非编码RNA参与食管癌表观遗传修饰
Non-Coding RNA Participates in Epigenetic Modification of Esophageal Cancer
摘要: 食管癌(EC)是目前预后较差的消化道恶性肿瘤,是导致癌症相关死亡的主要原因之一。除基因突变外,许多表观遗传改变,包括DNA甲基化和组蛋白修饰与染色质重塑相关,已被确定参与EC基因表达的调控。近年来,非编码RNA主要是lncRNAs和miRNAs被认为参与EC的表观遗传调控。在这篇综述中,重点描述了与非编码RNA相关的表观遗传过程的新见解及这些非编码RNA在EC的发展和进展中的作用与特征。
Abstract: Esophageal cancer (EC) is a malignant tumor of digestive tract with poor prognosis and is one of the main causes of cancer-related death. In addition to gene mutation, many epigenetic changes, including DNA methylation and histone modification, are associated with chromatin remodeling and have been identified to be involved in the regulation of EC gene expression. In recent years, non-coding RNAs, mainly lncRNAs and miRNAs, are considered to be involved in the epigenetic regulation of EC. In this review, we focus on new insights into epigenetic processes associated with non-coding RNAs, and the roles and characteristics of these non-coding RNAs in the development of EC.
文章引用:阿力木江·木明, 伊地力斯·阿吾提. 非编码RNA参与食管癌表观遗传修饰[J]. 临床医学进展, 2024, 14(2): 3737-3745. https://doi.org/10.12677/ACM.2024.142521

1. 引言

食管癌(EC)是一种具有挑战性的上消化道肿瘤,癌症死因中排世界第六位 [1] 。食管癌包括两种主要的组织学类型:食管腺癌(EAC)和食管鳞状细胞癌(ESCC) [2] 。EC发病机制繁琐,分子机制目前还不明确。尽管最近在EC早期诊断和治疗方面取得了更有效的进展,但EC的预后仍然很差,5年相对生存率仍低于20% [3] 。因此,更好地了解EC恶性转化和肿瘤进展,以改进治疗方案是迫切需要的。基因突变长期以来一直被认为是癌症发展的驱动因素。近年来,表观遗传学也被认为是癌症发展的重要贡献者,因为它们在基因表达的调控中发挥了重要作用 [4] [5] 。大量证据表明,表观遗传改变在癌症的发生和发展中起着关键作用,包括EC [6] [7] [8] [9] 。“表观遗传学”指的是不受原始DNA序列变化调控的基因表达的可遗传改变。表观遗传改变可以通过细胞间传递。除异常的DNA甲基化和异常的组蛋白修饰外,常在癌症中发现,与染色质重构结构和基因表达改变有关 [10] [11] 。癌症的表观遗传变化受包括DNA甲基转移酶(DNMTs)、组蛋白甲基转移酶(HMTs)、组蛋白去甲基酶(HDMTs)、组蛋白乙酰转移酶(HATs)和组蛋白去乙酰化酶(HDACs)在内的复杂辅助因子网络调控 [12] [13] 。近年来,大量研究证实,非编码RNA (ncRNAs)与EC的表观遗传变化有关 [14] [15] 。本文就EC中与ncRNAs相关的DNA甲基化、组蛋白修饰和染色质结构在染色质水平上的表观遗传改变进行综述。

2. 表观遗传调控与食管癌

DNA甲基化是表观遗传改变的主要形式,也是最广泛研究之一 [16] [17] 。人类c-磷酸二酯-G键(CpG)岛一般长度为200~2000 bps,CG含量丰富,约40%~60%的抑癌基因位于启动子区域 [18] [19] 。DNA甲基化主要由S-腺苷甲硫氨酸(SAM)依赖的DNMTs介导,该DNMTs可促进甲基(CH3)在CpG二核苷酸内的5-碳上的催化加成 [10] 。当CpG二核苷酸甲基化时,相关基因的转录被抑制。因此,启动子位点CpG岛的高甲基化诱导肿瘤抑制基因的转录沉默被认为是肿瘤发生的原因 [20] [21] 。DNMTs通常被认为是在DNA从头甲基化过程中优先催化之前未甲基化的CpG (如DNMT3A和DNMT3B)的甲基化,或在DNA复制过程中维持甲基化状态(如DNMT1) [22] 。在EC的癌变过程中观察到异常的DNA甲基化模式。Chen [23] 等人进行了DNA甲基化和ESCC全基因组分析。通过甲基化DNA免疫沉淀测序(MeDIP-Seq),作者与相邻的正常食管组织相比发现了26,081个差异甲基化区域,其中87.6%的高甲基化区域和12.4%的低甲基化区域。

核小体是染色质的基本结构单位,由八聚体核心的组蛋白和缠绕它的147个核苷酸(nts)DNA组成 [24] 。组蛋白由四个核心蛋白(H2A、H2B、H3、H4)的各两单体组成,每个核心组蛋白都有特定的组蛋白尾。组蛋白尾部可发生翻译后修饰,包括乙酰化、甲基化、聚ADP核糖酰化、磷酸化以及泛素化 [25] 。其乙酰化指醋酸基团被转移至组蛋白上的修饰过程,通过改变组蛋白的电荷分布,影响其与DNA的结合,从而调节基因的转录 [26] 。而甲基化是在组蛋白赖氨酸上发生甲基基团的加成反应,可以影响组蛋白与其他蛋白质的相互作用 [27] 。泛素化是将小蛋白泛素连接至组蛋白上,可促进染色质的去乙酰化和去甲基化,从而影响基因的沉默或激活 [28] 。其磷酸化通过磷酸基团被附加到组蛋白上,可以改变染色质的结构,影响核糖核酸聚合酶在DNA上的滑移和结合 [29] 。这些修饰通过诱导开放和紧致活跃或不活跃的状态可以改变核小体的三维结构构象,从而影响相关基因的转录控制 [30] 。

组蛋白甲基化是组蛋白表观遗传的主要过程之一 [31] 。组蛋白H3中的几个赖氨酸位点(如K4、K9、K27、K36和K79)可被甲基化。组蛋白赖氨酸甲基化对染色质结构具有重要意义。组蛋白H3赖氨酸4 (H3K4me2和H3K4me3)的二甲基化和三甲基化与转录激活状态相关,而H3赖氨酸9和27 (H3K9me3和H3K27me3)的三甲基化与转录激活状态相关 [30] 。其中,与缩合和转录沉默相关的H3K27me2/3是由Zeste Homolog 2的甲基转移酶增强子(methyltransferase Enhancer of Zeste Homolog 2)介导的 [32] [33] 。Chen [34] 等人发现ESCC组织中H3和H4整体去乙酰化与ESCC的严重程度和组织学分化相关。

组蛋白乙酰化是通过开放染色质构象产生的与转录激活相关的另一个主要事件 [30] 。与组蛋白乙酰化相比,组蛋白去乙酰化被认为是一种主要的表观遗传沉默组蛋白标记,它与某些蛋白的下调有关 [35] 。hat和HDACs等酶许多被鉴定为已被证明有助于组蛋白乙酰化的修饰 [36] 。组蛋白的异常乙酰化,特别是去乙酰化,已被证明影响EC的病理生物学 [37] 。Chen [34] 和他的同事对ESCC中组蛋白整体修饰包括甲基化和乙酰化的意义进行研究,他们检测组蛋白H3/H4乙酰化和H3K4/H3K27甲基化水平,发现ESCC组织中H3K4和H3K27高甲基化和H3和H4整体去乙酰化。H3K4和H3K27的高甲基化和H3的去乙酰化均与EC的严重程度和组织学分化有关。

3. 非编码RNA与癌症

3.1. 非编码RNA在癌症中的概述

人类基因组计划表明,超过70%的人类基因组被积极转录成不编码蛋白的ncRNA [38] 。ncRNA根据其大小可分为两类:小ncRNA (<200 nts)包括miRNA、其他功能未知的小核仁RNA (small nucleolar RNAs, snoRNAs)、piwi相互作用RNA (piwi-interactions RNAs, piRNAs)以及lncRNA (>200 nts) [39] 。ncRNA以前被认为是“转录噪音” [40] [41] 。然而,近十年来,越来越多的文献表明,ncRNAs通过调控致癌基因和抑癌基因,在癌症的各种生物学过程中发挥着关键作用,这使得ncRNAs成为科学研究的焦点 [42] [43] 。这些研究扩展了目前对ncRNA特别是miRNA和lncRNA在人类癌症中的功能作用的认识,并为临床应用作为癌症的生物标志物和治疗靶点提供了有益的见解。

3.2. EC中的MiRNA

在上述不同类型的小ncRNA中miRNA与EC的关系研究最为普遍。miRNAs是由RNA聚合酶II转录的内源性单链小RNA家族,长度约为22 nts [44] 。miRNAs最早于1993年在秀丽隐杆线虫 [45] 中作为负转录后调控因子被发现。miRNA可与靶mRNA的3'UTR“种子序列”结合,刺激靶mRNA的降解或抑制其翻译 [46] [47] 。通过基于微阵列的筛选方法,在人类EC组织标本中已经证明了EC中miRNAs的异常表达,支持其作为致癌基因或肿瘤抑制因子的功能。Liu和同事利用癌症基因组图谱(TCGA)数据库发现EAC中总共显示了112个miRNAs,其中38个表达上调,74个表达下调 [48] 。一些调控异常的miRNA已被证实对EC的进展和发展有影响,因此可能是EC的治疗靶点。例如,miR-375和miR100在ESCC中被下调,可分别抑制细胞生长和细胞迁移 [49] [50] 。miR-148a-3p可以抑制DNMT1的表达,从而抑制EC细胞的增殖和侵袭 [51] 。越来越多的研究证据证实,外周血清中的miRNAs是非侵入性癌症诊断和预后的潜在生物标志物,有很广阔的研究前景。Zhang [52] 等人的研究表明,四种miRNAs (miR375、miR-25-3p、miR-100-5p和miR-151a-3p)的谱可以识别EAC患者,因此可能作为EAC患者早期检测或治疗反应的血清生物标志物。另一项研究发现复发患者中miR-331-3p的表达较未复发患者下调,提示血清miR-331-3p可能是鉴别EAC复发高危患者的潜在生物标志物 [53] 。

3.3. EC中的lncRNAs

lncRNA是继miRNA之后研究第二广泛的ncRNA。曾经有研究者认为76%的ncRNAs可以转录成lncRNAs [54] 。2012年,DNA元件百科全书联盟转录组项目在人类基因组中编目了超过9600个lncRNA位点,随着研究的进行,这一数字还在继续增长 [55] 。虽然大多数lncRNA的生物学作用尚不清楚,但大量研究证实,lncRNA在疾病的发生发展过程中发挥着多种重要作用,特别是在肿瘤疾病的病因机制研究。这些研究表明,lncRNA通过染色质重构、转录和转录后调控、mRNA剪接、miRNA海绵化以及与蛋白质相互作用等多种调控活动参与基因表达调控 [56] [57] 。最近的证据表明,EC中有大量的lncRNAs存在异常调控,lncRNAs表达的改变在EC的标志物、stemness和放化疗耐药中起着关键作用,可能作为EC的生物标志物和靶点 [56] 。Han [58] 等发现小核仁RNA宿主16基因(SNHG16)在ESCC组织和细胞中表达上调。Zhou [59] 等的研究发现,AFAP1-AS1在ESCC组织中高表达,与放化疗反应相关,其表达水平可预测ESCC患者对放化疗的耐药。Wang [60] 和同事报道,肺腺癌转录本1 (MALAT1)的沉默下调了肿瘤干细胞基因OCT4和Nanog的表达,从而抑制了肿瘤干细胞样特征的ECSS。与miRNAs相似,lncRNAs在体液中的存在表明,它们可能被用作EC预后和诊断的生物标志物。Wang等 [61] 报道ESCC患者血清HOX转录反义RNA (HOTAIR)较健康对照组明显上调,并与TNM分期呈正相关。说明血清HOTAIR可能作为ESCC诊断的在潜生物标志物。

4. 调控EC表观遗传改变的非编码RNA

4.1. DNA甲基化调控

最近,一些lncRNA被报道通过招募或调控DNMTs的表达参与EC中DNA甲基化的调控。研究表明,LINC00261在5-fu抗性EC癌组织中表达下调 [62] 。过表达LINC00261可以通过增强代谢途径中关键酶DPYD启动子的甲基化来显著抑制细胞增殖和凋亡抗性。已经确定LINC00261通过招募DNMT到DPYD启动子来介导DPYD活性的降低。相关研究表明,与正常试管粘膜组织相比,肺癌相关转录本1 (Lung cancer associated transcript 1, LUCAT1)在ESCC组织中显著高表达,并与ESCC患者的生存率相关 [63] 。研究发现,耗竭LUCAT1可以加速细胞凋亡,但抑制细胞增殖、迁移和ESCC细胞的侵袭。此外,研究发现LUCAT1缺失可以通过直接与DNMT1结合,并通过UHRF1调节DNMT1的泛素化和稳定性,从而降低DNMT1蛋白水平。随后,LUCAT1可以通过DNA甲基化抑制肿瘤抑制因子的表达,从而促进ESCC的发生发展。

4.2. 调节组蛋白修饰

一些lncRNA可以通过与染色质调节酶特别是与EZH2相互作用来改变EC中组蛋白甲基化的状态。以往的研究表明,人类大约24%的lncRNA可以与EZH2关联,并将其招募到其靶基因 [64] 。EZH2是多簇抑制复合物2 (polycomb repression complex 2, PRC2)的重要成员,据报道EZH2在EC中表达上调,与EC细胞增殖和细胞周期进展相关,并预测EC患者预后不良 [65] [66] [67] 。

Linc-POU3F3是一个747-nt转录本,位于POU class 3 homeobox 3 (POU3F3)基因上游约4 kb处。它在ESCC的组织和细胞系中呈现过表达,细胞实验证实其能够促进ESCC细胞增殖。Linc-POU3F通过改变POU3F3启动子中CpG岛的甲基化状态,负向调控POU3F3 mRNA的表达 [68] 。后续的实验表明,linc-POU3F3与EZH2结合后,将dnmt招募到POU3F3启动子上。综上所述,linc-POU3F3可以通过与EZH2相互作用从而调节POU3F3的甲基化,进一步促进ESCC的进展。

一些lncRNA (如lncRNA在膀胱癌中上调1 (linc-UBC1) [69] ,X-inactive specific transcript (XIST) [70] 和miRNAs (如miR-101 [71] 、miR-30d [73] 、miR-98和miR-214) [74] 除了招募EZH2直接调控组蛋白甲基化,也可以介导EZH2的表达。进而间接调节组蛋白甲基化及相关基因表达。例如,miR-101作为miRNA的抑癌因子,通过刺激EZH2蛋白的积累来诱导EC细胞增殖和迁移 [75] 。

还有一些lncRNA除了位点特异性募集DNA/组蛋白修饰物外,还可以与核小体动员复合物结合,介导染色质结构,从而介导基因表达。NSUN2甲基化lncRNA (NMR)在ESCC中显著过表达,并与ESCC患者的肿瘤转移和较差的生存率相关 [73] 。它是ESCC肿瘤转移和耐药的关键调控因子。NMR会促使食管肿瘤细胞的迁移和侵袭,抑制顺铂诱导的细胞凋亡,增加ESCC细胞的耐药。NMR可直接与染色质调控因子BPTF相互作用,BPTF有助于ATP依赖的染色质重构 [74] ,并将其招募到染色质的某些位点,从而调控MMP3和MMP10等基因的转录。

此外,另一种lncRNA CASC9已被证明是组蛋白乙酰化的调节因子。它在食管鳞癌组织中高表达,与食管鳞癌预后相关 [75] 。细胞功能实验证实,敲减基因CASC9的表达可显著抑制癌细胞的进展。机制研究发现,CASC9可以与CBP结合,CBP是一种转录共激活因子,可以介导染色质乙酰化。进一步的研究表明,CASC9通过增强对LAMC2启动子中CBP和H3K27乙酰化的富集来更新LAMC2的表达。

5. 展望

尽管EC的治疗取得了进展,预后仍然很差。基因突变被认为是EC病因的主要原因。表观遗传改变如乙酰化、染色质重构和DNA甲基化以及组蛋白甲基化在EC发病机制中发挥了关键作用,直到最近才被发现。近年来,新的研究证据指出,表观遗传改变可以调控EC的基因表达,但其具体调控机制尚不清楚,暂未阐明。ncRNAs,特别是lncRNAs和miRNAs,也被证明是EC的重要贡献者,并与表观遗传改变相关。一方面,ncRNA可以通过与co-factors相互作用直接调控表观遗传改变,另一方面,ncRNA可以通过介导co-factors的表达间接调控表观遗传改变。另一方面,已经从高通量基因表达分析中发现了不同的甲基化或组蛋白修饰异常调控的ncRNA。

ncRNA研究揭示了EC复杂表观遗传改变的新层次的复杂性。过去十年中大量关于ncRNA参与表观遗传调控的数据可能仍处于这一新兴领域的初期阶段,这些数据的进一步扩展可能揭示适合表观遗传治疗的靶点和通路。与遗传缺陷相反,表观遗传缺陷有可逆性可能,因此具备潜在治疗靶点。识别ncRNA和表观遗传因子之间的调控网络将会扩大我们对EC机制的理解,首先将促进治疗策略的发展和EC患者的分层。

参考文献

NOTES

*通讯作者。

参考文献

[1] Holmes, R.S. and Vaughan, T.L. (2007) Epidemiology and Pathogenesis of Esophageal Cancer. Seminars in Radiation Oncology, 17, 2-9.
https://doi.org/10.1016/j.semradonc.2006.09.003
[2] Pennathur, A., Gibson, M.K., Jobe, B.A. and Luketich, J.D. (2013) Oesophageal Carcinoma. The Lancet, 381, 400-412.
https://doi.org/10.1016/S0140-6736(12)60643-6
[3] Ohashi, S., Miyamoto, S., Kikuchi, O., Goto, T., Amanuma, Y. and Muto, M. (2015) Recent Advances from Basic and Clinical Studies of Esophageal Squamous Cell Carcinoma. Gastroenterology, 149, 1700-1715.
https://doi.org/10.1053/j.gastro.2015.08.054
[4] Okugawa, Y., Grady, W.M. and Goel, A. (2015) Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology, 149, 1204-1225.e12.
https://doi.org/10.1053/j.gastro.2015.07.011
[5] Shen, H. and Laird, P.W. (2013) Interplay between the Cancer Genome and Epigenome. Cell, 153, 38-55.
https://doi.org/10.1016/j.cell.2013.03.008
[6] Esteller, M. (2011) Epigenetic Changes in Cancer. F1000 Biology Reports, 3, 9.
https://doi.org/10.3410/B3-9
[7] Rastgoo, N., Abdi, J., Hou, J. and Chang, H. (2017) Role of Epi-genetics-MicroRNA Axis in Drugresistance of Multiple Myeloma. Journal of Hematology & Oncology, 10, Article No. 121.
https://doi.org/10.1186/s13045-017-0492-1
[8] Wang, L., Meng, D., Wang, Y. and Hu, J. (2018) Long Non-Coding RNA LINC01296 Promotes Esophageal Squamous Cell Carcinoma Cell Proliferation and Invasion by Epigenetic Suppression of KLF2. American Journal of Cancer Research, 8, 2020-2029.
[9] Lin, D.C., Wang, M.R. and Koeffler, H.P. (2018) Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Impli-cations for Patients. Gastroenterology, 154, 374-389.
https://doi.org/10.1053/j.gastro.2017.06.066
[10] Bird, A. (2002) DNA Methylation Patterns and Epigenetic Memory. Genes & Development, 16, 6-21.
https://doi.org/10.1101/gad.947102
[11] Lv, J.F., Hu, L., Zhuo, W., Zhang, C.M., Zhou, H.H. and Fan, L. (2016) Epigenetic Alternations and Cancer Chemotherapy Response. Cancer Chemotherapy and Pharmacology, 77, 673-684.
https://doi.org/10.1007/s00280-015-2951-0
[12] Sharma, S., Kelly, T.K. and Jones, P.A. (2010) Epigenetics in Cancer. Carcinogenesis, 31, 27-36.
https://doi.org/10.1093/carcin/bgp220
[13] Gonzalez-Ramirez, I., Soto-Reyes, E., Sanchez-Perez, Y., Herrera, L.A. and Garcia-Cuellar, C. (2014) Histones and Long Non-Coding RNAs: The New Insights of Epigenetic De-Regulation Involved in Oral Cancer. Oral Oncology, 50, 691-695.
https://doi.org/10.1016/j.oraloncology.2014.04.006
[14] 张健, 邵生辉, 彭雅琼, 等. 沉默长链非编码RNA ANO1-AS1对食管鳞癌细胞迁移、侵袭的影响[J]. 中国老年学杂志, 2024, 44(1): 75-81.
[15] 黄建伟, 李玉凤, 张权, 等. 长链非编码RNA SNHG1靶向miR-340-5p/CCND1轴调控食管癌细胞增殖、迁移和侵袭[J]. 现代肿瘤医学, 2023, 31(12): 2209-2215.
[16] Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., et al. (7205) Genome-Scale DNA Methylation Maps of Pluripotent and Differentiated Cells. Nature, 454, 766-770.
https://doi.org/10.1038/nature07107
[17] Alipour, S., Nouri, M., Sakhinia, E., Samadi, N., Roshanravan, N., Ghavami, A. and Khabbazi, A. (2017) Epigenetic Alterations in Chronic Disease Focusing on Behcet’s Disease: Review. Biomedicine & Pharmacotherapy, 91, 526-533.
https://doi.org/10.1016/j.biopha.2017.04.106
[18] Herman, J.G. and Baylin, S.B. (2003) Gene Silencing in Cancer in Association with Promoter Hypermethylation. The New England Journal of Medicine, 349, 2042-2054.
https://doi.org/10.1056/NEJMra023075
[19] Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., Paabo, S., Rebhan, M. and Schubeler, D. (2007) Distribution, Silencing Potential and Evolutionary Impact of Promoter DNA Methylation in the Human Genome. Nature Genetics, 39, 457-466.
https://doi.org/10.1038/ng1990
[20] Ziller, M.J., Gu, H., Muller, F., Donaghey, J., Tsai, L.T., Kohlbacher, O., et al. (2013) Charting a Dynamic DNA Methylation Landscape of the Human Genome. Nature, 500, 477-481.
https://doi.org/10.1038/nature12433
[21] Sigalotti, L., Covre, A., Fratta, E., Parisi, G., Colizzi, F., Rizzo, A., et al. (2010) Epigenetics of Human Cutaneous Melanoma: Setting the Stage for New Therapeutic Strategies. Journal of Translational Medicine, 8, Article No. 56.
https://doi.org/10.1186/1479-5876-8-56
[22] Klose, R.J. and Bird, A.P. (2006) Genomic DNA Methylation: The Mark and Its Mediators. Trends in Biochemical Sciences, 31, 89-97.
https://doi.org/10.1016/j.tibs.2005.12.008
[23] Chen, X., Ge, X., Wang, J., Tan, C., King, G.J. and Liu, K. (2015) Genome-Wide DNA Methylation Profiling by Modified Reduced Representation Bisulfite Sequencing in Brassica rapa Suggests That Epigenetic Modifications Play a Key Role in Polyploid Genome Evolution. Frontiers in Plant Science, 6, Article 836.
https://doi.org/10.3389/fpls.2015.00836
[24] 陈曦, 王雅梅. 胶质瘤化疗耐药机制的表观遗传学调控研究进展[J]. 癌症进展, 2023, 21(20): 2205-2211+2259.
[25] Jenuwein, T. and Allis, C.D. (2001) Translating the Histone Code. Science, 293, 1074-1080.
https://doi.org/10.1126/science.1063127
[26] Xu, F., Zhang, K. and Grunstein, M. (2005) Acetylation in Histone H3 Globular Domain Regulates Gene Expression in Yeast. Cell, 121, 375-385.
https://doi.org/10.1016/j.cell.2005.03.011
[27] Greer, E.L. and Shi, Y. (2012) Histone Methylation: A Dynamic Mark in Health, Disease and Inheritance. Nature Reviews Genetics, 13, 343-357.
https://doi.org/10.1038/nrg3173
[28] Zhang, Y. and Reinberg, D. (2001) Transcription Regulation by Histone Methylation: Interplay between Different Covalent Modifications of the Core Histone Tails. Genes & Development, 15, 2343-2360.
https://doi.org/10.1101/gad.927301
[29] Dawson, M.A. and Kouzarides, T. (2012) Cancer Epigenetics: From Mechanism to Therapy. Cell, 150, 12-27.
https://doi.org/10.1016/j.cell.2012.06.013
[30] Baylin, S.B. and Jones, P.A. (2011) A Decade of Exploring the Cancer Epigenome—Biological and Translational Implications. Nature Reviews Cancer, 11, 726-734.
https://doi.org/10.1038/nrc3130
[31] Alam, H., Gu, B. and Lee, M.G. (2015) Histone Methylation Modifiers in Cellular Signaling Pathways. Cellular and Molecular Life Sciences, 72, 4577-4592.
https://doi.org/10.1007/s00018-015-2023-y
[32] Lund, A.H. and Van Lohuizen, M. (2004) Polycomb Complexes and Silencing Mechanisms. Current Opinion in Cell Biology, 16, 239-246.
https://doi.org/10.1016/j.ceb.2004.03.010
[33] Jin, Y., Huo, B., Fu, X., Hao, T., Zhang, Y., Guo, Y. and Hu, X. (2017) LSD1 Collaborates with EZH2 to Regulate Expression of Interferon-Stimulated Genes. Biomedicine & Phar-macotherapy, 88, 728-737.
https://doi.org/10.1016/j.biopha.2017.01.055
[34] Chen, C., Zhao, M., Yin, N., He, B., Wang, B., Yuan, Y., et al. (2011) Abnormal Histone Acetylation and Methylation Levels in Esophageal Squamous Cell Carcinomas. Cancer In-vestigation, 29, 548-556.
https://doi.org/10.3109/07357907.2011.597810
[35] Kouzarides, T. (2007) Chromatin Modifications and Their Function. Cell, 128, 693-705.
https://doi.org/10.1016/j.cell.2007.02.005
[36] Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C. and Kouzarides, T. (2001) Selective Recognition of Methylated Lysine 9 on Histone H3 by TheHP1 Chromo Domain. Nature, 410, 120-124.
https://doi.org/10.1038/35065138
[37] Schizas, D., Mastoraki, A., Naar, L., Spartalis, E., Tsilimigras, D.I., Karachaliou, G.S., et al. (2018) Concept of Histone Deacetylases in Cancer: Reflections on Esophageal Carcinogenesis and Treatment. World Journal of Gastroenterology, 24, 4635-4642.
https://doi.org/10.3748/wjg.v24.i41.4635
[38] 魏毅君. 长链非编码RNA Linc00578促进胰腺癌细胞增殖和侵袭的作用和机制[D]: [硕士学位论文]. 苏州: 苏州大学, 2021.
https://doi.org/10.27351/d.cnki.gszhu.2021.001850
[39] Pauli, A., Rinn, J.L. and Schier, A.F. (2011) Non-Coding RNAs as Regulators of Embryogenesis. Nature Reviews Genetics, 12, 136-149.
https://doi.org/10.1038/nrg2904
[40] Costa, F.F. (2005) Non-Coding RNAs: New Players in Eukaryotic Biology. Gene, 357, 83-94.
https://doi.org/10.1016/j.gene.2005.06.019
[41] Ponjavic, J., Ponting, C.P. and Lunter, G. (2007) Functionality or Transcriptional Noise Evidence for Selection within Long Noncoding RNAs. Genome Research, 17, 556-565.
https://doi.org/10.1101/gr.6036807
[42] Anastasiadou, E., Jacob, L.S. and Slack, F.J. (2018) Non-Coding RNA Networks in Cancer. Nature Reviews Cancer, 18, 5-18.
https://doi.org/10.1038/nrc.2017.99
[43] Rathinasamy, B. and Velmurugan, B.K. (2018) Role of lncRNAs in the Cancer Development and Progression and Their Regulation by Various Phytochemicals. Biomedicine & Pharmacotherapy, 102, 242-248.
https://doi.org/10.1016/j.biopha.2018.03.077
[44] Zhang, Y., Yang, P. and Wang, X.F. (2014) Microenvironmental Regulation of Cancer Metastasis by miRNAs. Trends in Cell Biology, 24, 153-160.
https://doi.org/10.1016/j.tcb.2013.09.007
[45] Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. Elegans Heterochronic Gene Lin-4 En-Codes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854.
https://doi.org/10.1016/0092-8674(93)90529-Y
[46] Ambros, V. (2004) The Functions of Animal MicroRNAs. Nature, 431, 350-355.
https://doi.org/10.1038/nature02871
[47] Bartel, D.P. (2004) MicroRNAs: Genomics, Bi-ogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/S0092-8674(04)00045-5
[48] Liu, H., Zhang, Q., Lou, Q., Zhang, X., Cui, Y., Wang, P., et al. (2020) Differential Analysis of lncRNA, miRNA and MRNA Expression Profiles and the Prognostic Value of lncRNA in Esophageal Cancer. Pathology and Oncology Research, 26, 1029-1039.
https://doi.org/10.1007/s12253-019-00655-8
[49] Kong, K.L., Kwong, D.L., Chan, T.H., Law, S.Y., Chen, L., Li, Y., et al. (2012) MicroRNA-375 Inhibits Tumour Growth and Metastasis in Oesophageal Squamous Cell Carcinoma through Repressing Insulin-Like Growth Factor 1 Receptor. Gut, 61, 33-42.
https://doi.org/10.1136/gutjnl-2011-300178
[50] Zhang, N., Fu, H., Song, L., Ding, Y., Wang, X., Zhao, C., et al. (2014) MicroRNA-100 Promotes Migration and Invasion through Mammalian Target of Rapamycin in Esophageal Squamous Cell Carcinoma. Oncology Reports, 32, 1409-1418.
https://doi.org/10.3892/or.2014.3389
[51] Wang, Y., Hu, Y., Guo, J. and Wang, L. (2019) miR-148a-3p Sup-presses the Proliferation and Invasion of Esophageal Cancer by Targeting DNMT1. Genetic Testing and Molecular Biomarkers, 23, 98-104.
https://doi.org/10.1089/gtmb.2018.0285
[52] Zhang, K., Wu, X., Wang, J., Lopez, J., Zhou, W., Yang, L., et al. (2016) Circulating miRNA Profile in Esophageal Adenocarcinoma. American Journal of Cancer Research, 6, 2713-2721.
[53] Gu, J., Zhang, J., Zheng, L., Ajani, J.A., Wu, X. and Ye, Y. (2018) Serum miR-331-3p Predicts Tu-mor Recurrence in Esophageal Adenocarcinoma. Scientific Reports, 8, Article No. 14006.
https://doi.org/10.1038/s41598-018-32282-9
[54] Stein, L.D. (7011) Human Genome: End of the Beginning. Na-ture, 431, 915-916.
https://doi.org/10.1038/431915a
[55] Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012) The GENCODE V7 Catalog of Human Long Noncoding RNAs: Analysis of Their Gene Structure, Evolution, and Expression. Genome Research, 22, 1775-1789.
https://doi.org/10.1101/gr.132159.111
[56] Su, M., Xiao, Y., Ma, J., Cao, D., Zhou, Y., Wang, H., et al. (2018) Long Non-Coding RNAs in Esophageal Cancer: Molecular Mechanisms, Functions, and Potential Applications. Journal of Hematology & Oncology, 11, Article No. 118.
https://doi.org/10.1186/s13045-018-0663-8
[57] Huang, X., Zhou, X., Hu, Q., Sun, B., Deng, M., Qi, X. and Lu, M. (2018) Advances in Esophageal Cancer: A New Perspective on Pathogenesis Associated with Long Non-Coding RNAs. Cancer Letters, 413, 94-101.
https://doi.org/10.1016/j.canlet.2017.10.046
[58] Han, G.H., Lu, K.J., Wang, P., Ye, J., Ye, Y.Y. and Huang, J.X. (2018) lncRNA SNHG16 Predicts Poor Prognosis in ESCC and Promotes Cell Proliferation and Invasion by Regulating Wnt/Beta-Catenin Signaling Pathway. European Review for Medical and Pharmacological Sciences, 22, 3795-3803.
[59] Zhou, X.L., Wang, W.W., Zhu, W.G., Yu, C.H., Tao, G.Z., Wu, Q.Q., et al. (2016) High Expression of Long Non-Coding RNA AFAP1-AS1 Predicts Chemoradioresistance and Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma Treated with Definitive Chemoradiotherapy. Molecular Carcinogenesis, 55, 2095-2105.
https://doi.org/10.1002/mc.22454
[60] Wang, W., Zhu, Y., Li, S., Chen, X., Jiang, G., Shen, Z.Y., et al. (2016) Long Noncoding RNA MALAT1 Promotes Malignant Development of Esophageal Squamous Cell Carcinoma by Targeting β-Catenin via Ezh2. Oncotarget, 7, 25668-25682.
https://doi.org/10.18632/oncotarget.8257
[61] Wang, W., He, X., Zheng, Z., Ma, X., Hu, X., Wu, D. and Wang, M. (2017) Serum HOTAIR as a Novel Diagnostic Biomarker for Esophageal Squamous Cell Carcinoma. Molecular Cancer, 16, Article No. 75.
https://doi.org/10.1186/s12943-017-0643-6
[62] Lin, K., Jiang, H., Zhuang, S.S., Qin, Y.S., Qiu, G.D., She, Y.Q., et al. (2018) Long Noncoding RNA LINC00261 Induces Chemosensitization to 5-Fluorouracil by Mediating Methyla-tion-Dependent Repression of DPYD in Human Esophageal Cancer. The FASEB Journal, 33, 1972-1988.
https://doi.org/10.1096/fj.201800759R
[63] Yoon, J.H., You, B.H., Park, C.H., Kim, Y.J., Nam, J.W. and Lee, S.K. (2018) The Long Noncoding RNA LUCAT1 Promotes Tumorigenesis by Controlling Ubiquitination and Stability of DNA Methyltransferase 1 in Esophageal Squamous Cell Carcinoma. Cancer Letters, 417, 47-57.
https://doi.org/10.1016/j.canlet.2017.12.016
[64] Khalil, A.M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., et al. (2009) Many Human Large Intergenic Noncoding RNAs Associate with Chromatin-Modifying Complexes and Affect Gene Expression. Proceedings of the National Academy of Sciences of the United States of America, 106, 11667-11672.
https://doi.org/10.1073/pnas.0904715106
[65] He, L.R., Liu, M.Z., Li, B.K., Jia, W.H., Zhang, Y., Liao, Y.J., et al. (2010) High Expression of EZH2 Is Associated with Tumor Aggressiveness and Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma Treated with Definitive Chemoradiotherapy. International Journal of Cancer, 127, 138-147.
https://doi.org/10.1002/ijc.25031
[66] Wang, H.R., Wang, M.H., Lian, G.Y. and Wu, D.G. (2015) Expression of Enhancer of Zeste Homolog 2 in Esophageal Squamous Cell Carcinoma and Its Prognostic Value in Postoperative Patients. Journal of Southern Medical University, 35, 99-102.
[67] Ma, Z.B., Guo, G.H., Niu, Q. and Shi, N. (2014) Role of EZH2 Polymorphisms in Esophageal Squamous Cell Carcinoma Risk in Han Chinese Population. International Journal of Molecular Sciences, 15, 12688-12697.
https://doi.org/10.3390/ijms150712688
[68] Li, W., Zheng, J., Deng, J., You, Y., Wu, H., Li, N., et al. (2014) In-creased Levels of the Long Intergenic Non-Protein Coding RNA POU3F3 Promote DNA Methylation in Esophageal Squamous Cell Carcinoma Cells. Gastroenterology, 146, 1714-1726.e5.
https://doi.org/10.1053/j.gastro.2014.03.002
[69] Niu, G., Zhuang, H., Li, B. and Cao, G. (2018) Long Noncoding RNA Linc-UBC1 Promotes Tumor Invasion and Metastasis by Regulating EZH2 and Repressing E-Cadherin in Esophageal Squamous Cell Carcinoma. Journal of B.U.ON., 23, 157-162.
[70] Lin, C., Huang, F., Li, Q.Z. and Zhang, Y.J. (2014) miR-101 Suppresses Tumor Proliferation and Migration, and Induces Apoptosis by Targeting EZH2 in Esophageal Cancer Cells. International Journal of Clinical and Experimental Pathology, 7, 6543-6550.
[71] Xie, R., Wu, S.N., Gao, C.C., Yang, X.Z., Wang, H.G., Zhang, J.L., et al. (2017) MicroRNA-30d Inhibits the Migration and Invasion of Human Esophageal Squamous Cell Carcinoma Cells via the Posttranscriptional Regulation of Enhancer of Zeste Homolog 2. Oncology Reports, 37, 1682-1690.
https://doi.org/10.3892/or.2017.5405
[72] Huang, S.D., Yuan, Y., Zhuang, C.W., Li, B.L., Gong, D.J., Wang, S.G., et al. (2012) MicroRNA-98 and MicroRNA-214 Post-Transcriptionally Regulate Enhancer of Zeste Homolog 2 and Inhibit Migration and Invasion in Human Esophageal Squamous Cell Carcinoma. Molecular Cancer, 11, Article No. 51.
https://doi.org/10.1186/1476-4598-11-51
[73] Liang, Y., Chen, X., Wu, Y., Li, J., Zhang, S., Wang, K., et al. (2018) lncRNA CASC9 Promotes Esophageal Squamous Cell Carcinoma Metastasis through Upregulating LAMC2 Expression by Interacting with the CREB-Binding Protein. Cell Death & Differentiation, 25, 1980-1995.
https://doi.org/10.1038/s41418-018-0084-9
[74] Li, Y., Li, J., Luo, M., Zhou, C., Shi, X., Yang, W., et al. (2018) Novel Long Noncoding RNA NMR Promotes Tumor Progression via NSUN2 and BPTF in Esophageal Squamous Cell Carcinoma. Cancer Letters, 430, 57-66.
https://doi.org/10.1016/j.canlet.2018.05.013
[75] Dar, A.A., Nosrati, M., Bezrookove, V., de Semir, D., Majid, S., Thummala, S., et al. (2015) The Role of BPTF in Melanoma Progression and Inresponse to BRAF-Targeted Therapy. Journal of the National Cancer Institute, 107, djv034.
https://doi.org/10.1093/jnci/djv034