电化学一氧化氮还原合成氨催化剂的研究进展
Advances in Electrochemical Nitric Oxide Reduction Catalysts for Ammonia Synthesis
摘要: 氨(NH3)用途广泛,在农肥中用作氮源,是许多工业过程的化学原料,也是一种绿色的氢载体。电催化一氧化氮(NO)还原为环境合成NH3提供了一种极有前景的策略。本文综述了电化学过程中各种催化剂对一氧化氮还原为氨的影响。材料主要分为两大类:金属基催化剂和二维材料催化剂。
Abstract: Ammonia (NH3) is very versatile, used as a source of nitrogen in agricultural fertilisers, as a chemical feedstock for many industrial processes and as a green hydrogen carrier. Electrocatalytic nitric oxide (NO) reduction offers an extremely promising strategy for the environmental synthesis of NH3. This paper reviews the effect of various electrode materials on the reduction of nitric oxide to ammonia during electrochemical processes. The materials are classified into two main categories: metal-based catalysts and two-dimensional material catalysts.
文章引用:赵云彩, 张翔宇. 电化学一氧化氮还原合成氨催化剂的研究进展[J]. 材料科学, 2024, 14(2): 152-160. https://doi.org/10.12677/MS.2024.142018

1. 引言

氨(NH3)对农业生产、国防工业和国民经济的发展起着至关重要的作用。然而,其工业合成路线仍然依赖于传统的Haber-Bosch方法,该方法反应条件苛刻(300℃~500℃;200~300 atm),造成大量的能源消耗和温室气体排放 [1] 。绿色可持续的电化学合成氨方法近年来受到电催化领域研究者的广泛关注。目前,以水为质子源的电化学氮(N2)还原反应(NRR)是电化学NH3生产的主要方法 [2] [3] 。但是N2分子的化学惰性严重限制了NH3的产率,在电催化过程中,由于析氢反应(HER)的反应动力学更快,氢优先于氨。这极大地限制了NRR的规模扩大到工业规模 [3] [4] [5] 。因此,需要寻找一种合适的物质来代替N2作为NH3合成的氮源。

NO是主要的大气污染物之一,主要来源于工业废气、汽车尾气、火力发电等。其在大气中不断积累会造成严重的生态环境问题(包括酸雨、光化学烟雾、臭氧耗竭) [6] ,影响氮循环平衡 [1] 。将NO污染物转化为有价值的含氮化合物,如NH3、N2、一氧化二氮(N2O)和羟胺(NH2OH),有助于减轻NO的影响并平衡氮循环 [7] 。目前,最流行的NO去除方法是选择性催化还原(SCR)工艺 [8] ,通过该技术,NO可以转化成氮气并释放。但是,这并不是理想的方法,因为它会消耗有价值的氨或氢气作为还原剂。这种转化过程还存在运行成本高和二次污染问题。此外许多SCR催化剂很容易中毒,且仅在高温下表现出良好的活性。因此,找到一种经济实惠且环保的方法来去除NO是至关重要的。

NO的电化学还原反应比N2的电化学还原反应更有利,因为NO的溶解度更高,亲核性更强,N=O的键能更低(204 kJ·mol1),而N≡N的键能在298 K时为941 kJ·mol1。此外,NO还原反应在热力学上比N2还原反应更可行,表现出更好的选择性和能量效率 [7] [8] [9] [10] 。因此,NO在NH3电化学合成中表现出极大的优势。尽管如此,用NO作为氮源实现高效的NH3合成仍然存在挑战,特别是缺乏高效耐用的电催化剂。在此,我们回顾了电化学还原NO,强调了机理途径、电催化剂和高收率选择性NH3的生产。我们深入研究了合理设计的催化剂和电极材料的细节,这些材料在NH3生产中表现出更好的电化学活性和选择性。

2. NO电化学还原反应机理

Long等 [11] 利用各种过渡金属对NO还原反应进行了机理研究,揭示了NO还原反应电位依赖于选择性产物形成。具体而言,与标准氢电极相比,NH3在0~0.3 V的低电位范围内生成;N2在0.2~0.4 V的中电位范围内生成;N2O在0.4~0.7 V的高电位范围内生成 [12] 。在不同电位范围内发生的还原反应如式所示(1)~(3)。Wang等人 [13] 展示了NO在催化剂上吸附方式的重要性,这是对产物选择性的另一个重要描述。当NO吸附的氧端发生促进N−N键的偶联时,N2O形成成功。相反,氮端NO吸附导致NH3的形成。

NO + 5H + + 5e NH 3 + H 2 O (1)

2NO + 4H + + 4e N 2 + 2H 2 O (2)

2NO + 2H + + 2e N 2 O + H 2 O (3)

与NRR类似,NO还原为NH3和H2O可以遵循解离或缔和途径 [8] [14] 。在前一种途径中,N=O键可以在第一步断裂。然后可以分别将所得到的*N和*O质子化(如式(4)所示)。然而,在后一种情况下,NO可以首先被氢化为HxNOHy中间体,该中间体将不断质子化还原为NH3和H2O (如式(5)~(9))。对于每种途径,加氢过程要么经历Tafel型过程,即溶剂化质子首先吸附在催化剂上形成吸附的*H,然后惊醒表面加氢,要么经历Heyrovsky型过程,其中NO分子和中间体是直接质子化。因此,NORR机制有四类,包括,包括解离−Tafel (D−T)、Heyrovsky (D−H)、关联−Tafel (A−T)和Heyrovsky (A−H机制)。此外,A−T和A−H机制中的加氢步骤被进一步分类为特定的途径,称为远端或交替,如图1所示。在远端氧或远端氮途径中,NO中的氧或氮原子被完全氢化成H2O或NH3。在氧或氮交替途径中,氧或氮原子首先交替氢化。

NO ( g ) N * + O * (4)

Tafel-type : H + + e H * (5)

N * + H * N * H (6)

Heyrovsky-type : N * + H + + e N * H (7)

N * H + H * N * H 2 (8)

N * H 2 + H * NH 3 (9)

Figure 1. Four specific pathways for A-T and A-H: Distal-O; Distal-N; Alternating-O; Alternating-N [14]

图1. A−T和A−H的四个特定途径:远端−O;远端−N;交替−O;交替−N [14]

3. 金属基催化剂

3.1. 过渡金属催化剂

目前,电化学还原NO的研究主要集中在金属基催化剂上,包括贵金属和非贵金属催化剂。研究者们关注度比较高的用作NORR电催化剂的贵金属主要包括Pt、Au、Ru、Ag等。由于催化剂表面吸附*NO和中间产物的吉布斯自由能不同,因此产物的选择性也大相径庭。例如van Veen等人 [15] 研究了NO在一系列贵金属(Pd、Rh、Ru、Ir和Au)上的电化学还原机理。所有金属在高电位下对N2O有高选择性,在低电位下对NH3有高选择性,而在中间电位下形成N2 (尽管Au主要形成N2O,很少形成NH3)。20世纪的研究主要集中在铂表面NORR活性的机理研究上 [16] 。而最近的研究重点已转向开发具有丰富活性位点的高效电催化剂,以获得高氨产率,并在较低过电位下具有高法拉第效率(FE)。Chu等人 [17] 证明了Pd是电催化NO还原成NH3(NORR)的高效催化剂,在中性介质中,−0.3 V电压下,NO转化为NH3的最高FE为89.6%,相应的NH3产率为112.5 μmol·h1·cm2。Yu等人 [18] 制备了低配位数的Ru纳米片(Ru−LCN),在−0.2 V vs RHE条件下,电催化NO还原成氨(FE为65.96%;产率为 45 .0 2 μ mol h 1 mg cat 1 ),明显优于高配位数的Ru纳米片(FE为37.25%;产率为25.57 μmol·h1·mg1)。Liu等人 [19] 制备了体心立方RuGa金属间化合物(即bcc RuGa IMCs)。在中性介质中,该电催化剂在−0.2 V极低电位下的氨产率为 32 0. 6 μ mol h 1 mg Ru 1 ,相应的FE为72.3%。理论计算表明,bcc RuGa IMCs中富电子的Ru原子有利于*HNO中间体的吸附和活化。因此,NORR中决速步的能垒可以大大降低。虽然贵金属催化剂具有较高的NORR活性,但它们价格昂贵且稀少,因此阻碍了其在大规模氨生产中的应用。这就需要探索其他催化剂来实现电化学NO还原生产氨。

过渡金属催化剂由于具有质子捐赠能力和丰富的活性位点,通常在缓解动力学问题方面表现出色,从而有效克服了NO活化和氢化过程中的能垒,Xiao等人 [20] 对泡沫铜电极上NORR的实验研究发现,在−0.9 V vs RHE条件下,NORR的电化学合成氨速率达到了创纪录的517.1 μmol·cm2·h1,FE为93.5%。Wang等人 [21] 建立了Cu@Co催化剂上Cu和Co界面之间的扩张应变,并对低浓度NO (体积比为1%)电还原为NH3进行了研究。催化剂的NH3产率为627.20 μg·h1·cm2,FE为76.54%。Wang等人 [1] 用水热法制备了一种六边形紧密堆积的Co纳米片(hcp−Co),NH3产率高达439.50 μg·h1·cm2,FE为72.58%。通过密度泛函理论计算和NO程序升温解吸实验相结合,hcp−Co具有优异的NORR活性可归因于其独特的电子结构和质子穿梭效应。Xiao等人 [22] 报告的铜锡合金(Cu6Sn5)在NO合成氨过程中具有很高的活性。氨产率达到10 mmol·cm2·h1,FE大于96%,并且在大于600 mA·cm2时保持稳定,FENH3约为90%,持续135 h。高产氨率可归因于合金内在活性的增强,在一系列Cu6Sn5衍生表面结构中,质子化的动力学能垒始终很低。表1总结了不同过渡金属电催化剂的催化活性。

Table 1. Summary of the NORR activity shown by different transition metals electrocatalysts

表1. 不同过渡金属电催化剂的NORR活性综述

3.2. 金属氧化物催化剂

NORR活性和NH3选择性在很大程度上取决于电催化剂的电子结构、形态和空位。在这方面,金属氧化物以及含空位的金属氧化物已经进行了探索,发现所有的材料都可以具有高NH3选择性和NORR活性。Sun等人 [24] 报道了NiO纳米片阵列作为一种高活性和选择性的NO还原电催化剂,其FE高达90%,NH3产率为2130 μg·h1·cm2。Sun等人 [25] 将Fe2O3纳米棒作为常温条件下NO还原生成NH3的优良电催化剂。该催化剂在中性介质中的NH3产率为78.02 μmol·cm2·h1,FE为86.73%。

此外,一些富氧空位(Ov)金属氧化物在电催化方面也具有很好的应用 [10] ,以往的研究通过理论计算和实验特征证明,Ov是金属氧化物上的一种高活性结构,它改变金属氧化物的固有结构,影响其电子和化学性质。Sun等人 [26] 报道了一种负载在Ti板上的氧缺陷TiO2纳米阵列(TiO2x/TP)作为NO还原为NH3的高效催化剂。TiO2x的纳米阵列结构最大限度地增加了活性位点,有利于随后吸附和活化NO。在NO饱和的0.2 M的磷酸盐缓冲电解质中,TiO2x/TP的LSV曲线上出现了电流密度最大的−0.3 V到−0.8 V之间的电流密度间隙,这表明TiO2x/TP具有出色的NORR活性。此外,TiO2x/TP在−0.4 V vs RHE时的NH3产率最高,达到1233.2 μg·h1·cm2,相应的FE为92.5%,优于TiO2/TP (337.5 μg·h1·cm2和48.7%)。TiO2x增强了对NO的吸附,并缩短了NO与Ti活性位点之间的距离。TiO2x在整个反应过程中只需克服0.70 eV的最大能垒,低于TiO2 (1.2 eV),表明TiO2x的催化性能得到了有效提高。此外,*H在TiO2的OVs上的吸附能(−0.44 eV)远大于*NO在TiO2x上的吸附能(−2.14 eV),说明TiO2x能够有效抑制竞争HER。Ov在抑制HER竞争的同时加速了NO的脱氧,从而提高了TiO2x/TP催化剂的NH3选择性和产率。

Sun等人 [27] 以MnO2 NA/TM为前驱体,在氩气气氛下通过退火工艺在Ti网格上合成了富含Ov的MnO2纳米线阵列(MnO2x NA/TM)。MnO2x NA/TM上的NH3产率高达27.51 × 1010 mol·s1·cm2,在−0.7 V vs RHE时的FE最高达82.8%,高于MnO2 NA/TM (9.17 × 1010 mol·s1·cm2和44.85%)和裸TM (1.80 × 1010 mol·s1·cm2和12.2%)。MnO2x NA/TM的HER活性较差,NORR主要发生在其表面,这证实了Ov在提高NORR电催化活性方面的重要作用。DFT计算表明Ov通过降低NO的结合强度来增强MnO2x (211)的NORR活性。NO与MnO2x (211)氧空位处的结合自由能为−0.5 eV,NO与MnO2x (211)的中度结合使自由能变化稳定,但与MnO2 (211)的−1.4 eV的强结合则导致第一个氢化步骤的自由能上坡。这项研究为开发电催化NO到NH3转化的锰基催化剂提供了一种新策略。通过优化各种电催化剂的合理设计,确保高电催化活性,可调的电子结构和高稳定性。表2总结了金属氧化物催化剂的催化活性。

Table 2. Summary of the NORR activity shown by different Metal oxides electrocatalysts

表2. 不同金属氧化物电催化剂的NORR活性综述

3.3. 单/双原子催化剂

2011年以来,Zhang等人成功合成了单原子催化剂(SACs) [28] 。它们引起了极大的关注,主要是因为它们能显著提高金属利用率和优异的催化性能的特点。这种独特的结构配置有利于优化反应物的吸附能,显著改变反应动力学和热力学。Chu等人 [29] 开发了锚定在MoS2 (Co1/MoS2)上的Co单原子作为高活性和高稳定性的NORR催化剂,在−0.5 V (RHE)下,NH3产率为217.6 μmol·h1·cm2,FE为87.7%,具有很高的NORR性能。DFT计算表明NORR在Co1/MoS2上的决速步为第一步加氢步骤(*NO→*HNO),其吉布斯自由能为0.48 eV。同样,MoS2 (Cu1/MoS2)上支持的单原子铜的Cu−S3分子也可作为NORR的高效催化中心 [30] 。同一研究小组采用原子掺杂和空位工程相结合的策略来提高SAC的NORR活性。他们采用步水热法制备了原子掺杂和富含S空位的MoS2 (Fe/MoS2x)纳米花,并在−0.6 V条件下实现了288.2 μmol·h1·cm2的高NH3产率(FE: 82.5%) [31] 。此外,DFT计算显示,Fe掺杂和S空位的协同效应促进了NO在Fe−Mo双位点上的吸附和活化。此外,Fe/MoS2x的Fe−Mo双位点上较高的“H”吸附能垒抑制了HER,从而导致了较高的NH3选择性。

双原子催化(DACs)涉及间隔紧密的金属原子对,形成协同伙伴关系,利用协同效应增强催化稳定性、选择性和底物特异性。双原子金属对和反应物之间的微妙相互作用可以调节反应途径,使NORR具有更高的催化活性和选择性,DACs是NORR的潜在候选者。Wang等人 [32] 报道了一种轴向氧原子(O−Fe−N6−Cu)桥接的原子铜铁双位点电催化剂锚定在氮掺杂碳(CuFe DS/NC)上用于NORR。CuFe DS/NC可显著提高NH3电催化合成性能(FE为90%;在−0.6 V下的产率为112.52 μmol·cm2·h1。Shanmugam等人 [33] 合成了具有M−Nx (M = Fe, Ni)配位的原子分散Fe,Ni双金属单原子锚定氮掺杂碳纳米管(FeNi−NCNT)。将该催化剂作为阴极电极应用于MEA全电池电解槽中,在1.6 V下NH3产率为472.5 μmol·cm2·h1,FE为88.6% ± 6.9%。

具有不同支撑材料的SACs/DACs将是有吸引力的电催化剂,因为它们通过调整掺杂原子的配位环境和电子结构而对NORR具有高选择性。因此,设计SACs/DACs可以为在这方面开发一种高选择性的NH3生产电极材料提供新的策略。表3总结了不同单/双原子催化剂的催化活性。

Table 3. Summary of the NORR activity shown by different single/dual atoms electrocatalysts

表3. 不同单/双原子电催化剂的NORR活性综述

4. 二维材料催化剂

除了金属基催化剂对NO表现出优异的电催化还原性能外,一系列二维材料对NORR也表现出优异的催化性能。例如Sun等人 [40] 使用Ti网(CoP/TM)上的CoP纳米线阵列作为电化学将NO转化为NH3的有效催化剂。该催化剂的FE为88.3%,NH3产率为47.22 μmol·h1·cm2。Chu等人 [41] 报道了VB2作为电还原NO合成氨NH3(NORR)的高效电催化剂,在−0.5 V vs RHE下,FE达到89.6%,NH3产率为198.3 μmol·h1·cm2。理论计算表明,VB2的B位点作为关键的活性中心,促进了NORR质子化能量,抑制了竞争性析氢反应,提高了NORR活性和选择性。Chu等人 [42] 利用甲烷气体作为碳源,在700℃的温度下将MoO3纳米片碳化,从而开发出碳化钼(Mo2C)纳米片。在0.4 V条件下,Mo2C纳米片的NH3的产率为122.7 μmol·h1·cm2 (FE: 86.3%),连续电解20 h仍保持相同的效率。DFT研究证实,在Mo2C表面,“NO”优先于“H”原子吸附,随后电子从“Mo”中心转移到被吸附的NO,Mo2C通过抑制HER提供高NH3选择性。表4总结了不同二维材料电催化剂的催化活性。

Table 4. Summary of the NORR activity shown by different 2D materials electrocatalysts

表4. 不同二维材料电催化剂的NORR活性综述

5. 结论

研究进展表明,电催化NORR在取代传统的Haber−Bosch工艺生产NH3方面具有巨大潜力。然而,NORR用于生产NH3的实际应用受到了一些挑战的阻碍。首先,大多数已报道的催化剂都显示出较高的阴极电位(过电位),并表现出不尽人意的NH3产率和FE值。此外,HER与NORR的竞争是目前面临的重大难题,抑制HER的发生是NORR面临的重大挑战,尤其是在某些金属表面。因此,开发具有高选择性的高效电催化剂至关重要。在这种情况下,可以考虑通过合金化、掺杂和缺陷工程来调节电催化剂的电子结构。DFT研究还能指导催化剂的设计,使其具有理想的晶面和成分,从而实现“H”对“NO”的选择性吸附以及随后的NORR中间体稳定化。

参考文献

[1] Wang, D., Chen, Z.-W., Gu, K., Chen, C., Liu, Y., Wei, X., Singh, C.V. and Wang, S. (2023) Hexagonal Cobalt Nanosheets for High-Performance Electrocatalytic NO Reduction to NH3. Journal of the American Chemical Society, 145, 6899-6904.
https://doi.org/10.1021/jacs.3c00276
[2] Chen, G.F., Ren, S., Zhang, L., Cheng, H., Luo, Y., Zhu, K., Ding, L.X. and Wang, H. (2018) Advances in Electrocatalytic N2 Reduction—Strategies to Tackle the Selectivity Chal-lenge. Small Methods, 3, 1800337-1800357.
https://doi.org/10.1002/smtd.201800337
[3] Li, L., Tang, C., Jin, H., Davey, K. and Qiao, S.-Z. (2021) Main-Group Elements Boost Electrochemical Nitrogen Fixation. Chem, 7, 3232-3255.
https://doi.org/10.1016/j.chempr.2021.10.008
[4] Ren, Y., Yu, C., Wang, L., Tan, X., Wang, Z., Wei, Q., Zhang, Y. and Qiu, J. (2022) Microscopic-Level Insights into the Mechanism of Enhanced NH3 Synthesis in Plasma-Enabled Cascade N2 Oxidation-Electroreduction System. Journal of the American Chemical Society, 144, 10193-10200.
https://doi.org/10.1021/jacs.2c00089
[5] Sun, T., Gao, F., Wang, Y., Yi, H., Yu, Q., Zhao, S. and Tang, X. (2023) Morphology and Valence State Evolution of Cu: Unraveling the Impact on Nitric Oxide Electroreduction. Journal of En-ergy Chemistry, 91, 276-286.
https://doi.org/10.1016/j.jechem.2023.11.046
[6] Zhang, L., Liang, J., Wang, Y., Mou, T., Lin, Y., Yue, L., Li, T., Liu, Q., Luo, Y., Li, N., Tang, B., Liu, Y., Gao, S., Alshehri, A.A., Guo, X., Ma, D. and Sun, X. (2021) High-Performance Electrochemical NO Reduction into NH3 by MoS2 Nanosheet. Angewandte Chemie International Edi-tion, 60, 25263-25268.
https://doi.org/10.1002/anie.202110879
[7] Theerthagiri, J., Karuppasamy, K., Mahadi, A.H., Moon, C.J., Ra-hamathulla, N., Kheawhom, S., Alameri, S., Alfantazi, A., Murthy, A.P. and Choi, M.Y. (2023) Electrochemical Reduc-tion of Gaseous Nitric Oxide into Ammonia: A Review. Environmental Chemistry Letters, 22, 189-208.
https://doi.org/10.1007/s10311-023-01655-6
[8] Mou, T., Liang, J., Ma, Z., Zhang, L., Lin, Y., Li, T., Liu, Q., Luo, Y., Liu, Y., Gao, S., Zhao, H., Asiri, A.M., Ma, D. and Sun, X. (2021) High-Efficiency Electrohydrogenation of Nitric Oxide to Ammonia on a Ni2P Nanoarray under Ambient Conditions. Journal of Materials Chemistry A, 9, 24268-24275.
https://doi.org/10.1039/D1TA07455E
[9] Wu, A., Lv, J., Xuan, X., Zhang, J., Cao, A., Wang, M., Wu, X. Y., Liu, Q., Zhong, Y., Sun, W., Ye, Q., Peng, Y., Lin, X., Qi, Z., Zhu, S., Huang, Q., Li, X., Wu, H.B. and Yan, J. (2023) Electrocatalytic Disproportionation of Nitric Oxide toward Efficient Nitrogen Fixation. Advanced Energy Materials, 13, Article ID: 2204231.
https://doi.org/10.1002/aenm.202204231
[10] Wei, X., Chen, C., Fu, X.Z. and Wang, S. (2023) Oxygen Vacan-cies-Rich Metal Oxide for Electrocatalytic Nitrogen Cycle. Advanced Energy Materials, 14, Article ID: 2303027.
https://doi.org/10.1002/aenm.202303027
[11] Long, J., Guo, C., Fu, X., Jing, H., Qin, G., Li, H. and Xiao, J. (2021) Unveiling Potential Dependence in NO Electroreduction to Ammonia. The Journal of Physical Chemistry Letters, 12, 6988-6995.
https://doi.org/10.1021/acs.jpclett.1c01691
[12] Wan, H., Bagger, A. and Rossmeisl, J. (2021) Electrochemical Ni-tric Oxide Reduction on Metal Surfaces. Angewandte Chemie International Edition, 60, 21966-21972.
https://doi.org/10.1002/anie.202108575
[13] Wang, Z., Zhao, J., Wang, J., Cabrera, C.R. and Chen, Z. (2018) A Co-N4 Moiety Embedded into Graphene as an Efficient Single-Atom-Catalyst for NO Electrochemical Reduction: A Computational Study. Journal of Materials Chemistry A, 6, 7547-7556.
https://doi.org/10.1039/C8TA00875B
[14] Fan, Y., Xue, X., Zhu, L., Qin, Y., Yuan, D., Gu, D. and Wang, B. (2023) The State-of-the-Art in the Electroreduction of NOx for the Production of Ammonia in Aqueous and Nonaqueous Media at Ambient Conditions: A Review. New Journal of Chemistry, 47, 6018-6040.
https://doi.org/10.1039/D2NJ06362J
[15] De Vooys, A.C.A., Koper, M.T.M., Van Santen, R.A. and Van Veen, J.A.R. (2001) Mechanistic Study on the Electrocatalytic Reduction of Nitric Oxide on Transition-Metal Electrodes. Jour-nal of Catalysis, 202, 387-394.
https://doi.org/10.1006/jcat.2001.3275
[16] Inta, H.R., Dhanabal, D., Markandaraj, S.S. and Shanmugam, S. (2023) Recent Advances in Electrocatalytic NOx Reduction into Ammonia. EES Catalysis, 1, 645-664.
https://doi.org/10.1039/D3EY00090G
[17] Zhang, Y., Xiang, J., Chen, K., Guo, Y., Ma, D. and Chu, K. (2023) Palladium Metallene for Nitric Oxide Electroreduction to Ammonia. Chemical Communications, 59, 8961-8964.
https://doi.org/10.1039/D3CC00131H
[18] Li, Y., Cheng, C., Han, S., Huang, Y., Du, X., Zhang, B. and Yu, Y. (2022) Electrocatalytic Reduction of Low- Concentration Nitric Oxide into Ammonia over Ru Nanosheets. ACS Energy Letters, 7, 1187-1194.
https://doi.org/10.1021/acsenergylett.2c00207
[19] Zhang, H., Li, Y., Cheng, C., Zhou, J., Yin, P., Wu, H., Liang, Z., Zhang, J., Yun, Q., Wang, A.L., Zhu, L., Zhang, B., Cao, W., Meng, X., Xia, J., Yu, Y. and Lu, Q. (2022) Isolated Electron-Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angewandte Chemie International Edition, 62, e202213351.
https://doi.org/10.1002/anie.202213351
[20] Long, J., Chen, S., Zhang, Y., Guo, C., Fu, X., Deng, D. and Xiao, J. (2020) Direct Electrochemical Ammonia Synthesis from Nitric Oxide. Angewandte Chemie International Edition, 59, 9711-9718.
https://doi.org/10.1002/anie.202002337
[21] Wu, Z., Liu, Y., Wang, D., Zhang, Y., Gu, K., He, Z., Liu, L., Liu, H., Fan, J., Chen, C. and Wang, S. (2023) Cu@Co with Dilatation Strain for High-Performance Electrocatalytic Reduction of Low-Concentration Nitric Oxide. Advanced Materials.
https://doi.org/10.1002/adma.202309470
[22] Shao, J., Jing, H., Wei, P., Fu, X., Pang, L., Song, Y., Ye, K., Li, M., Jiang, L., Ma, J., Li, R., Si, R., Peng, Z., Wang, G. and Xiao, J. (2023) Electrochemical Synthesis of Ammonia from Nitric Oxide Using a Copper-Tin Alloy Catalyst. Nature Energy, 8, 1273-1283.
https://doi.org/10.1038/s41560-023-01386-6
[23] Krzywda, P.M., Paradelo RodrÍGuez, A., Benes, N.E., Mei, B.T. and Mul, G. (2022) Effect of Electrolyte and Electrode Configuration on Cu-Catalyzed Nitric Oxide Re-duction to Ammonia. ChemElectroChem, 9, e202101273.
https://doi.org/10.1002/celc.202101273
[24] Liu, P., Liang, J., Wang, J., Zhang, L., Li, J., Yue, L., Ren, Y., Li, T., Luo, Y., Li, N., Tang, B., Liu, Q., Asiri, A.M., Kong, Q. and Sun, X. (2021) High-Performance NH3 Production via NO Electroreduction over a NiO Nanosheet Array. Chemical Communications, 57, 13562-13565.
https://doi.org/10.1039/D1CC06113E
[25] Liang, J., Chen, H., Mou, T., Zhang, L., Lin, Y., Yue, L., Luo, Y., Liu, Q., Li, N., Alshehri, A.A., Shakir, I., Agboola, P.O., Wang, Y., Tang, B., Ma, D. and Sun, X. (2022) Coupling Denitri-fication and Ammonia Synthesis via Selective Electrochemical Reduction of Nitric Oxide over Fe2O3 Nanorods. Journal of Materials Chemistry A, 10, 6454-6462.
https://doi.org/10.1039/D2TA00744D
[26] Li, Z., Zhou, Q., Liang, J., Zhang, L., Fan, X., Zhao, D., Cai, Z., Li, J., Zheng, D., He, X., Luo, Y., Wang, Y., Ying, B., Yan, H., Sun, S., Zhang, J., Alshehri, A.A., Gong, F., Zheng, Y. and Sun, X. (2023) Defective TiO2−X for High- Performance Electrocatalytic NO Reduction toward Ambient NH3 Production. Small, 19, 2300291-2300298.
https://doi.org/10.1002/smll.202300291
[27] Li, Z., Ma, Z., Liang, J., Ren, Y., Li, T., Xu, S., Liu, Q., Li, N., Tang, B., Liu, Y., Gao, S., Alshehri, A.A., Ma, D., Luo, Y., Wu, Q. and Sun, X. (2022) MnO2 Nanoarray with Oxygen Va-cancies: An Efficient Catalyst for NO Electroreduction to NH3 at Ambient Conditions. Materials Today Physics, 22, 100586-100593.
https://doi.org/10.1016/j.mtphys.2021.100586
[28] Wu, Y., Lv, J., Xie, F., An, R., Zhang, J., Huang, H., Shen, Z., Jiang, L., Xu, M., Yao, Q. and Cao, Y. (2024) Single and Double Transition Metal Atoms Doped Graphdiyne for Highly Efficient Electrocatalytic Reduction of Nitric Oxide to Ammonia. Journal of Colloid and Interface Science, 656, 155-167.
https://doi.org/10.1016/j.jcis.2023.11.053
[29] Li, X., Chen, K., Lu, X., Ma, D. and Chu, K. (2023) Atomically Dispersed Co Catalyst for Electrocatalytic NO Reduction to NH3. Chemical Engineering Journal, 454, 140333-140340.
https://doi.org/10.1016/j.cej.2022.140333
[30] Chen, K., Zhang, G., Li, X., Zhao, X. and Chu, K. (2022) Electro-chemical NO Reduction to NH3 on Cu Single Atom Catalyst. Nano Research, 16, 5857-5863.
https://doi.org/10.1007/s12274-023-5384-9
[31] Chen, K., Wang, J., Kang, J., Lu, X., Zhao, X. and Chu, K. (2023) Atomically Fe-Doped MoS2−X with Fe-Mo Dual Sites for Efficient Electrocatalytic NO Reduction to NH3. Applied Ca-talysis B: Environmental, 324, 122241-122249.
https://doi.org/10.1016/j.apcatb.2022.122241
[32] Wang, D., Zhu, X., Tu, X., Zhang, X., Chen, C., Wei, X., Li, Y. and Wang, S. (2023) Oxygen-Bridged Copper-Iron Atomic Pair as Dual-Metal Active Sites for Boosting Electrocatalytic NO Reduction. Advanced Materials, 35, 2304646-2304653.
https://doi.org/10.1002/adma.202304646
[33] Sethuram Markandaraj, S., Dhanabal, D. and Shanmugam, S. (2023) Electrochemical Synthesis of Ammonia from Nitric Oxide in a Membrane Electrode Assembly Electrolyzer over a Dual Fe-Ni Single Atom Catalyst. Journal of Materials Chemistry A, 11, 23479-23488.
https://doi.org/10.1039/D3TA04600A
[34] Chen, K., Zhang, Y., Xiang, J., Zhao, X., Li, X. and Chu, K. (2023) P-Block Antimony Single-Atom Catalysts for Nitric Oxide Electroreduction to Ammonia. ACS Energy Letters, 8, 1281-1288.
https://doi.org/10.1021/acsenergylett.2c02882
[35] Chen, K., Zhang, N., Wang, F., Kang, J. and Chu, K. (2023) Main-Group Indium Single-Atom Catalysts for Electrocatalytic NO Reduction to NH3. Journal of Materials Chemistry A, 11, 6814-6819.
https://doi.org/10.1039/D3TA00606A
[36] Chen, K., Wang, J., Zhang, H., Ma, D. and Chu, K. (2023) Self-Tandem Electrocatalytic NO Reduction to NH3 on a W Single-Atom Catalyst. Nano Letters, 23, 1735-1742.
https://doi.org/10.1021/acs.nanolett.2c04444
[37] Chen, K., Zhang, Y., Du, W., Guo, Y. and Chu, K. (2023) Atomically Isolated and Unsaturated Sb Sites Created on Sb2S3 for Highly Selective NO Electroreduction to NH3. Inor-ganic Chemistry Frontiers, 10, 2708-2715.
https://doi.org/10.1039/D3QI00268C
[38] Peng, X., Mi, Y., Bao, H., Liu, Y., Qi, D., Qiu, Y., Zhuo, L., Zhao, S., Sun, J., Tang, X., Luo, J. and Liu, X. (2020) Ambient Electrosynthesis of Ammonia with Efficient Denitration. Nano Energy, 78, 105321-105327.
https://doi.org/10.1016/j.nanoen.2020.105321
[39] Zhang, W., Qin, X., Wei, T., Liu, Q., Luo, J. and Liu, X. (2023) Single Atomic Cerium Sites Anchored on Nitrogen- Doped Hollow Carbon Spheres for Highly Selective Electroreduc-tion of Nitric Oxide to Ammonia. Journal of Colloid and Interface Science, 638, 650-657.
https://doi.org/10.1016/j.jcis.2023.02.026
[40] Liang, J., Hu, W.-F., Song, B., Mou, T., Zhang, L., Luo, Y., Liu, Q., Alshehri, A.A., Hamdy, M.S., Yang, L.-M. and Sun, X. (2022) Efficient Nitric Oxide Electroreduction toward Ambient Ammonia Synthesis Catalyzed by a CoP Nanoarray. Inorganic Chemistry Frontiers, 9, 1366-1372.
https://doi.org/10.1039/D2QI00002D
[41] Zhang, G., Zhang, N., Guo, Y., Zhao, X. and Chu, K. (2023) Vanadium Diboride (VB2) for NO Electroreduction to NH3. Inorganic Chemistry, 62, 8772-8777.
https://doi.org/10.1021/acs.inorgchem.3c00451
[42] Chen, K., Shen, P., Zhang, N., Ma, D. and Chu, K. (2023) Electrocatalytic NO Reduction to NH3 on Mo2C Nanosheets. Inorganic Chemistry, 62, 653-658.
https://doi.org/10.1021/acs.inorgchem.2c03714
[43] Li, K., Shi, Z., Wang, L., Wang, W., Liu, Y., Cheng, H., Yang, Y. and Zhang, L. (2023) Efficient Electrochemical NO Reduction to NH3 over Metal-Free G-C3N4 Nanosheets and the Role of Interface Microenvironment. Journal of Hazardous Materials, 448, 130890-130900.
https://doi.org/10.1016/j.jhazmat.2023.130890
[44] Zhang, L., Zhou, Q., Liang, J., Yue, L., Li, T., Luo, Y., Liu, Q., Li, N., Tang, B., Gong, F., Guo, X. and Sun, X. (2022) Enhancing Electrocatalytic NO Reduction to NH3 by the CoS Nanosheet with Sulfur Vacancies. Inorganic Chemistry, 61, 8096-8102.
https://doi.org/10.1021/acs.inorgchem.2c01112
[45] Liang, J., Zhou, Q., Mou, T., Chen, H., Yue, L., Luo, Y., Liu, Q., Hamdy, M.S., Alshehri, A.A., Gong, F. and Sun, X. (2022) FeP Nanorod Array: A High-Efficiency Catalyst for Electroreduction of NO to NH3 under Ambient Conditions. Nano Research, 15, 4008-4013.
https://doi.org/10.1007/s12274-022-4174-0.