可避免的会出现杂质,虽然会有提纯过程,但在最后仍然会有低分子化合物残留,主要是八甲基环四硅氧烷、十甲基环五硅氧烷和十二甲基环六硅氧烷,在欧洲化学品管理局中被标记为有毒物质,具有生物毒性和生物积蓄性 [36] 。

不存在任何毒性的玻璃体腔填塞物目前没有被发现,但同其他的眼内填塞物相比,硅油作为惰性物质,在玻璃体中生物相容性更好,产生的细胞组织毒性反应较轻 [37] [38] 。在Inoue体外实验的研究中 [39] ,它将ARPE-19细胞和视神经节细胞与纯化的1000 cs硅油混合培养。在三天后,两种细胞系均未检测到细胞毒性作用,七天后发现仅与硅油接触的ARPE-19细胞活性降低,即表面为硅油的机械力作用所致,并非毒性作用。因此目前关于硅油的细胞毒性的研究,主要是考虑在低分子化合物和硅油乳化产生的硅油小滴这两个方面。在Mario的体外实验研究中 [37] ,在24小时的ARPE-19细胞和BALB 3T3细胞中进行的直接接触体外细胞毒性测试表明,不管硅油的纯化程度,低分子化合物不存在细胞毒性;在Nayef的文献报道中显示 [40] ,低分子化合物具有促进人血清蛋白变性作用,这种潜在负面作用可能是眼内硅油毒性作用产生的机制之一;而在Chen的研究中指出 [41] ,通过液体和乳化形态的低分子化合物对视网膜细胞系的短期细胞毒性的实验,显示出两种形式的低分子化合物,均诱导急性细胞毒性,同时发现分子量和分子几何形状不同的低分子化合物在细胞毒性之间也有差异;在Michel的动物实验中 [42] ,使用标准硅油和纯化硅油进行对比发现,相较于标准硅油,纯化的硅油的外核层和外丛状层的退化程度更低。上述的研究都是基于低分子化合物的短期影响进行实验,且得出的结论均有争议,且低分子化合物具有生物积蓄作用,那么低分子化合物在眼内的毒性作用是否因生物积蓄致使组织中浓度升高而导致,需要更多的长期观察实验来证实。

低分子化合物还具有乳化剂的属性,可以加速硅油的乳化,而硅油的乳化可以在眼内引起炎症反应。根据Francesco的文献显示 [43] ,硅油乳化小滴可引发炎症细胞的趋化性和异物炎症反应,而硅油乳化小滴被募集而来的巨噬细胞和RPE细胞进行吞噬产生炎症反应,这种炎症反过来又会进一步刺激硅油的乳化,从而形成恶性循环。在Morescalchi的文章中报道 [44] ,硅油乳化小滴会诱发肉芽肿性异物反应,即RPE细胞吞噬和产生上皮样细胞。另外硅油乳化小滴不仅仅存在于玻璃体腔内产生炎症反应,同时还会进入眼前段,亦或是通过视神经的轴向运输入颅脑,甚至有报道在心室腔内也可发现硅油乳化小滴,这在后续的章节再详细展开。总之,通过上述的描述,硅油作用玻璃体替代物,相比气体或其他替代物,具有良好的物理参数和生物相容性,减少乳化和纯化硅油可以减少其带来的细胞毒性作用。

3. 视网膜解剖和功能

3.1. 视网膜的结构概述

视网膜是由胚胎时期神经外胚叶形成的视杯发育而来,视杯外层形成色素上皮层,为单层细胞,这些细胞的顶端表面含有交错排列的微绒毛,将感光细胞外节包埋于内;视杯内层形成视网膜神经上皮层,内侧的神经上皮层的细胞主要可分为6种神经细胞,包括视网膜神经节细胞、无长突细胞、双极细胞、水平细胞、视锥细胞、视杆细胞,1种神经胶质细胞为Müller细胞 [45] 。这两层组织之间含有潜在的腔隙,这也是视网膜脱离发生的解剖基础 [46] 。

神经上皮层的结构由内向外从内向外依次可分为视神经纤维层(RNFL)、神经节细胞层(GCL)、内丛状层(IPL)、内核层(INL)、外丛状层(OPL)、外核层(ONL)以及感光器内节和外节段(IS + OS) [47] 不同的分层对应的细胞结构如表1所示。

Table 1. Reference of the tissues and cells of the retina

表1. 视网膜组织和细胞的对照

视网膜的血供由两部分组成,内层的视神经纤维层、视神经节细胞层、内丛状层、内核层及外丛状层均有视网膜血管供血,而外核层和光感受器的内外节段无血管,氧气的供给依赖于脉络膜血管的扩散 [48] 。虽然有两个不同的供血方式,但其受到的调控也具有差异,视网膜血管对氧气和二氧化碳较敏感,高氧血症会收缩血管减少血流量,在高碳酸血症的情况下则会舒张血管增加血流量,而脉络膜的血流敏感度较低,氧气和二氧化碳的影响较小,这与其本身高血流量的供大于求,超过到了局部代谢的需要相关 [48] [49] [50] [51] 。

3.2. 视网膜生理功能

视网膜的功能是接受视觉信号并传入脑内,其中的各个细胞均发挥着重要的功能,光感受器为视觉信号编码的前哨站,将光信号转化为膜电位进而视网膜化学递质,光感受器可分为视锥细胞和视杆细胞,视杆细胞具有极高的光敏度,对单个的光子也可以应答 [52] [53] 。而因此视杆细胞在暗环境下起重要作用;视锥细胞的光敏度虽然只有视杆细胞的1/100,但其单突触连接让其信号反应更快,且不同的视锥细胞对不同的波长光线有不同的敏感度,因此视锥细胞在明亮环境下起主要作用且负责色彩的辨析 [54] [55] 。

视锥视杆细胞的膜电位往内传递在外丛状层处产生谷氨酸作为神经递质传递与双极细胞,这种信号的传递受到水平细胞的调控。此外,双极细胞也因受到的信号来自于视锥细胞还是视杆细胞的不同也分为两个亚型,这两个亚型的区别在于信号传递是产生超极化还是去极化。双极细胞在接受谷氨酸后,继续往内传递信号至内丛状层与神经节细胞和无长突细胞接触,其神经节细胞是视网膜内唯一的输出神经元,负责将其信号传递至视觉高级中枢从而让我们产生视觉,而无长突细胞负责调控视神经节细胞兴奋的调控,一种是直接通过无长突细胞突触对视网膜神经节细胞树突的前馈抑制,另一种是通过无长突细胞接触双极细胞轴突末梢的反馈抑制,γ-氨基丁酸和甘氨酸是这两种抑制的神经递质 [56] [57] [58] 。

4. 硅油在视网膜脱离手术中的应用

如前所述,视网膜的色素上皮层和神经上皮层之间具有潜在的腔隙,其间隙扩大致使两层组织分离即为视网膜脱离,而孔源性视网膜脱离为最常见的脱离类型,液化的玻璃体会通过裂孔处进入神经上皮层下使网膜脱离。硅油注入术为孔源性视网膜脱离治疗的方式之一,在切除玻璃体,解除玻璃体向内的牵引力后,使用物理方法使裂孔处变形产生瘢痕封闭裂孔,最后注入硅油,替代玻璃体保持眼球的形状、予以脱离的视网膜压力使其恢复解剖结构 [59] 。

在Ritesh的研究中显示 [60] ,64只眼在硅油注入术后有56只眼(87.5%)获得解剖复位,其中49只眼(76.6%)视力较术前提高或稳定;在Feng的mate分析中 [61] ,其纳入的12片文献中分析得出,硅油与其他玻璃体腔充填物相比疗效无明显差异,同时硅油对于低眼压的风险显著降低;在Joelle的前瞻性研究中 [62] ,纳入了原发性非复杂性孔源性视网膜脱离行玻璃体切除联合硅油注入手术的患者62例,术后6个月有58只眼获得了视网膜解剖复位,55只眼BCVA获得提高,证实了玻璃体切除伴硅油注入可以获得良好的解剖和功能恢复,且视网膜复位率高,增生性玻璃体视网膜病变发生率低;在Meng的回顾性研究中 [63] ,其回顾了21例高度近视眼伴黄斑裂孔的视网膜脱离患者,使用玻璃体切除、内界膜剥离和硅油注入术后,18只眼(86%)的黄斑裂孔闭合且视网膜解剖复位;在Siglers的回顾性研究中 [64] ,纳入了39例患者,其患者情况为复发性增殖性视网膜脱离33例、黄斑前膜引起的视网膜脱离6例,其结果显示在末期随访中,所有患者的视力均有提高(0.74 ± 0.63),在33例的复发性增殖性视网膜脱离患者中,29例的患者的视网膜获得解剖复位。总而言之,自从1962年首次将硅油在视网膜脱离中使用以来,视网膜解剖复位功能及视觉恢复效果让眼科医生们对其作为选择之一。

5. 硅油的负面效应

5.1. 硅油对于视网膜的影响

虽然在视网膜脱离中或玻璃体手术中有着非常重要的作用,但所有的事情都有两面性,硅油也同样存在负面作用。在Tode的研究中 [65] ,回顾了15例使用5000 cs硅油治疗视网膜脱离的病例,结果显示15例病例中仍有三例病例中患者的BCVA无提高且有下降,且推测视力下降原因考虑为视网膜变薄所致;在Richard的研究中 [66] ,有7位患者,6位男性,一位女性,平均年龄为42.8岁,在其硅油取出术后BCVA明显下降,同时未出现与硅油相关的其他并发症,所有患者视网膜均解剖复位,无黄斑囊样水肿或视网膜前膜发生,光相干断层扫描和荧光素血管造影检查结果正常。但电生理检查显示为严重的黄斑功能障碍;在EHerbert的研究中 [67] ,有5位患者显示在硅油填充过程中出现中心暗点,在暗点出现后,视力平均下降0.93 LogMAR单位。在其后的白内障摘除和取出眼内硅油术后,视力平均下降0.8个单位。对其进行光相干断层扫描和荧光素血管造影检查结果均未见异常。而在电生理检查,有4例患者的结果提示黄斑功能障碍。由此可见,硅油在眼部的使用也只是相对安全,仍有部分患者可出现不明原因的视力下降,目前推测与视网膜厚度下降及黄斑功能障碍相关。

那么硅油究竟是怎么样影响视网膜的呢?我们在前面描述了硅油中的杂质小分子化合物具有毒性作用,且乳化的硅油小滴可引起炎症反应及异物肉芽肿,接下来我们再进一步展开描述硅油对于视网膜的影响。在Kirchhof的研究中 [68] ,取了8位硅油注入术后患者的视网膜内标本进行病理切片检查,发现在未脱离的视网膜中并未发现硅油包裹体的存在,而在受损的视网膜,也就是脱离的视网膜中,发现在视网膜的中层,外界膜以及视网膜下均可发现硅油包裹体。在Louisa的免疫学研究中 [69] ,实验组为14个PVR的视网膜前膜标本,19个PVR的视网膜标本,33个硅油注入术后的前膜标本和14个硅油注入术后视网膜的标本,其对照组无视网膜脱离史的视网膜前膜标本37例,结果显示在33个有油前膜样本中有25例含有大量的巨噬细胞浸润,有油的前膜标本中巨噬细胞反应明显大于非油样本中的巨噬细胞反应,且有油前膜样本中含有轻微的T细胞反应;在视网膜的样本中形态基本良好,14个有油视网膜样本中有10个样本的巨噬细胞反应仅限于前膜中,其余4个样本延伸至神经胶质细胞中,并发现11例样本中神经胶质细胞数量上调,其作者讨论硅油能引发炎症反应且持续存在,并通过对时间的统计显示在早期即可出现炎症反应,而填塞时间与炎症反应之间缺乏关联,表明在炎症方面,硅油本身的使用比眼内填塞的持续时间作用更大。总而言之,硅油在视网膜前膜中常见,而在视网膜本身少见,硅油对于视网膜的毒性作用是间接的。这支持在Asaria和Hiroki的研究中显示出硅油的炎症反应累积致PVR的发生,但在时间的观点上,却显示出炎症反应与填塞时间强相关 [70] [71] 。而Francesco的前瞻性研究也支持炎症与时间强相关的观点 [43] ,其研究了35只硅油注入术后患者,并在其硅油取出术中取部分玻璃体液检测前列腺素E2和白细胞介素1α水平来评估炎症反应,结果显示炎症与硅油的填塞持续时间有强相关性。我们从上可以推测,硅油注入术后在早期即可产生炎症反应且是随时间的变化。而炎症反应的产生,不仅仅会导致PVR的产生,还会导致与术后炎症反应强相关的黄斑囊样水肿的发生 [72] ,可在OCT下发现囊样上腔内含有硅油小泡 [73] 。在Dormegny的研究中指出 [74] ,硅油注入术后的黄斑水肿可以分为两种类型,炎症导致的黄斑水肿和内核层区的黄斑水肿,其内核层区的黄斑水肿更为常见,且水肿区中的硅油小滴即使行硅油取出术后也会持续存在,这可能与黄斑区功能障碍密切相关。

硅油除去上述的炎症反应外,其对于细胞本身也有影响。在Dorota的研究中 [75] ,使用SD-OCT检测硅油填充期的神经节细胞,其发现神经节细胞的厚度下降,代表神经节细胞的萎缩和数量减少。其原因考虑为硅油的透明度增加和溶解黄斑区色素致神经节细胞产生氧化应激和光毒性 [76] [77] [78] 。对于Müller细胞,硅油的存在可以使运输钾离子的功能障碍,从而使视神经内的钾离子浓度升高致使视神经节细胞的功能障碍 [79] 。在Michel的动物实验中 [42] ,使用了19只兔子,17只使用标准硅油为实验组,6只进行纯化硅油作为手术对照组,而未手术的眼睛作为对照组,六周后收集齐所有标本进行组织学检查,其结果显示实验组标本的外丛状层变薄甚至部分消失,光感受器的突触数量减少,且外核层的细胞核的细胞质与细胞核颜色加深,这和细胞退化的表象一致,而手术对照组与对照组的外核层和外丛状层并无这种改变。

随着目前影像学的发展,无创式眼底检查方式越来越多。在Jungwook的研究中 [80] ,纳入30例因视网膜脱离行玻璃体切除伴硅油注入手术的患者,在手术前、硅油填塞期间及硅油取出之后对行SS-OCT和OCTA检查,SS-OCT测量黄斑区视网膜和脉络膜厚度及视盘周围厚度,OCTA检查对健侧眼和去除硅油后患眼的黄斑区浅层和深层毛细血管丛血管密度进行比较。结果显示患眼黄斑中心凹周围全视网膜、神经节细胞–内丛状层、视盘周围神经纤维层厚度较健眼明显变薄,且其差异具有统计学意义,在取出硅油3月时,黄斑区各层视网膜逐渐恢复增厚,6月时视神经节细胞层–内丛状层的厚度仍有增加,其他各层无明显变化;视盘周围神界纤维层厚度在硅油取出之后3月内逐渐增加,而6月时却再次出现下降;在硅油填塞期间和硅油取出后,浅层和深处毛细血管的密度在患眼和健侧眼中均无明显差异。在Wu的研究中 [81] ,纳入了23只眼因视网膜脱离行玻璃体切除加硅油注入术样本,使用OCTA检查黄斑区毛细血管密度和视网膜厚度,检查结果显示硅油在6个月内对黄斑区毛细血管密度无明显影响,但黄斑区视网膜较健侧眼下降。在Karasu的研究中 [82] ,使用SD-OCT和EDI-OCT的检查黄斑区视网膜和脉络膜厚度,检查结果显示黄斑区视网膜和脉络膜厚度显著降低。上述影像学研究结果同上述组织学和病理学检查结果相符。

5.2. 硅油的其他负面作用

在临床上,硅油会产生很多的并发症。在大部分无晶体眼的硅油填塞眼中,硅油会进入前房而接触角膜内皮 [83] 。常常导致角膜后膜的产生、基质细胞增多、浅表层基质钙化和血管化、内皮细胞密度降低以及内皮细胞形态异常 [84] ,最后导致角膜内皮失代偿、角膜新生血管形成。硅油对于眼压的影响,可以分为急性和慢性,硅油产生的急性眼压升高常常是由于术后瞳孔阻滞或硅油填塞过多所致,而慢性的眼压升高考虑为硅油乳化或者炎症反应 [85] [86] 。在Petersen的研究中 [87] ,发现1000 cs的硅油较5000 cs的硅油更加容易引起眼压升高。而在Stinson的研究中却没有显示不同粘度的硅油对眼压升高的有差异性 [88] 。除了眼内组织的影响,对眼外组织的影响也有报道。2003年在Sathish的病例报道中描述了两份巩膜外脂质肉芽肿的病例,考虑为术中切口硅油渗漏所致 [89] 。在1999年,Williams首次报道了使用硅油治疗巨细胞病毒性视网膜炎引起的视网膜脱离,在术后的第15月,通过MRI的检查发现了脑室内有硅油的存在 [90] 。在2013年,Paul的一篇病例报道记录了眼内迁移至脑室并继发慢性头痛的病例 [91] 。

6. 眼内填充材料的新发展

硅油虽然为经典的眼内填充物,但其的负面效果影响,新型材料的研发势在必行。首先,为了避免硅油的乳化效应所带来的负面效果,可折叠玻璃体可以很好的解决这一问题,它是由一个硅橡胶弹性体制成的薄硅胶球,并带有可固定在结膜下的硅胶管阀系统 [92] [93] 。在体外实验中证实其具有良好的光学效果和生物相容性 [94] [95] 。但目前可折叠玻璃体的使用大多数在严重的视网膜脱离且硅油未能使视网膜附着、预后视力欠佳的病例中 [96] [97] ,缺乏对常规病例及长期临床观察的研究,暂不能替代硅油作为长期的眼内填充物。

水凝胶性生物材料目前在临床上广泛应用,其材料包括胶原蛋白、透明质酸、壳聚糖和其他天然聚合物,聚(1-乙烯基-2-吡咯烷酮)、聚丙烯酰胺、聚(乙烯醇)和聚(乙烯醇甲基丙烯酸酯)等合成聚合物 [98] [99] 。但天然聚合物其表面张力低、粘度、易变形,对视网膜的机械力低,且降解率不稳定暂不作为良好的玻璃体腔替代物,合成聚合物的生物相容性差、炎症反应重及长期毒性反应同样不能替代。此外,水凝胶材料还具有生物污垢反应,即蛋白质非特异性的吸附在生物材料表面,引起炎症和纤维化 [100] 。但目前最新的研究报道,双网络水凝胶这一理论获得突破,使其获得更高的粘性,抗生物污垢反应更强和更好的生物相容性等特点 [101] 。除此之外,一种水凝胶已显示出降解后形成玻璃体样结构的能力 [102] 。但目前暂属于动物实验阶段,需进一步研究后才能进入人体和临床。

7. 总结

硅油从1962年以来已有60余年的使用历史,称为玻璃体腔手术中重要的材料之一,但其乳化的特性及小分子化合物的存在让其仍有负面作用,减少硅油的乳化因素的研究以及纯化硅油减少小分子化合物含量,以减少硅油所带来的负面效应及并发症。虽然目前新型材料的研发展现出较硅油更加优良的临床效果,但仍需要进一步的研究验证才能进入人体及临床,再此之前,硅油仍将是玻璃体的替代物的选择之一。

NOTES

*通讯作者。

参考文献

[1] Steel, D. (2014) Retinal Detachment. BMJ Clinical Evidence, 2014, Article No. 0710.
[2] Mitry, D., Charteris, D.G., Fleck, B.W., et al. (2010) The Epidemiology of Rhegmatogenous Retinal Detachment: Geographical Variation and Clini-cal Associations. The British Journal of Ophthalmology, 94, 678-684.
https://doi.org/10.1136/bjo.2009.157727
[3] Chen, S.N., Lian, I.-B. and Wei, Y.J. (2016) Epidemiology and Clinical Characteristics of Rhegmatogenous Retinal Detachment in Taiwan. The British Journal of Ophthalmology, 100, 1216-1220.
https://doi.org/10.1136/bjophthalmol-2015-307481
[4] Cibis, P.A., Becker, B., Okun, E., et al. (1962) The Use of Liquid Silicone in Retinal Detachment Surgery. Archives of Ophthalmology, 68, 590-599.
https://doi.org/10.1001/archopht.1962.00960030594005
[5] Scott, J.D. (1975) The Treatment of Massive Vitre-ous Retraction by the Separation of Pre-Retinal Membranes Using Liquid Silicone. Modern Problems in Ophthalmology, 15, 185-190.
[6] Lund, O.E. (1968) [Silicone Oil as Vitreous Body Substitute]. Bericht über die Einundfünfzigste Zusammenkunft der Deutschen Ophthalmologischen Gesellschaft, 68, 166-169.
[7] Leaver, P.K., Cooling, R.J., Feretis, E.B., et al. (1984) Vitrectomy and Fluid/Silicone-Oil Exchange for Giant Retinal Tears: Results at Six Months. The Brit-ish Journal of Ophthalmology, 68, 432-438.
https://doi.org/10.1136/bjo.68.6.432
[8] Watzke, R.C. (1967) Sili-cone Retinopiesis for Retinal Detachment. A Long-Term Clinical Evaluation. Archives of Ophthalmology, 77, 185-196.
https://doi.org/10.1001/archopht.1967.00980020187008
[9] McCuen 2nd, B.W., Landers III, M.B. and Machem-er, R. (1985) The Use of Silicone Oil Following Failed Vitrectomy for Retinal Detachment with Advanced Proliferative Vitreoretinopathy. Ophthalmology, 92, 1029-1034.
https://doi.org/10.1016/S0161-6420(85)33904-0
[10] Zivojnović, R., Mertens, D.A. and Peperkamp, E. (1982) [Liquid Silicone in Amotio Surgery (II). Report on 280 Cases—Further Development of the Technic]. Klinische Monatsblätter für Augenheilkunde, 181, 444-452.
https://doi.org/10.1055/s-2008-1055269
[11] Mondelo-García, C., Bandín-Vilar, E., García-Quintanilla, L., et al. (2021) Current Situation and Challenges in Vitreous Substitutes. Macromolecular Bioscience, 21, E2100066.
https://doi.org/10.1002/mabi.202100066
[12] Chen, Y., Kearns, V.R., Zhou, L., et al. (2021) Silicone Oil in Vitre-oretinal Surgery: Indications, Complications, New Developments and Alternative Long-Term Tamponade Agents. Acta Ophthalmologica, 99, 240-250.
https://doi.org/10.1111/aos.14604
[13] Reumueller, A., Wassermann, L., Salas, M., et al. (2020) Morphologic and Functional Assessment of Photoreceptors after Macula-Off Retinal Detachment with Adaptive-Optics OCT and Micrope-rimetry. American Journal of Ophthalmology, 214, 72-85.
https://doi.org/10.1016/j.ajo.2019.12.015
[14] Hong, E.H., Cho, H., Kim, D.R., et al. (2020) Changes in Retinal Vessel and Retinal Layer Thickness after Vitrectomy in Reti-nal Detachment via Swept-Source OCT Angiography. Investigative Ophthalmology & Visual Science, 61, 35.
https://doi.org/10.1167/iovs.61.2.35
[15] Martins Melo, I., Bansal, A., Naidu, S., et al. (2023) Morphologic Stages of Rhegmatogenous Retinal Detachment Assessed Using Swept-Source Oct. Ophthalmology Retina, 7, 398-405.
https://doi.org/10.1016/j.oret.2022.11.013
[16] Lorenzo-Carrero, J., Perez-Flores, I., Cid-Galano, M., et al. (2009) B-Scan Ultrasonography to Screen for Retinal Tears in Acute Symptomatic Age-Related Posterior Vitreous Detachment. Ophthalmology, 116, 94-99.
https://doi.org/10.1016/j.ophtha.2008.08.040
[17] Ryan, J.J.R., et al. (2006) Silicone Oils: Physicochemical Prop-erties. In: Ryan, S.J., et al. (Eds.), Retina, Vol. 3, Mosby, St. Louis, 2191-2210.
https://doi.org/10.1016/B978-0-323-02598-0.50135-X
[18] Crisp, A., De Juan Jr., E. and Tiedeman, J. (1987) Ef-fect of Silicone Oil Viscosity on Emulsification. Archives of Ophthalmology, 105, 546-550.
https://doi.org/10.1001/archopht.1987.01060040116047
[19] Heidenkummer, H.P., Kampik, A. and Thierfelder, S. (1991) Emulsification of Silicone Oils with Specific Physicochemical Characteristics. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 229, 88-94.
https://doi.org/10.1007/BF00172269
[20] Scott, I.U., Flynn Jr., H.W., Murray, T.G., et al. (2005) Out-comes of Complex Retinal Detachment Repair Using 1000- vs 5000-Centistoke Silicone Oil. Archives of Ophthalmology, 123, 473-478.
https://doi.org/10.1001/archopht.123.4.473
[21] Maier, M.M., Engelmann, V., Pfrommer, S., et al. (2011) [Early Emulsification of Silicone Oil (2000 cs) in Minimally Invasive Transconjunctival Vitreoretinal Surgery]. Klinische Monatsblätter für Augenheilkunde, 228, 477-479.
https://doi.org/10.1055/s-0029-1245362
[22] Zafar, S., Shakir, M., Mahmood, S.A., et al. (2016) Comparison of 1000-Centistoke versus 5000-Centistoke Silicone Oil in Complex Retinal Detachment Surgery. Journal of the College of Physicians and Surgeons—Pakistan: JCPSP, 26, 36-40.
[23] Maestro, A., Santini, E., Zabiegaj, D., et al. (2015) Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Advances in Condensed Matter Physics, 2015, Article ID: 917516.
https://doi.org/10.1155/2015/917516
[24] Joussen, A.M. and Wong, D. (2008) The Concept of Heavy Tam-ponades-Chances and Limitations. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Grae-fes Archiv für klinische und experimentelle Ophthalmologie, 246, 1217-1224.
https://doi.org/10.1007/s00417-008-0861-0
[25] Tang, M.S., Zhang, S.Q. and Ma, L.W. (2018) Comparison of Postoperative Ciliary Body Changes Associated with the Use of 23-Gauge and 20-Gauge System for Pars Plana Vitrec-tomy. BMC Ophthalmology, 18, Article No. 262.
https://doi.org/10.1186/s12886-018-0925-9
[26] Bajgai, P., Tigari, B. and Singh, R. (2018) Outcomes of 23- and 25-Gauge Transconjunctival Sutureless Vitrectomies for Dislocated Intraocular Lenses. International Ophthalmology, 38, 2295-2301.
https://doi.org/10.1007/s10792-017-0721-1
[27] Lubiński, W., Gosławski, W., Podborączyńska-Jodko, K., et al. (2020) Comparison of 27-Gauge versus 25-Gauge Vitrectomy Results in Patients with Epiretinal Membrane: 6-Month Follow-Up. International Ophthalmology, 40, 867-875.
https://doi.org/10.1007/s10792-019-01250-1
[28] Uy, H.S., Cabahug, V.L.O., Artiaga, J.C.M., et al. (2022) Clinical Outcomes of a Beveled Tip, Ultra-High Speed, 25-Gauge Pars Plana Vitrectomy System. BMC Ophthalmology, 22, Article No. 93.
https://doi.org/10.1186/s12886-022-02311-3
[29] Scott, M.N. and Weng, C.Y. (2016) The Evolution of Pars Plana Vitrectomy to 27-G Microincision Vitrectomy Surgery. International Ophthalmology Clinics, 56, 97-111.
https://doi.org/10.1097/IIO.0000000000000131
[30] Charles, S., Ho, A.C., Dugel, P.U., et al. (2020) Clinical Comparison of 27-Gauge and 23-Gauge Instruments on the Outcomes of Pars Plana Vitrectomy Surgery for the Treat-ment of Vitreoretinal Diseases. Current Opinion in Ophthalmology, 31, 185-191.
https://doi.org/10.1097/ICU.0000000000000659
[31] Ung, C., Yonekawa, Y., Chung, M.M., et al. (2023) 27-Gauge Pars Plana/Plicata Vitrectomy for Pediatric Vitreoretinal Surgery. Retina (Philadelphia, PA), 43, 238-242.
https://doi.org/10.1097/IAE.0000000000003662
[32] Li, S., Li, Y., Wei, L., et al. (2023) 27-Gauge Microincision Vitrectomy Surgery Compared with 25-Gauge Microincision Vitrectomy Surgery on Wound Closure and Need for Wound Suture and Other Postoperative Parameters in the Treatment of Vitreoretinal Disease: A Meta-Analysis. Interna-tional Wound Journal, 20, 740-750.
https://doi.org/10.1111/iwj.13917
[33] Kitagawa, Y., Shimada, H., Yukita, M., et al. (2023) Silicone Oil Injection and Removal in 27-Gauge Vitreous Surgery. International Journal of Ophthalmology, 16, 139-142.
https://doi.org/10.18240/ijo.2023.01.21
[34] Williams, R.L., Day, M., Garvey, M.J., et al. (2010) Increasing the Extensional Viscosity of Silicone Oil Reduces the Tendency for Emulsification. Retina (Philadelphia, PA), 30, 300-304.
https://doi.org/10.1097/IAE.0b013e3181babe0c
[35] Caramoy, A., Hagedorn, N., Fauser, S., et al. (2011) Devel-opment of Emulsification-Resistant Silicone Oils: Can We Go Beyond 2000 mPas Silicone Oil? Investigative Ophthal-mology & Visual Science, 52, 5432-5436.
https://doi.org/10.1167/iovs.11-7250
[36] Romano, M.R., Ferrara, M., Nepita, I., et al. (2021) Biocompatibility of Intraocular Liquid Tamponade Agents: An Update. Eye (London, England), 35, 2699-2713.
https://doi.org/10.1038/s41433-021-01596-w
[37] Romano, M.R., Ferrara, M., Gatto, C., et al. (2020) Safety of Silicone Oils as Intraocular Medical Device: An in Vitro Cytotoxicity Study. Experimental Eye Research, 194, Article 108018.
https://doi.org/10.1016/j.exer.2020.108018
[38] Versura, P., Cellini, M., Torreggiani, A., et al. (2001) The Biocompatibility of Silicone, Fluorosilicone and Perfluorocarbon Liquids as Vitreous Tamponades. An Ultrastructural and Immunohistochemical Study. Ophthalmologica, 215, 276-283.
https://doi.org/10.1159/000050874
[39] Inoue, M., Iriyama, A., Kadonosono, K., et al. (2009) Effects of Perfluorocarbon Liquids and Silicone Oil on Human Retinal Pigment Epithelial Cells and Retinal Ganglion Cells. Retina (Philadelphia, PA), 29, 677-681.
https://doi.org/10.1097/IAE.0b013e318196fca1
[40] Nayef, L.M., Khan, M.F. and Brook, M.A. (2015) Low Mo-lecular Weight Silicones Particularly Facilitate Human Serum Albumin Denaturation. Colloids and Surfaces B, Biointer-faces, 128, 586-593.
https://doi.org/10.1016/j.colsurfb.2015.03.013
[41] Chen, Y., Ip, Y.L., Zhou, L., et al. (2021) What Is the Cause of Toxicity of Silicone Oil? Materials (Basel, Switzerland), 15, Article 269.
https://doi.org/10.3390/ma15010269
[42] Gonvers, M., Hornung, J.P. and De Courten, C. (1986) The Effect of Liquid Silicone on the Rabbit Retina. Histologic and Ultrastructural Study. Archives of Ophthalmology, 104, 1057-1062.
https://doi.org/10.1001/archopht.1986.01050190115049
[43] Semeraro, F., Russo, A., Morescalchi, F., et al. (2019) Comparative Assessment of Intraocular Inflammation Following Standard or Heavy Silicone Oil Tamponade: A Prospec-tive Study. Acta Ophthalmologica, 97, E97-E102.
https://doi.org/10.1111/aos.13830
[44] Morescalchi, F., Costagliola, C., Duse, S., et al. (2014) Heavy Silicone Oil and Intraocular Inflammation. BioMed Research International, 2014, Article ID: 574825.
https://doi.org/10.1155/2014/574825
[45] Miesfeld, J.B. and Brown, N.L. (2019) Eye Organogenesis: A Hierar-chical View of Ocular Development. Current Topics in Developmental Biology, 132, 351-393.
https://doi.org/10.1016/bs.ctdb.2018.12.008
[46] Albert, D.M., Miller, J.W., Azar, D.T., et al. (2008) Principles and Practice of Ophthalmology E-Book. Elsevier Health Sciences.
[47] Kaufman, P.L. and Alm, A. (2003) Adler’s Physiology of the Eye. Mosby Inc., St. Louis.
[48] Harris, A., Kagemann, L. and Cioffi, G.A. (1998) Assessment of Human Ocular Hemodynamics. Survey of Ophthalmology, 42, 509-533.
https://doi.org/10.1016/S0039-6257(98)00011-3
[49] Parver, L.M., Auker, C.R., Carpenter, D.O., et al. (1982) Choroidal Blood Flow II. Reflexive Control in the Monkey. Archives of Ophthalmology, 100, 1327-1330.
https://doi.org/10.1001/archopht.1982.01030040305021
[50] Linsenmeier, R.A. and Braun, R.D. (1992) Oxygen Distribution and Consumption in the Cat Retina during Normoxia and Hypoxemia. The Journal of General Physiology, 99, 177-197.
https://doi.org/10.1085/jgp.99.2.177
[51] Yu, D.Y., Cringle, S.J., Alder, V., et al. (1999) Intraretinal Oxygen Distribution in the Rat with Graded Systemic Hyperoxia and Hypercapnia. Investigative Ophthalmology & Visu-al Science, 40, 2082-2087.
[52] Rieke, F. (2000) Mechanisms of Single-Photon Detection in Rod Photoreceptors. Methods in Enzymology, 316, 186-202.
https://doi.org/10.1016/S0076-6879(00)16724-2
[53] Sampath, A.P. and Rieke, F. (2004) Selective Transmission of Single Photon Responses by Saturation at the Rod-to-Rod Bipolar Synapse. Neuron, 41, 431-443.
https://doi.org/10.1016/S0896-6273(04)00005-4
[54] Röhlich, P., Van Veen, T. and Szél, A. (1994) Two Different Visual Pigments in One Retinal Cone Cell. Neuron, 13, 1159-1166.
https://doi.org/10.1016/0896-6273(94)90053-1
[55] Roorda, A., Metha, A.B., Lennie, P., et al. (2001) Packing Arrangement of the Three Cone Classes in Primate Retina. Vision Research, 41, 1291-1306.
https://doi.org/10.1016/S0042-6989(01)00043-8
[56] Cueva, J.G., Haverkamp, S., Reimer, R.J., et al. (2002) Ve-sicular Gamma-Aminobutyric Acid Transporter Expression in Amacrine and Horizontal Cells. The Journal of Compara-tive Neurology, 445, 227-237.
https://doi.org/10.1002/cne.10166
[57] Contini, M. and Raviola, E. (2003) Gabaergic Synapses Made by a Retinal Dopaminergic Neuron. Proceedings of the National Academy of Sciences of the United States of America, 100, 1358-1363.
https://doi.org/10.1073/pnas.0337681100
[58] Cohen-Cory, S. and Lom, B. (2004) Neurotrophic Regulation of Retinal Ganglion Cell Synaptic Connectivity: From Axons and Dendrites to Synapses. The International Journal of De-velopmental Biology, 48, 947-956.
https://doi.org/10.1387/ijdb.041883sc
[59] Freund, K.B., Sarraf, D., Mieler, W.F., et al. (2016) The Retinal Atlas E-Book. Elsevier Health Sciences.
[60] Shah, R., Byanju, R. and Pradhan, S. (2018) Outcomes of Silicone Oil Removal in Complex Retinal Detachment. Nepalese Journal of Ophthalmology, 10, 124-129.
https://doi.org/10.3126/nepjoph.v10i2.23012
[61] Feng, X., Li, C., Zheng, Q., et al. (2017) Risk of Silicone Oil as Vitreous Tamponade in Pars Plana Vitrectomy: A Systematic Review and Meta-Analysis. Retina (Philadelphia, PA), 37, 1989-2000.
https://doi.org/10.1097/IAE.0000000000001553
[62] Antoun, J., Azar, G., Jabbour, E., et al. (2016) Vitreoretinal Surgery with Silicone Oil Tamponade in Primary Uncomplicated Rhegmatogenous Retinal Detachment: Clinical Out-comes and Complications. Retina (Philadelphia, PA), 36, 1906-1912.
https://doi.org/10.1097/IAE.0000000000001008
[63] Meng, L., Wei, W., Li, Y., et al. (2014) Treatment of Retinal Detachment Secondary to Macular Hole in Highly Myopic Eyes: Pars Plana Vitrectomy with Internal Limiting Membrane Peel and Silicone Oil Tamponade. Retina (Philadelphia, PA), 34, 470-476.
https://doi.org/10.1097/IAE.0b013e31829d004b
[64] Sigler, E.J., Randolph, J.C., Calzada, J.I., et al. (2014) Ana-tomical and Visual Outcomes after Two-Port Pars Plana Vitrectomy Reoperation Under Silicone Oil for Epimacular Membrane Or Recurrent Retinal Detachment. Retina (Philadelphia, PA), 34, 1939-1944.
https://doi.org/10.1097/IAE.0000000000000170
[65] Tode, J., Purtskhvanidze, K., Oppermann, T., et al. (2016) Vision Loss under Silicone Oil Tamponade. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 254, 1465-1471.
https://doi.org/10.1007/s00417-016-3405-z
[66] Newsom, R.S., Johnston, R., Sullivan, P.M., et al. (2004) Sudden Visual Loss after Removal of Silicone Oil. Retina (Philadelphia, PA), 24, 871-877.
https://doi.org/10.1097/00006982-200412000-00005
[67] Herbert, E.N., Habib, M., Steel, D., et al. (2006) Central Scotoma Associated with Intraocular Silicone Oil Tamponade Develops Before Oil Removal. Graefe’s Archive for Clin-ical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 244, 248-252.
https://doi.org/10.1007/s00417-005-0076-6
[68] Kirchhof, B., Tavakolian, U., Paulmann, H., et al. (1986) Histopathological Findings in Eyes after Silicone Oil Injection. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 224, 34-37.
https://doi.org/10.1007/BF02144130
[69] Wickham, L.J., Asaria, R.H., Alexander, R., et al. (2007) Immuno-pathology of Intraocular Silicone Oil: Retina and Epiretinal Membranes. The British Journal of Ophthalmology, 91, 258-262.
https://doi.org/10.1136/bjo.2006.103549
[70] Kaneko, H., Takayama, K., Asami, T., et al. (2017) Cyto-kine Profiling in the Sub-Silicone Oil Fluid after Vitrectomy Surgeries for Refractory Retinal Diseases. Scientific Reports, 7, Article No. 2640.
https://doi.org/10.1038/s41598-017-03124-x
[71] Asaria, R.H., Kon, C.H., Bunce, C., et al. (2004) Silicone Oil Concentrates Fibrogenic Growth Factors in the Retro-Oil Fluid. The British Journal of Ophthalmology, 88, 1439-1442.
https://doi.org/10.1136/bjo.2003.040402
[72] Daruich, A., Matet, A., Moulin, A., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68.
https://doi.org/10.1016/j.preteyeres.2017.10.006
[73] Odrobina, D. and Laudańska-Olszewska, I. (2014) Analysis of the Time and Location of the Silicone Oil Emulsification by Spectral-Domain Optical Coherence Tomography after Silicone Oil Tamponade. BioMed Research International, 2014, Article ID: 372045.
https://doi.org/10.1155/2014/372045
[74] Dormegny, L., Jeanjean, L.C., Liu, X., et al. (2021) Visual Impairment and Macular Vascular Remodeling Secondary to Retrograde Maculopathy in Retinal Detachment Treated with Silicon Oil Tamponade. Retina (Philadelphia, PA), 41, 309-316.
https://doi.org/10.1097/IAE.0000000000002812
[75] Raczyńska, D., Mitrosz, K., Raczyńska, K., et al. (2018) The Influence of Silicone Oil on the Ganglion Cell Complex after Pars Plana Vitrectomy for Rhegmatogenous Retinal De-tachment. Current Pharmaceutical Design, 24, 3476-3493.
https://doi.org/10.2174/1381612824666180813115438
[76] Yamada, K., Kaneko, H., Tsunekawa, T., et al. (2019) Silicone Oil-Associated Retinal Light Exposure under a Surgical Microscope. Acta Ophthalmologica, 97, E742-E746.
https://doi.org/10.1111/aos.14038
[77] Osborne, N.N., Kamalden, T.A., Majid, A.S., et al. (2010) Light Effects on Mitochondrial Photosensitizers in Relation to Retinal Degeneration. Neurochemical Research, 35, 2027-2034.
https://doi.org/10.1007/s11064-010-0273-5
[78] Dogramaci, M., Williams, K., Lee, E., et al. (2013) Foveal Light Exposure Is Increased at the Time of Removal of Silicone Oil with the Potential for Phototoxicity. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmolo-gie, 251, 35-39.
https://doi.org/10.1007/s00417-012-2033-5
[79] Winter, M., Eberhardt, W., Scholz, C., et al. (2000) Failure of Po-tassium Siphoning by Müller Cells: A New Hypothesis of Perfluorocarbon Liquid-Induced Retinopathy. Investigative Ophthalmology & Visual Science, 41, 256-261.
[80] Lee, J., Cho, H., Kang, M., et al. (2021) Retinal Changes before and after Silicone Oil Removal in Eyes with Rhegmatogenous Retinal Detachment Using Swept-Source Optical Coher-ence Tomography. Journal of Clinical Medicine, 10, Article 5436.
https://doi.org/10.3390/jcm10225436
[81] Xiang, W., Wei, Y., Chi, W., et al. (2020) Effect of Silicone Oil on Macular Capillary Vessel Density and Thickness. Experi-mental and Therapeutic Medicine, 19, 729-734.
https://doi.org/10.3892/etm.2019.8243
[82] Karasu, B., Erıs, E., Sonmez, O., et al. (2020) The Effect of Silicone Oil Presence Time on Macular and Choroidal Thickness with Macu-la-Off Rhegmatogenous Retinal Detachment. Journal Francais d’Ophtalmologie, 43, 626-634.
https://doi.org/10.1016/j.jfo.2019.10.017
[83] Miller, J.B., Papakostas, T.D. and Vavvas, D.G. (2014) Complica-tions of Emulsified Silicone Oil after Retinal Detachment Repair. Seminars in Ophthalmology, 29, 312-318.
https://doi.org/10.3109/08820538.2014.962181
[84] Foulks, G.N., Hatchell, D.L., Proia, A.D., et al. (1991) His-topathology of Silicone Oil Keratopathy in Humans. Cornea, 10, 29-37.
https://doi.org/10.1097/00003226-199101000-00007
[85] Budenz, D.L., Taba, K.E., Feuer, W.J., et al. (2001) Surgical Management of Secondary Glaucoma after Pars Plana Vitrectomy and Silicone Oil Injection for Complex Retinal Detachment. Ophthalmology, 108, 1628-1632.
https://doi.org/10.1016/S0161-6420(01)00658-3
[86] Al-Jazzaf, A.M., Netland, P.A. and Charles, S. (2005) Inci-dence and Management of Elevated Intraocular Pressure after Silicone Oil Injection. Journal of Glaucoma, 14, 40-46.
https://doi.org/10.1097/01.ijg.0000145811.62095.fa
[87] Petersen, J. and Ritzau-Tondrow, U. (1988) [Chronic Glaucoma Following Silicone Oil Implantation: A Comparison of 2 Oils of Differing Viscosity]. Fortschritte der Oph-thalmologie: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft, 85, 632-634.
[88] Stinson, W.G. and Small, K.W. (1994) Glaucoma after Surgery on the Retina and Vitreous. Seminars in Ophthalmology, 9, 258-265.
https://doi.org/10.3109/08820539409060025
[89] Srinivasan, S., Singh, A.K., Desai, S.P., et al. (2003) Foreign Body Episcleral Granulomas Complicating Intravitreal Silicone Oil Tamponade: A Clinicopathological Study. Ophthal-mology, 110, 1837-1840.
https://doi.org/10.1016/S0161-6420(03)00571-2
[90] Williams, R.L., Beatty, R.L., Kanal, E., et al. (1999) MR Imaging of Intraventricular Silicone: Case Report. Radiology, 212, 151-154.
https://doi.org/10.1148/radiology.212.1.r99jl27151
[91] Hruby, P.M., Poley, P.R., Terp, P.A., et al. (2013) Head-aches Secondary to Intraventricular Silicone Oil Successfully Managed with Ventriculoperitoneal Shunt. Retinal Cases & Brief Reports, 7, 288-290.
https://doi.org/10.1097/ICB.0b013e31828eeffe
[92] Lin, X., Wang, Z., Jiang, Z., et al. (2012) Preliminary Efficacy and Safety of a Silicone Oil-Filled Foldable Capsular Vitreous Body in the Treatment of Severe Retinal Detachment. Ret-ina (Philadelphia, PA), 32, 729-741.
https://doi.org/10.1097/IAE.0b013e31822b1f80
[93] Liu, N., Kang, L., Yu, X., et al. (2021) Preliminary Clinical Application of Foldable Capsular Vitreous Body in Severe Silicone Oil-Dependent Eyes. Annals of Palliative Medicine, 10, 10922-10929.
https://doi.org/10.21037/apm-21-2554
[94] Gao, Q., Mou, S., Ge, J., et al. (2008) A New Strategy to Replace the Natural Vitreous by A Novel Capsular Artificial Vitreous Body with Pressure-Control Valve. Eye (London, England), 22, 461-468.
https://doi.org/10.1038/sj.eye.6702875
[95] Abu Serhan, H., Irshaidat, S., Abu Serhan, L., et al. (2023) Foldable Capsular Vitreous Body Indications, Complications, and Outcomes: A Systematic Review. Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 261, 2103-2116.
https://doi.org/10.1007/s00417-023-05995-5
[96] Li, M., Tang, Y., Li, S., et al. (2022) Foldable Capsular Vitreous Body Implantation for Complicated Retinal Detachment Caused by Severe Ocular Trauma. Retina (Philadelphia, PA), 42, 1512-1519.
https://doi.org/10.1097/IAE.0000000000003493
[97] Ma, S., Zhao, S., Zhang, C., et al. (2022) Study on the Effi-cacy and Safety of Foldable Capsular Vitreous Body in the Severe Retinal Detachment Eyes. BMC Ophthalmology, 22, Article No. 491.
https://doi.org/10.1186/s12886-022-02729-9
[98] Kleinberg, T.T., Tzekov, R.T., Stein, L., et al. (2011) Vitreous Substitutes: A Comprehensive Review. Survey of Ophthalmology, 56, 300-323.
https://doi.org/10.1016/j.survophthal.2010.09.001
[99] Baino, F. (2011) Towards an Ideal Biomaterial for Vitreous Replacement: Historical Overview and Future Trends. Acta Biomaterialia, 7, 921-935.
https://doi.org/10.1016/j.actbio.2010.10.030
[100] Bixler, G.D. and Bhushan, B. (2012) Biofouling: Lessons from Nature. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 370, 2381-2417.
https://doi.org/10.1098/rsta.2011.0502
[101] Wang, H., Wu, Y., Cui, C., et al. (2018) Antifouling Super Water Ab-sorbent Supramolecular Polymer Hydrogel as an Artificial Vitreous Body. Advanced Science (Weinheim, Ba-den-Wurttemberg, Germany), 5, Article 1800711.
https://doi.org/10.1002/advs.201800711
[102] Liu, Z., Liow, S.S., Lai, S.L., et al. (2019) Retinal-Detachment Repair and Vitreous-Like-Body Reformation via a Thermogelling Polymer Endotamponade. Nature Biomedical Engineering, 3, 598-610.
https://doi.org/10.1038/s41551-019-0382-7