视网膜母细胞瘤铂类耐药机制及耐药治疗的研究进展
Research Progress on Platinum Resistance Mechanism and Resistance Therapy in Retinoblastoma
DOI: 10.12677/ACM.2024.141266, PDF, HTML, XML, 下载: 46  浏览: 97  科研立项经费支持
作者: 罗应洁:大理大学临床医学院,云南 大理;李才锐*:大理州人民医院眼科,云南 大理;孙曙光*:大理大学第一附属医院内分泌科,云南 大理
关键词: 视网膜母细胞瘤铂类耐药性治疗Retinoblastoma Platinum Drug Resistance Treat
摘要: 视网膜母细胞瘤是一种最常见于儿童的原发性眼内恶性肿瘤,其恶性程度高、病程进展快,预后差。近年来,铂类化疗药物被发现对晚期和转移性视网膜母细胞瘤具有显著的治疗效果。然而,随着临床研究的不断深入,铂类药物治疗晚期视网膜母细胞瘤的耐药问题逐渐浮出水面。本文旨在综述近年来铂类对视网膜母细胞瘤的耐药机制和耐药后治疗的研究进展。旨在为后续研究提供参考。
Abstract: Retinoblastoma is one of the most common primary intraocular malignant tumors in children. It has high malignancy, rapid progression and poor prognosis. In recent years, platinum based chem-otherapy drugs have been found to have significant therapeutic effects on advanced and metastatic retinoblastoma. However, with the deepening of clinical research, the resistance of platinum drugs in the treatment of advanced retinoblastoma gradually surfaced. This article aims to review the mechanism of platinum resistance to retinoblastoma and the research progress of post resistance treatment in recent years. It aims to provide references for subsequent research.
文章引用:罗应洁, 李才锐, 孙曙光. 视网膜母细胞瘤铂类耐药机制及耐药治疗的研究进展[J]. 临床医学进展, 2024, 14(1): 1877-1887. https://doi.org/10.12677/ACM.2024.141266

1. 引言

视网膜母细胞瘤(RB)是一种最常见于儿童的原发性眼内恶性肿瘤 [1] ,这种癌症通常发生在2岁之前,最常见于3岁以下儿童 [2] 。RB治疗根据国际视网膜母细胞瘤分类(ICRB)指南进行 [3] 。现在有很多的治疗方式,化疗(静脉注射、动脉内注射和眼内注射)、局部治疗(冷冻治疗和经眼热疗)、放疗(外照射放疗和斑块放疗)和眼球摘除术等。传统的铂类药物是治疗视网膜母细胞瘤最常用也是最有效的化疗药物之一。顺铂(DDP)在癌症治疗期间的有效性已得到充分证实,卡铂(CPB)被称为DDP的主要替代品 [4] 。然而,长期接受铂类治疗的患者常通过不同的机制产生耐药 [5] 。本文将从多个方面阐述铂类对视网膜母细胞瘤耐药机制的研究进展。

2. 铂类对RB产生耐药的分子机制

2.1. 程序性死亡

程序性死亡(Programmed Cell Death, PCD)是指细胞接受某种信号或受到某些因素刺激后,为了维持内环境稳定而发生的一种主动性消亡过程,包括自噬、细胞坏死、铁死亡、细胞焦亡等 [6] 。

2.1.1. 自噬

自噬(Autophagy)是生物体清除受损、衰老、退行性、无功能蛋白质和细胞器的主要途径,是各种生理病理条件下的常见机制。近期的研究表明自噬介导耐药性,是化疗药物耐药的新机制 [7] 。之前研究发现 [8] 上调的自噬导致MDR形成,耐卡铂的RB细胞系具有多重耐药性(MDR)机制,表明自噬水平的升高可能是RB肿瘤细胞耐药的机制之一。

HMGB1是一种增强转录的保守核蛋白,最近被发现是介导应激反应的自噬的关键调节因子 [9] 。刘柯 [10] 等人发现MIR34A介导的HMGB1下调和抑制自噬可以使视网膜母细胞瘤细胞对化疗药物介导的细胞凋亡敏感。药物介导的癌细胞自噬的分子机制是不同的。长春新碱(VCR)阻断自溶酶体的形成,而依托泊苷(ETO)和卡铂(CBP)抑制自噬体的形成。

刘颖等人 [11] 探讨了自噬在视网膜母细胞瘤Y79细胞对顺铂耐药中的作用及其机制。研究结果表明,顺铂通过激活Ca2+介导的CaMKK2/AMPK/mTORC1通路诱导肿瘤细胞产生的自噬对视网膜母细胞瘤细胞Y79的耐药性起到了保护作用,而抑制自噬能够提高肿瘤细胞对顺铂的敏感性。

2.1.2. 凋亡

细胞凋亡(apoptosis)指由基因控制的细胞自主的有序的死亡。Kerr、Wyllie和Currie将细胞凋亡定义为一种“在调节动物细胞群方面与有丝分裂互补”的机制 [12] 。

1) 微小RNA诱导凋亡

微小RNA (microRNA, miRNA)是指在动植物中参与转录后基因表达调控的非编码单链RNA分子,由内源基因编码的长度约为22个核苷酸。miRNA可以影响蛋白质生成和基因表达,对细胞发展以及疾病发生有着重要作用 [13] 。到目前为止,miRNA作为RNA干扰(RNAi)途径的关键成分的功能,它们作为肿瘤抑制因子的作用以及它们对癌症发生的影响已经得到证实 [14] [15] ,MiR-98和miR-186是miRNA的两个例子,它们在RB中过表达并导致肿瘤的恶性肿瘤,而miR-186(18)和miR-106b仅在RB中以低水平表达,因此有望作为肿瘤抑制剂 [16] [17] [18] 。新出现的证据表明,miR广泛调节RB病理过程 [19] 。例如,Jin [20] 等人表明miR-101-3p可以抑制RB细胞的增殖 [20] ,Zhou [21] 等人还证明miR-338-5p在RB进展中起致癌作用。Lyv [22] 等人还透露,miR-515参与了RB的进展。YANG [23] 等人研究发现miR-34a可以通过靶向MAGE-a和改变p53表达而作为RB的肿瘤抑制因子,因此miR-34a/MAGE-a/p53轴可以作为RB的治疗靶点或诊断生物标志物。此外miR-34被证明通过调节DNA甲基化促进结肠癌症的发生和发展 [24] 。YIN等 [25] 研究发现Notch1是miR-34a的调控靶基因。当miR-34a过表达时,Notch1的表达水平会随之提高。这种上调现象会促进细胞凋亡,并增强视网膜母细胞瘤(RB)细胞对卡铂的敏感性。这一发现为RB的治疗提供了新的思路。YUAN [26] 等人将miR-515-5p模拟物转染到耐卡铂的RB细胞和耐长春新碱的RB细胞中来评估药物敏感性。发现miR-515-5p过表达后,耐药细胞中miR-5-50p表达显著上调,Notch1表达下调,结果表明miR-515-5p增强了RB细胞的药物敏感性。

张丹等 [27] [28] 研究miR-4497在RB中的作用,收集了RB患者的肿瘤组织及癌旁组织,发现miR-4497在RB肿瘤组织中的表达显著升高。为了探究过表达miR-4497对RB细胞的影响,采用慢病毒感染的方法,发现过表达miR-4497能够降低奥沙利铂对Y79细胞的抑制率和PEA15 mRNA的表达水平。PEA15是一种小分子磷酸化蛋白,能够靶向结合并抑制细胞外调节蛋白激酶1/2 (extracellular regulated protein kinases 1/2, ERK 1/2),发挥抗凋亡作用 [28] 。孔妙 [29] 等人构建了顺铂耐药细胞株,并通过实验发现耐药细胞中X-box结合蛋白(XBP-1)的表达增加。同时,他们发现微小RNA miR-512-3p的表达在耐药细胞中降低,并通过调节XBP-79s和XBP-1u的表达来抑制顺铂耐药细胞的增殖和自噬,促进细胞的凋亡,从而提高了顺铂化疗的敏感性。柯宁 [7] 等人通过对视网膜母细胞瘤细胞系Y79构建耐药细胞株Y79R,然后进行RNA-seq测序和进一步研究,发现MiR-211-5p下调导致GDNF表达上调引起了Y79R卡铂耐药,减少Y79R细胞的凋亡。同时GDNF通过与受体GFRA1结合形成GDNF/GFRA1复合体,并以复合体的形式激活SRC及SRC-AMPK信号通路,进而激活早期、自噬,抑制凋亡,促进Y79R卡铂耐药。Yang [30] 等人探索了miR-214-3p的生物学功能,发现miR-214-3p的过表达抑制了RB细胞多重耐药性并促进了视网膜母细胞瘤细胞的凋亡,这些miRNA均可作为视网膜母细胞瘤治疗的潜在治疗靶点。

胶质细胞源性神经营养因子(Glial cell derived neurotrophic factor, GDNF)是转化生长因子-β (transforming growth factor-beta, TGF-β)超家族的成员,是一种分泌蛋白。柯宁 [7] 等人通过对视网膜母细胞瘤细胞系Y79构建耐药细胞株Y79R,然后进行RNA-seq测序和进一步研究,发现MiR-211-5p下调导致GDNF表达上调引起了Y79R卡铂耐药,减少Y79R细胞的凋亡。同时GDNF通过与受体GFRA1结合形成GDNF/GFRA1复合体,并以复合体的形式激活SRC及SRC-AMPK信号通路,进而激活早期自噬,抑制凋亡,促进Y79R卡铂耐药。

2) 长链非编码RNA诱导凋亡

长链非编码RNA (long non-coding RNA, IncRNA)是一类长度超过200bp的非编码RNA。它们无蛋白质编码功能,并且与临床上的许多肿瘤和非肿瘤疾病密切相关 [31] 。据报道,lncRNA是RNA与癌症之间的平台和基本调节因子 [32] 。例如,LINC00504在乳腺癌中增加,促进肿瘤细胞增殖和迁移 [33] 。LncRNA LINC00152位于2p11.2染色体,已被证实可作为肿瘤中的致癌RNA [34] [35] 。WANG [36] 等人通过功能实验表明,沉默LINC00152明显抑制了视网膜母细胞瘤细胞的增殖、侵袭和自噬,同时加强了视网膜母细胞瘤细胞的凋亡,LINC00152敲低后视网膜母细胞瘤细胞对卡铂和阿霉素更敏感。YANG [37] 等发现尿路上皮癌相关1 (urothelial cancer associated 1, UCA1)在卡铂耐药RB组织和细胞系中显著上调。他们通过序贯筛选和lncRNA谱分析测定UCA1表达,发现在卡铂耐药性视网膜母细胞瘤细胞中含量高。通过功能分析,发现UCA1通过作为miR-206的内源性RNA与其他RNA竞争,从而上调其靶标、c-MET和AXL表达从而促进细胞增殖和抑制细胞凋亡来诱导化学耐药性。

(PROX1-AS1)作为lncRNA之一,陈 [38] 等人研究发现尤其是在耐卡铂和洛铂的RB细胞中,PROX1-AS1和SOX2的表达水平上调,而miR-519d-3p的表达水平下调,进一步实验表明,PROX1-AS1的抑制或miR-519d-3p的升高可以抑制耐药RB细胞的耐药性、增殖、迁移和侵袭能力,并促进细胞凋亡。

3) 特殊蛋白诱导凋亡

甲基转移酶样蛋白3 (METTL3)作为N6-甲基腺苷(m6A)修饰的唯一催化亚基,在细胞的多种生物学行为发挥作用,包括细胞增殖、迁移和侵袭、细胞凋亡、自噬和耐药性等 [39] 。郭 [40] 等人研究发现METTL3在视网膜母细胞瘤细胞Y79及其顺铂耐药株Y79/DDP细胞中均表达上调,其在Y79细胞的增殖及耐药中发挥着重要作用,METTL3过表达促进Y79细胞增殖及其对顺铂的耐药。同时METTL3还可通过调控耐药相关基因BCL2,抑制细胞凋亡,促进其对顺铂的耐药。

2.1.3. 细胞焦亡

细胞焦亡(Pyroptosis)又称细胞炎性坏死,表现为细胞不断胀大直至细胞膜破裂,导致细胞内容物释放进而引起强烈的炎症反应。细胞焦亡依赖于炎性半胱天冬酶(caspase)和GSDMs蛋白家族 [41] 。李芳 [41] 等人发现加斯皮素E(GSDME)表达增加可以减少RB化疗药物的所需剂量。抑制caspase-3活化后,在GSDME高表达的细胞中,卡铂诱导的细胞死亡显著增加,细胞死亡方法由焦亡转为凋亡,从而增加了卡铂的浓度。因此GSDME通过诱导视网膜母细胞瘤细胞焦亡来增加卡铂的敏感性。

2.1.4. 铁死亡

铁死亡(Ferroptosis)是最近公认的一种调节性细胞死亡形式 [42] 。刘柯 [8] 等人另一项实验结果表明,铁死亡诱导剂的化学靶标(SLC7A11和GPX4)在卡铂耐药RB细胞中过表达,然而,在比较亲本和卡铂耐药的RB细胞时,坏死性凋亡的关键调节因子(RIPK1和MLKL)没有差异或不表达(RIPK3),因此多种铁死亡诱导剂,可有效消除耐药RB细胞。

2.2. 肿瘤微环境

肿瘤微环境是指肿瘤细胞所处的周围环境,包括周围的血管、免疫细胞、成纤维细胞、骨髓源性炎性细胞、各种信号分子和细胞外基质等 [43] 缺氧是肿瘤微环境的重要病理标志,与癌症的代谢改变、细胞增殖、侵袭性、转移和治疗耐药性有关 [44] 。缺氧广泛参与RB的发生发展,游志鹏等 [45] 应用免疫组织化学方法检测RB标本发现切片组织中存在缺氧微环境、其HIF-1α蛋白在RB中呈高表达,且HIF-1α的表达与RB的分期呈正相关。Peng X [46] 等在视网膜母细胞瘤HXO-RB44和SO-Rb50细胞中通过LncRNA TMPO-AS1靶向抑制miR-199a-5p,上调HIF-1α的表达,发现可以促进肿瘤细胞的扩散、迁移和侵袭。郎莉莉 [47] 等使用siRNA HIF-1ɑ质粒转染人视网膜母细胞瘤Y79细胞,下调其HIF-1α的表达,发现可以有效的抑制Y79细胞增殖并且对细胞凋亡有促进作用,充分证实了缺氧诱导因子HIF-1α的表达与RB的增殖、转移和肿瘤的分期有密切的关系。

尹小龙 [48] 等人通过使用ChIP测定法分析缺氧诱导因子-1α (HIF-1α)与ANRIL启动子之间的相互作用。检查细胞增殖和凋亡以及耐药相关蛋白(ABCG2和MDR1)的蛋白质水平,以评估Rb细胞中的铂类耐药性。研究发现,缺氧时,HIF-1α直接结合到ANRIL启动子区域以转录激活ANRIL。缺氧诱导的ANRIL促进了Rb细胞对铂类的抗性,这可以通过促进细胞增殖,抑制细胞凋亡以及ABCG2和MDR1的上调来证明。

ARHGAP9基因编码GTP酶激活蛋白的Rho-GAP家族成员,该家族在体外对几种Rho家族GTP酶具有显著的GAP活性,将它们转化为无活性的GDP结合状态。ARHGAP9与调节造血细胞与细胞外基质的粘附有关,这与几种癌症的细胞增殖、迁移和侵袭有关 [49] ,宋 [50] 等人在研究中观察到,ARHGAP9的下调显著改变了细胞对肿瘤药物的敏感性。依托泊苷和卡铂这两种抗肿瘤药物能使ARHGAP9的mRNA水平降低。这些发现表明,ARHGAP9基因可能在RB肿瘤的细胞增殖、迁移、侵袭以及化疗耐药性中发挥着重要作用。

2.3. 药物外排增加

叉头盒蛋白M1 (FoxM1),也被称作HFH-11,MPP-2,WIN或Trident,属于叉头转录因子超家族。FoxM1在一系列生物过程中起着至关重要的调节作用,包括细胞增殖、细胞周期进程、细胞分化、组织稳态和血管生成 [51] ,先前的研究表明,FoxM1在包括RB在内的几种肿瘤中上调 [52] ,FoxM1还被证明通过上调ATP结合盒(ABC)转运蛋白来促进耐药性 [53] ,zhu [54] 等人发现FoxM1在耐卡铂的Y-79CR细胞中显着上调,FoxM1的沉默增加了Y-79CR细胞对卡铂的敏感性和Y-79CR细胞中卡铂的药物外排。此外,FoxM1直接调控ABCC4的转录,表明FoxM1通过调控ABCC4表达促进卡铂耐药。Nalini [55] 等报道,ABCC4在化疗后RB中的表达显著上调。

2.4. 转录重编程

Michelle G. [56] 等人研究发现卡铂诱导视网膜母细胞瘤细胞的广泛转录重编程,特别是影响参与氧化磷酸化的途径到糖酵解的转变,这与缺氧适应和Warburg效应一致,这与视网膜母细胞瘤和其他癌症的化学耐药性有关 [57] [58] [59] [60] [61] ,RB化学耐药性是通过细胞重编程而不是单个耐药克隆的扩增而出现的。通过在耐卡铂的RB细胞中进行RNA-seq发现卡铂抗性与参与氧化磷酸化、表观遗传基因调控和氧化应激诱导的衰老的基因的下调以及参与PI3K/AKT信号传导的基因的上调有关。为了深入了解导致耐药性的细胞适应,他们还进行了差异基因表达分析,在卡铂耐药性视网膜母细胞瘤细胞中抑制ABCB1 (具有潜在的成药性基因中最高度上调的)观察到更显着的效果。表明第三代ABCB1抑制剂、PI3K抑制剂等都可能是化学耐药性的抑制剂。

2.5. 表观遗传学修饰

表观遗传修饰是指对基因表达的调控,通过化学修饰改变染色体上的DNA和蛋白质,从而影响基因的表达。染色质缩合1甲基转移酶(NRMT)的N端调节因子是一种真核甲基转移酶,能够特异性甲基化游离α氨基蛋白 [62] 。一项研究表明,NRMT可以增强CENPA的三甲基化,从而进一步增强有丝分裂、着丝粒功能和染色体分离 [63] 。李 [64] 等发现顺铂耐药视网膜母细胞瘤细胞系中NRMT相对于亲本细胞上调。进一步实验发现上调的NRMT通过下调CENPA/Myc/Bcl2轴降低视网膜母细胞瘤细胞对顺铂的敏感性。

2.6. 其他

无名指蛋白6 (RNF6)是一种E3泛素连接酶 [65] ,虽然它最初被认为是一种肿瘤抑制因子,但最近的研究表明,这种蛋白质作为一种致癌基因起作用,并在肿瘤发展中起重要作用 [66] 。Chai [67] 等人建立了卡铂耐药的RB细胞,通过细胞活力测定发现无名指蛋白6在卡铂耐药性视网膜母细胞瘤细胞中上调,为了进一步研究RNF6在RB耐药性中的重要性,在卡铂耐药Y-6/CR和SO-Rb79/CR细胞中用特异性siRNA敲低RNF50,发现无名指蛋白6敲低可提高耐药性视网膜母细胞瘤细胞中的卡铂敏感性。

癌症干细胞(CSC)的存在经常被报道是造成癌症的原因用于多种肿瘤的化疗耐药性 [68] 。Balaji等 [69] 人建立了视网膜母细胞瘤(Y79)的依托泊苷和卡铂耐药细胞系。实验结果表明,耐药细胞系与非反应性肿瘤相比,表现出更强的侵袭性,同时干细胞标记物SOX2、NANOG、OCT4以及ABC转运蛋白ABCB1和ABCC3的表达增加。随着干细胞标志物在耐药细胞和肿瘤中的过度表达,视网膜母细胞瘤的自我更新能力和侵袭能力增强。这表明神经元标志物过表达的癌症干细胞增强了视网膜母细胞瘤的化学耐药性和侵袭性。

3. 耐铂类RB的治疗

RB是一种具有挑战性的疾病。肿瘤细胞的化疗耐药性限制了临床治疗的决定,因此强调了开发新治疗方法的重要性 [70] 。新的治疗方式,即靶向治疗、免疫治疗和溶瘤病毒正在成为Rb中可能的非化疗选择 [71] 。在药物开发的初步阶段,已发现新的可用于治疗Rb的化合物,包括存活素抑制剂、抗凋亡Bcl-2家族蛋白、甲基转移酶和驱动蛋白等 [72] 。基质代谢蛋白酶(MMP)-2和MMP-9在癌症中失调的几个检查点具有抗Rb的活性,也可作为Rb患者的辅助治疗 [72] 。

自噬的上调有助于RB细胞的卡铂耐药性 [10] [73] [74] ,刘等 [8] 证明了衣康酸诱导的铁蛋白吞噬驱动铁死亡以消除耐药的人RB细胞,这种通过诱导自噬依赖性铁死亡来消除多药耐药细胞的新策略这也能成为新药研发的一个重要方向。

李芳等人 [75] 发现加斯皮素E (GSDME)是RB对卡铂耐药的关键分子。GSDME是一个很有潜力的治疗靶点,GSDME代表了通过诱导焦亡来克服RB化学耐药性的潜在靶标,从而创造了一种正反馈机制,以进一步促进肿瘤细胞的死亡。

卡铂具有双重作用;1) 诱导肿瘤细胞凋亡;矛盾的是,2) 激活核因子-κB (NF-κB)转录因子,促进肿瘤细胞增殖和存活 [76] ,己酮可可碱(PTX)是一种抑制丝氨酸32和36中I kappa B-α (IĸBα)磷酸化的药物,这会破坏促进肿瘤存活的NF-κB活性 [77] 。CRUZ-GALVEZ等人 [77] 研究表明PTX诱导细胞凋亡本身,增加卡铂诱导的细胞凋亡,增强其抗RB效果。PTX作为抗肿瘤剂的潜力是巨大的,PTX与抗肿瘤治疗(包括阿霉素,顺铂,MG132,紫苏醇和放疗)的成功组合产生了协同更强大的抗肿瘤反应 [78] [79] [80] 。

另外研究发现,低剂量给予核糖体蛋白L41 (RPL41)肽可通过降解ATF4显著提高RB细胞对卡铂的敏感性 [81] 。

王亚峰等 [82] 研究了细胞因子诱导的杀伤(CIK)细胞与具有完全肿瘤抗原(DC-Ag)脉冲的树突状细胞 (DC)共培养的抗肿瘤作用。发现基于DC-Ag-CIK细胞的高效免疫疗法可能是治疗RB的潜在有效和安全手段,特别是对于卡铂耐药的患者。

4. 结论与展望

综上所述铂类能通过促进药物外排,程序性死亡、肿瘤微环境等其他机制增强RB的耐药性;诱导自噬依赖性细胞死亡正在成为肿瘤治疗的一些实体癌的有希望的策略 [83] [84] [85] ;对于不能诱导细胞凋亡的耐药肿瘤,用一种新的死亡模式来代替细胞凋亡成为一种新的治疗方法。比如坏死、自噬和焦亡 [86] ;药物诱导细胞凋亡是靶向恶性细胞的首选方法,现在可以基于“具有合理分子基础的化疗”的概念为癌症治疗提供新的方向 [87] 。对于铂类耐药后针对其耐药机制探寻一些潜在靶点并进行体外实验及动物实验可能有助于临床应用。总之,目前对于铂类治疗RB的耐药机制并不明确且缺少针对性治疗策略,因此针对这些耐药性关键机制开发有效的治疗策略具有重大意义。

基金项目

云南省教育厅科学研究基金项目。

NOTES

*通讯作者。

参考文献

[1] Fabian, I.D., Onadim, Z., Karaa, E., et al. (2018) The Management of Retinoblastoma. Oncogene, 37, 1551-1560.
https://doi.org/10.1038/s41388-017-0050-x
[2] Roy, S.R. and Kaliki, S. (2021) Retinoblastoma: A Major Review. Mymensingh Medical Journal, 30, 881-895.
[3] Shields, C.L., Mashayekhi, A., Au, A.K., et al. (2006) The Interna-tional Classification of Retinoblastoma Predicts Chemoreduction Success. Ophthalmology, 113, 2276-2280.
https://doi.org/10.1016/j.ophtha.2006.06.018
[4] Couillard-Montminy, V., Gagnon, P.Y., Fortin, S., et al. (2019) Effectiveness of Adjuvant Carboplatin-Based Chemotherapy Compared to Cisplatin in Non-Small Cell Lung Cancer. Journal of Oncology Pharmacy Practice, 25, 44-51.
https://doi.org/10.1177/1078155217724595
[5] Zhao, H., Wan, J. and Zhu, Y. (2020) Carboplatin Inhibits the Progression of Retinoblastoma through IncRNA XIST/miR-200a-3p/NRP1 Axis. Drug Design, Development and Therapy, 14, 3417-3427.
https://doi.org/10.2147/DDDT.S256813
[6] Moujalled, D., Strasser, A. and Liddell, J.R. (2021) Molecular Mechanisms of Cell Death in Neurological Diseases. Cell Death and Differentiation, 28, 2029-2044.
https://doi.org/10.1038/s41418-021-00814-y
[7] Garcia-Mayea, Y., Mir, C., Muñoz, L., et al. (2019) Autophagy Inhibition as a Promising Therapeutic Target for Laryngeal Cancer. Carcinogenesis, 40, 1525-1534.
https://doi.org/10.1093/carcin/bgz080
[8] Liu, K., Huang, J., Liu, J., et al. (2022) Induction of Autopha-gy-Dependent Ferroptosis to Eliminate Drug-Tolerant Human Retinoblastoma Cells. Cell Death & Disease, 13, Article No. 521.
https://doi.org/10.1038/s41419-022-04974-8
[9] Tang, D., Kang, R., Coyne, C.B., et al. (2012) PAMPs and DAMPs: Signal 0s That Spur Autophagy and Immunity. Immunological Reviews, 249, 158-175.
https://doi.org/10.1111/j.1600-065X.2012.01146.x
[10] Liu, K., Huang, J., Xie, M., et al. (2014) MIR34A Regu-lates Autophagy and Apoptosis by Targeting HMGB1 in the Retinoblastoma Cell. Autophagy, 10, 442-452.
https://doi.org/10.4161/auto.27418
[11] 刘颖, 苏杰, 王林洪. 自噬在视网膜母细胞瘤Y79细胞顺铂耐药中的作用及其机制[J]. 肿瘤防治研究, 2018, 45(8): 517-522.
[12] Kerr, J.F., Wyllie, A.H. and Currie, A.R. (1972) Apop-tosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. British Journal of Cancer, 26, 239-257.
https://doi.org/10.1038/bjc.1972.33
[13] Sempere, L.F., Azmi, A.S. and Moore, A. (2021) mi-croRNA-Based Diagnostic and Therapeutic Applications in Cancer Medicine. Wiley Interdisciplinary Reviews RNA, 12, e1662.
https://doi.org/10.1002/wrna.1662
[14] Bartels, C.L. and Tsongalis, G.J. (2010) [MicroRNAs: Novel Bi-omarkers for Human Cancer]. Annales de biologie clinique, 68, 263-272.
https://doi.org/10.1684/abc.2010.0429
[15] Carthew, R.W. and Sontheimer, E.J. (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell, 136, 642-655.
https://doi.org/10.1016/j.cell.2009.01.035
[16] Davidson, C.E., Reese, B.E., Billingsley, M.L., et al. (2004) Stannin, a Protein That Localizes to the Mitochondria and Sensitizes NIH-3T3 Cells to Trimethyltin and Dimethyltin Toxicity. Molecular Pharmacology, 66, 855-863.
https://doi.org/10.1124/mol.104.001719
[17] Reese, B.E., Davidson, C., Billingsley, M.L., et al. (2005) Protein Kinase C Epsilon Regulates Tumor Necrosis Factor-α-Induced Stannin Gene Expression. The Journal of Pharmacology and Experimental Therapeutics, 314, 61-69.
https://doi.org/10.1124/jpet.105.084236
[18] Reese, B.E., Krissinger, D., Yun, J.K., et al. (2006) Elucidation of Stannin Function Using Microarray Analysis: Implications for Cell Cycle Control. Gene Expression, 13, 41-52.
https://doi.org/10.3727/000000006783991944
[19] Zhang, Y., Zhu, X., Zhu, X., et al. (2017) MiR-613 Suppresses Retinoblastoma Cell Proliferation, Invasion, and Tumor Formation by Targeting E2F5. Tumour Biology, 39, No. 3.
https://doi.org/10.1177/1010428317691674
[20] Jin, Q., He, W., Chen, L., et al. (2018) MicroRNA-101-3p Inhib-its Proliferation in Retinoblastoma Cells by Targeting EZH2 and HDAC9. Experimental and Therapeutic Medicine, 16, 1663-1670.
https://doi.org/10.3892/etm.2018.6405
[21] Zhou, P., Li, X. (2019) Serum MiR-338-5p Has Potential for Use as a Tumor Marker for Retinoblastoma. Oncology Letters, 18, 307-313.
https://doi.org/10.3892/ol.2019.10331
[22] Lyv, X., Wu, F., Zhang, H., et al. (2020) Long Noncoding RNA ZFPM2-AS1 Knockdown Restrains the Development of Retinoblastoma by Modulating the Mi-croRNA-515/HOXA1/Wnt/β-Catenin Axis. Investigative Ophthalmology & Visual Science, 61, Article 41.
https://doi.org/10.1167/iovs.61.6.41
[23] Yang, G., Fu, Y., Lu, X., et al. (2019) MiR‑34a Regulates the Chemo-sensitivity of Retinoblastoma Cells via Modulation of MAGE-A/P53 Signaling. International Journal of Oncology, 54, 177-187.
https://doi.org/10.3892/ijo.2018.4613
[24] Ma, Z.B., Kong, X.L., Cui, G., et al. (2014) Expression and Clinical Significance of MiRNA-34a in Colorectal Cancer. Asian Pacific Journal of Cancer Prevention, 15, 9265-9270.
https://doi.org/10.7314/APJCP.2014.15.21.9265
[25] Yin, W., Gao, F. and Zhang, S. (2020) MicroRNA-34a In-hibits the Proliferation and Promotes the Chemosensitivity of Retinoblastoma Cells by Downregulating Notch1 Expres-sion. Molecular Medicine Reports, 22, 1613-1620.
https://doi.org/10.3892/mmr.2020.11238
[26] Yuan, X.W., Yan, T.Q. and Tong, H. (2020) Effect of MiR-515-5p on Proliferation and Drug Sensitivity of Retinoblastoma Cells. Cancer Management and Research, 12, 12087-12098.
https://doi.org/10.2147/CMAR.S271165
[27] 张丹, 郭勇, 岳以英, 等. miRNA-4497靶向PEA15对视网膜母细胞瘤细胞增殖及药物敏感性研究[J]. 中国中医眼科杂志, 2021, 31(6): 395-399, 415.
[28] Xian, F., Li, Q. and Chen, Z. (2019) Overexpression of Phosphoprotein Enriched in Astrocytes 15 Reverses the Damage Induced by Propofol in Hippocampal Neurons. Molecular Medicine Reports, 20, 1583-1592.
https://doi.org/10.3892/mmr.2019.10412
[29] Kong, M., Han, Y., Zhao, Y., et al. (2020) MiR-512-3p Overcomes Resistance to Cisplatin in Retinoblastoma by Promoting Apoptosis Induced by Endoplasmic Reticulum Stress. Medical Science Monitor, 26, E923817.
https://doi.org/10.12659/MSM.923817
[30] Yang, L., Zhang, L., Lu, L., et al. (2020) MiR-214-3p Regulates Mul-ti-Drug Resistance and Apoptosis in Retinoblastoma Cells by Targeting ABCB1 and XIAP. OncoTargets and Therapy, 13, 803-811.
https://doi.org/10.2147/OTT.S235862
[31] Wang, L., Cho, K, B., Li, Y., et al. (2019) Long Noncoding RNA (LncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and therapeutic Tar-gets for Colorectal Cancer. International Journal of Molecular Sciences, 20, Article 5758.
https://doi.org/10.3390/ijms20225758
[32] Yang, G., Lu, X. and Yuan, L. (2014) LncRNA: A Link between RNA and Cancer. Biochimica et Biophysica Acta, 1839, 1097-1109.
https://doi.org/10.1016/j.bbagrm.2014.08.012
[33] Hou, T., Ye, L. and Wu, S. (2021) Knockdown of LINC00504 Inhibits the Proliferation and Invasion of Breast Cancer via the Downregulation of MiR-140-5p. OncoTargets and Therapy, 14, 3991-4003.
https://doi.org/10.1016/j.bbagrm.2014.08.012
[34] Wu, J., Shuang, Z., Zhao, J., et al. (2018) Linc00152 Promotes Tumorigenesis by Regulating DNMTs in Triple-Negative Breast Cancer. Biomedicine & Pharmacotherapy, 97, 1275-1281.
https://doi.org/10.1016/j.biopha.2017.11.055
[35] Zhang, P.P., Wang, Y.Q., Weng, W.W., et al. (2017) Linc00152 Promotes Cancer Cell Proliferation and Invasion and Predicts Poor Prognosis in Lung Adenocarcinoma. Journal of Cancer, 8, 2042-2050.
https://doi.org/10.7150/jca.18852
[36] Wang, Y., Xin, D. and Zhou, L. (2020) LncRNA LINC00152 Increases the Aggressiveness of Human Retinoblastoma and Enhances Carboplatin and Adriamycin Re-sistance by Regulating MiR-613/Yes-Associated Protein 1 (YAP1) Axis. Medical Science Monitor, 26, e920886.
https://doi.org/10.12659/MSM.920886
[37] Wang, N., Fan, H., Fu, S., et al. (2022) Long Noncoding RNA UCA1 Promotes Carboplatin Resistance in Retinoblastoma Cells by Acting as A CeRNA of MiR-206. American Journal of Cancer Research, 12, 2160-2172.
[38] Chen, Y., Lu, B., Liu, L., et al. (2021) Long Non-Coding RNA PROX1-AS1 Knockdown Upregulates MicroRNA-519d-3p to Promote Chemosensitivity of Retinoblastoma Cells via Targeting SOX2. Cell Cycle, 20, 2149-2159.
https://doi.org/10.1080/15384101.2021.1971352
[39] Liu, S., Li, Q., Li, G., et al. (2020) The Mechanism of M6A Methyltransferase METTL3-Mediated Autophagy in Reversing Gefitinib Resistance in NSCLC Cells by β-Elemene. Cell Death & Disease, 11, Article No. 969.
https://doi.org/10.1038/s41419-020-03148-8
[40] 郭惠峰. METTL3在视网膜母细胞瘤中对顺铂耐药的作用及机制研究[D]: [硕士学位论文]. 南昌: 南昌大学医学部, 2022.
[41] Shi, J., Zhao, Y., Wang, K., et al. (2015) Cleav-age of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature, 526, 660-665.
https://doi.org/10.1038/nature15514
[42] Xie, Y., Hou, W., Song, X., et al. (2016) Ferroptosis: Process and Func-tion. Cell Death and Differentiation, 23, 369-379.
https://doi.org/10.1038/cdd.2015.158
[43] Arneth, B. (2019) Tumor Microenvironment. Medicina, 56, Article 15.
https://doi.org/10.3390/medicina56010015
[44] Paul, M., Itoo, A.M., Ghosh, B., et al. (2023) Hypoxia Alleviating Platinum(IV)/Chlorin E6-Based Combination Chemotherapeu-tic-Photodynamic Nanomedicine for Oropharyngeal Carcinoma. Journal of Photochemistry and Photobiology B: Biology, 238, Article ID: 112627.
https://doi.org/10.1016/j.jphotobiol.2022.112627
[45] 游志鹏, 宋华, 赵菊莲. HIF-1α在视网膜母细胞瘤中的表达及意义[J]. 中国现代医学杂志, 2009, 19(18): 2844-2846, 2849.
[46] Peng, X., Yan, J. and Cheng, F. (2020) LncRNA TMPO-AS1 Up-Regulates the Expression of HIF-1α and Promotes the Malignant Phe-notypes of Retinoblastoma Cells via Sponging MiR-199a-5p. Pathology, Research and Practice, 216, Article ID: 152853.
https://doi.org/10.1016/j.prp.2020.152853
[47] 郎莉莉, 高玉, 葛茸茸, 等. siRNA抑制缺氧诱导因子-1α表达对人视网膜母细胞瘤细胞增殖与凋亡的影响[J]. 海军医学杂志, 2016, 37(1): 22-26.
[48] Yin, X., Liao, Y., Xiong, W., et al. (2020) Hypoxia-Induced LncRNA ANRIL Promotes Cisplatin Resistance in Retinoblastoma Cells through Regulating ABCG2 Expression. Clinical and Experimental Pharmacology & Physiology, 47, 1049-1057.
https://doi.org/10.1111/1440-1681.13279
[49] Shen, H., Liang, Z., Zheng, S., et al. (2017) Pathway and Net-work-Based Analysis of Genome-Wide Association Studies and RT-PCR Validation in Polycystic Ovary Syndrome. In-ternational Journal of Molecular Medicine, 40, 1385-1396.
https://doi.org/10.3892/ijmm.2017.3146
[50] Song, W.P., Zheng, S., Yao, H.J., et al. (2020) Different Transcriptome Profiles between Human Retinoblastoma Y79 Cells and an Etoposide-Resistant Subline Reveal a Chemoresistance Mechanism. BMC Ophthalmology, 20, Article No. 92.
https://doi.org/10.1186/s12886-020-01348-6
[51] Koo, C.Y., Muir, K.W. and Lam, E.W. (2012) FOXM1: From Cancer Initiation to Progression and Treatment. Biochimica et Biophysica Acta, 1819, 28-37.
https://doi.org/10.1016/j.bbagrm.2011.09.004
[52] Raychaudhuri, P. and Park, H.J. (2011) FoxM1: A Master Regulator of Tumor Metastasis. Cancer Research, 71, 4329-4333.
https://doi.org/10.1158/0008-5472.CAN-11-0640
[53] Hou, Y., Zhu, Q., Li, Z., et al. (2017) The FOXM1-ABCC5 Axis Contributes to Paclitaxel Resistance in Nasopharyngeal Carcinoma Cells. Cell Death & Disease, 8, e2659.
https://doi.org/10.1038/cddis.2017.53
[54] Zhu, X., Xue, L., Yao, Y., et al. (2018) The FoxM1-ABCC4 Axis Mediates Carboplatin Resistance in Human Retinoblastoma Y-79 Cells. Acta Biochimica et Biophysica Sinica, 50, 914-920.
https://doi.org/10.1093/abbs/gmy080
[55] Nalini, V., Segu, R., Deepa, P.R., et al. (2013) Molecular In-sights on Post-Chemotherapy Retinoblastoma by Microarray Gene Expression Analysis. Bioinformatics and Biology In-sights, 7, 289-306.
https://doi.org/10.4137/BBI.S12494
[56] Zhang, M.G., Kuznetsoff, J.N., Owens, D.A., et al. (2022) Early Mechanisms of Chemoresistance in Retinoblastoma. Cancers, 14, Article 4966.
https://doi.org/10.3390/cancers14194966
[57] Liu, C., Jin, Y. and Fan, Z. (2021) The Mechanism of Warburg Ef-fect-Induced Chemoresistance in Cancer. Frontiers in Oncology, 11, Article 698023.
https://doi.org/10.3389/fonc.2021.698023
[58] Jiang, T., Zhou, M.L. and Fan, J. (2018) Inhibition of GLUT-1 Ex-pression and the PI3K/Akt Pathway to Enhance the Chemosensitivity of Laryngeal Carcinoma Cells in Vitro. OncoTar-gets and Therapy, 11, 7865-7872.
https://doi.org/10.2147/OTT.S176818
[59] Lin, J., Xia, L., Oyang, L., et al. (2022) The POU2F1-ALDOA Axis Promotes the Proliferation and Chemoresistance of Colon Cancer Cells by Enhancing Glycolysis and the Pentose Phos-phate Pathway Activity. Oncogene, 41, 1024-1039.
https://doi.org/10.1038/s41388-021-02148-y
[60] Wen, J.F., Jiang, Y.Q., Li, C., et al. (2020) LncRNA-SARCC Sensitizes Osteosarcoma to Cisplatin through the MiR-143-Mediated Glycolysis Inhibition by Targeting Hexokinase 2. Cancer Biomarkers, 28, 231-246.
https://doi.org/10.3233/CBM-191181
[61] Sradhanjali, S., Tripathy, D., Rath, S., et al. (2017) Overexpression of Pyruvate Dehydrogenase Kinase 1 in Retinoblastoma: A Potential therapeutic Opportunity for Targeting Vitreous Seeds and Hypoxic Regions. PLOS ONE, 12, e0177744.
https://doi.org/10.1371/journal.pone.0177744
[62] Petkowski, J.J., Bonsignore, L.A., Tooley, J.G., et al. (2013) NRMT2 Is an N-Terminal Monomethylase That Primes for Its Homo-logue NRMT1. The Biochemical Journal, 456, 453-462.
https://doi.org/10.1042/BJ20131163
[63] Sathyan, K.M., Fachinetti, D. and Foltz, D.R. (2017) α-Amino Trimethylation of CENP-A by NRMT Is Required for Full Recruitment of the Centromere. Nature Communications, 8, Article No. 14678.
https://doi.org/10.1038/ncomms14678
[64] Li, Z., Zhang, L., Liu, D., et al. (2022) Knockdown of NRMT Enhanc-es Sensitivity of Retinoblastoma Cells to Cisplatin through Upregulation of the CENPA/Myc/Bcl2 Axis. Cell Death Discovery, 8, Article No. 14.
https://doi.org/10.1038/s41420-021-00622-w
[65] Tursun, B., SchlÜTer, A., Peters, M, A., et al. (2005) The Ubiquitin Ligase Rnf6 Regulates Local LIM Kinase 1 Levels in Axonal Growth Cones. Genes & Development, 19, 2307-2319.
https://doi.org/10.1101/gad.1340605
[66] Huang, Z., Cai, Y., Yang, C., et al. (2018) Knockdown of RNF6 Inhibits Gastric Cancer Cell Growth by Suppressing STAT3 Signaling. OncoTargets and Therapy, 11, 6579-6587.
https://doi.org/10.2147/OTT.S174846
[67] Chai, Y., Jiao, S., Peng, X., et al. (2022) RING-Finger Protein 6 Promotes Drug Resistance in Retinoblastoma via JAK2/STAT3 Signaling Pathway. Pathology Oncology Re-search, 28, Article ID: 1610273.
https://doi.org/10.3389/pore.2022.1610273
[68] Najafi, M., Mortezaee, K. and Majidpoor, J. (2019) Cancer Stem Cell (CSC) Resistance Drivers. Life Sciences, 234, Article ID: 116781.
https://doi.org/10.1016/j.lfs.2019.116781
[69] Balaji, S., Santhi, R., Kim, U., et al. (2020) Cancer Stem Cells with Overexpression of Neuronal Markers Enhance Chemoresistance and Invasion in Retinoblastoma. Current Cancer Drug Targets, 20, 710-719.
https://doi.org/10.2174/1568009620666200504112711
[70] Abramson, D.H., Shields, C.L., Munier, F.L., et al. (2015) Treatment of Retinoblastoma in 2015: Agreement and Disagreement. JAMA Ophthalmology, 133, 1341-1347.
https://doi.org/10.1001/jamaophthalmol.2015.3108
[71] Schaiquevich, P., Francis, J.H., Cancela, M.B., et al. (2022) Treatment of Retinoblastoma: What Is the Latest and What Is the Future. Frontiers in Oncology, 12, Article 822330.
https://doi.org/10.3389/fonc.2022.822330
[72] Cancela, M.B., Zugbi, S., Winter, U., et al. (2021) A Decision Pro-cess for Drug Discovery in Retinoblastoma. Investigational New Drugs, 39, 426-441.
https://doi.org/10.1007/s10637-020-01030-0
[73] Sun, J., Feng, D., Xi, H., et al. (2020) CD24 Blunts the Sensi-tivity of Retinoblastoma to Vincristine by Modulating Autophagy. Molecular Oncology, 14, 1740-1759.
https://doi.org/10.1002/1878-0261.12708
[74] Song, K., Li, B., Chen, Y.Y., et al. (2021) LRPPRC Regulates Me-tastasis and Glycolysis by Modulating Autophagy and the ROS/HIF1-α Pathway in Retinoblastoma. Molecular Therapy Oncolytics, 22, 582-591.
https://doi.org/10.1016/j.omto.2021.06.009
[75] Li, F., Xia, Q., Ren, L., et al. (2022) GSDME Increases Chemo-therapeutic Drug Sensitivity by Inducing Pyroptosis in Retinoblastoma Cells. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2371807.
https://doi.org/10.1155/2022/2371807
[76] Baldwin, A.S. (2001) Control of Oncogenesis and Cancer Therapy Re-sistance by the Transcription Factor NF-κB. The Journal of Clinical Investigation, 107, 241-246.
https://doi.org/10.1172/JCI11991
[77] Cruz-Galvez, C.C., Ortiz-Lazareno, P.C., Pedraza-Brindis, E.J., et al. (2019) Pentoxifylline Enhances the Apoptotic Effect of Carboplatin in Y79 Retinoblastoma Cells. In Vivo, 33, 401-412.
https://doi.org/10.21873/invivo.11487
[78] Böhm, L., Roos, W.P. and Serafin, A.M. (2003) Inhibition of DNA Repair by Pentoxifylline and Related Methylxanthine Derivatives. Toxicology, 193, 153-160.
https://doi.org/10.1016/S0300-483X(03)00294-4
[79] Gómez-Contreras, P.C., Hernández-Flores, G., Ortiz-Lazareno, P.C., et al. (2006) In Vitro Induction of Apoptosis in U937 Cells by Perillyl Alcohol with Sensitization by Pentoxifylline: Increased BCL-2 and BAX Protein Expression. Chemotherapy, 52, 308-315.
https://doi.org/10.1159/000096003
[80] Bravo-Cuellar, A., Ortiz-Lazareno, P.C., Lerma-Diaz, J.M., et al. (2010) Sensitization of Cervix Cancer Cells to Adriamycin by Pentoxifylline Induces an Increase in Apoptosis and Decrease Se-nescence. Molecular Cancer, 9, Article No. 114.
https://doi.org/10.1186/1476-4598-9-114
[81] Geng, W., Ren, J., Shi, H., et al. (2021) RPL41 Sensitizes Retinoblastoma Cells to Chemotherapeutic Drugs via ATF4 Degradation. Journal of Cellular Physiology, 236, 2214-2225.
https://doi.org/10.1002/jcp.30010
[82] Wang, Y.F., Kunda, P.E., Lin, J.W., et al. (2013) Cytokine-Induced Killer Cells Co-Cultured with Complete Tumor Antigen-Loaded Dendritic Cells, Have Enhanced Selective Cytotoxicity on Carboplatin-Resistant Retinoblastoma Cells. Oncology Reports, 29, 1841-1850.
https://doi.org/10.3892/or.2013.2315
[83] Xiong, K., Zhou, Y., Karges, J., et al. (2021) Autophagy-Dependent Apoptosis Induced by Apoferritin-Cu(II) Nanoparticles in Multidrug-Resistant Colon Cancer Cells. ACS Applied Materi-als & Interfaces, 13, 38959-38968.
https://doi.org/10.1021/acsami.1c07223
[84] Li, C., Zhang, Y., Liu, J., et al. (2021) Mitochondrial DNA Stress Triggers Autophagy-Dependent Ferroptotic Death. Autophagy, 17, 948-960.
https://doi.org/10.1080/15548627.2020.1739447
[85] Bonapace, L., Bornhauser, B.C., Schmitz, M., et al. (2010) Induction of Autophagy-Dependent Necroptosis Is Required for Childhood Acute Lymphoblastic Leukemia Cells to Overcome Glucocorticoid Resistance. The Journal of Clinical Investigation, 120, 1310-1323.
https://doi.org/10.1172/JCI39987
[86] Xia, X., Wang, X., Cheng, Z., et al. (2019) The Role of Pyroptosis in Can-cer: Pro-Cancer or Pro-“Host”? Cell Death & Disease, 10, Article No. 650.
https://doi.org/10.1038/s41419-019-1883-8
[87] Lerma-Díaz, J.M., Hernández-Flores, G., Domínguez-Rodríguez, J.R., et al. (2006) In Vivo and in Vitro Sensitization of Leukemic Cells to Adriamycin-Induced Apoptosis by Pentoxifyl-line. Involvement of Caspase Cascades and IκBα Phosphorylation. Immunology Letters, 103, 149-158.
https://doi.org/10.1016/j.imlet.2005.10.019