外泌体对肺结核免疫功能调节作用的研究进展
Research Progress on the Regulatory Effect of Exosomes on Immune Function in Pulmonary Tuberculosis
DOI: 10.12677/MD.2024.141013, PDF, HTML, XML, 下载: 36  浏览: 62 
作者: 杜 倩:青海大学研究生院,青海 西宁;久 太:青海大学附属医院呼吸与危重症医学科,青海 西宁
关键词: 外泌体肺结核Exosomes Pulmonary Tuberculosis
摘要: 外泌体是直径为40~200 nm的膜囊泡的一种亚型,由细胞分泌到周围环境中。通过运输蛋白质、脂质、mRNA、miRNA、lncRNA和DNA等来执行维持细胞稳态、清除细胞碎片以及促进细胞间和器官间通讯等重要功能。外泌体可以通过自分泌、旁分泌和内分泌的方式传递其分子信息。近年来,人们越来越有兴趣研究外泌体作为诊断标志物和治疗靶点,因为在许多疾病条件下,这种机制被病理过程失调或劫持。有很多研究表明,miRNA在结核病的发生发展及机制有重要作用,为肺结核的早期诊断及机制研究提供了潜在的可能。此外,外泌体miRNA已被证明可以作为肺结核诊断的标记物。本文将就外泌体对肺结核发生时免疫功能的调节作用展开论述,目的是有助于了解肺结核的发生发展机制,对于早期发现肺结核以及制定科学的诊断方案有一定意义。
Abstract: Exosomes are a subtype of membrane vesicles with a diameter of 40~200 nm that are secreted by cells into the surrounding environment. By transporting proteins, lipids, mRNA, miRNA, lncRNA, and DNA, it performs important functions such as maintaining cell homeostasis, clearing cell debris, and promoting intercellular and interorgan communication. Exosomes can transmit their molecular information through autocrine, paracrine and endocrine modes. In recent years, there has been in-creasing interest in studying exosomes as diagnostic markers and therapeutic targets because in many disease conditions, this mechanism is malregulated or hijacked by pathological processes. Many studies have shown that miRNA plays an important role in the occurrence, development and mechanism of tuberculosis, providing potential possibilities for the early diagnosis and mechanism research of tuberculosis. In addition, exosomal mirnas have been shown to be useful markers for the diagnosis of tuberculosis. This paper will discuss the regulation of exosomes on the immune function during the occurrence of tuberculosis, with the purpose of helping to understand the oc-currence and development mechanism of tuberculosis, and has certain significance for the early detection of tuberculosis and the formulation of scientific diagnostic programs.
文章引用:杜倩, 久太. 外泌体对肺结核免疫功能调节作用的研究进展[J]. 医学诊断, 2024, 14(1): 91-97. https://doi.org/10.12677/MD.2024.141013

1. 引言

肺结核病(Tuberculosis, TB)是一种由结核分枝杆菌(MTB)感染引起的慢性传染病,是结核病中最常见的一种,且发病率高、传染性强,治疗周期长,不仅严重危害患者的健康,而且影响患者的生存质量。

全世界每年约有1000万人感染结核病 [1] 。根据世界卫生组织(WHO)的数据,世界上约有四分之一的人口潜伏感染了结核分枝杆菌 [2] 。据估计,2021年有1060万人罹患结核病,而2020年为1010万人,2021年有160万人死于结核病(包括18.7万艾滋病毒感染者),而2020年为150万人(包括21.4万艾滋病毒感染者)。此外,2021年结核病发病率较2020年上升3.6%,与过去二十年每年下降近2%的趋势有所逆转。

据估算,2022年全球新增结核病患者1060万例,中国新增病例数为74.8万例(占全球发病数的7.1%),在30个结核病高负担国家中排第3位;全球结核病死亡人数约130万例,中国结核病死亡数估算为3万例 [3] ;WHO有关全球死因卫生估计报告显示,2019年结核病居全球单一传染病死因之首,2022年结核病仍然是位列COVID-19之后全球第二大因单一传染病原导致的致死性传染病 [4] [5] 。据报道,全球约四分之一的人口潜伏感染了结核分枝杆菌,其中5~15%的人可能在2年内发展为ATB,而其余患有LTBI的人则持续面临重新激活的风险 [6] 。尽管二十年来为了解和治疗结核病进行了强化研究,但生物学上的不确定性仍然存在并阻碍了进展。潜伏性肺结核(TB)感染的诊断和管理是根除肺结核的挑战之一。有研究表明,结核病的诊断仍然是一个全球性问题,其误诊增加了发病率和死亡率。因此,需要结核病感染生物标志物来诊断活动性和潜伏性肺结核。外泌体被认为是基于宿主的生物标志物的新来源。在肺部疾病中,外泌体作为胞外膜囊泡,是研究病理状况的有力工具。因此,这些携带各种病原体和宿主来源抗原的纳米囊泡作为结核病诊断、治疗、分类等的替代生物标志物提供了一个有希望的平台 [7] 。

2. 外泌体的作用机制

在外泌体的生物发生过程中,细胞起源的一些成分被隔离在纳米囊泡中,包括四跨蛋白(如CD63、CD81、CD82和CD53)、膜蛋白(如Rab GTPase和膜联蛋白)、MVB生物发生相关蛋白(如Alix和TSG101)、细胞起源的特定蛋白质标记物、脂质(如胆固醇、鞘脂和己糖神经酰胺)、不同的RNA种类(如信使RNA [mRNA]和非编码RNA)和DNA [8] [9] [10] [11] 。外泌体的蛋白质组学分析显示,大多数外泌体蛋白属于质膜、细胞质溶胶和内泌体 [12] 。外泌体存在于大多数生物体液中,包括血清、尿液、母乳、唾液、支气管肺泡灌洗液和滑液 [13] [14] 。研究表明,在感染性疾病期间,外泌体可以携带病原体来源的成分 [15] [16] [17] [18] 。它们可以作为免疫反应的调节剂,考虑到它们的微生物成分负荷和微生物病原体对免疫系统的必要暴露,以触发宿主免疫反应和感染控制。此外,微生物病原体暴露于免疫系统可能有助于病原体通过颠覆免疫反应传播;因此,外泌体也可以促进感染传 [19] [20] [21] [22] 。

另一方面,外泌体在免疫应答中的调节作用是动态的和多因素的。研究表明,来自结核分枝杆菌感染巨噬细胞的外泌体通过阻断干扰素γ (IFN-γ)调节的途径,诱导免疫反应的抑制作用 [22] 。相反,其他研究表明,来自感染巨噬细胞的分枝杆菌外泌体可增加IFN-γ和肿瘤坏死因子-α (TNF-α)的释放 [23] 。这些相互矛盾的影响可能取决于分枝杆菌抗原在任何时间点作为外泌体货物的存在。大多数关于外泌体背景下细菌感染的研究都集中在分枝杆菌上 [19] [23] [24] [25] 。2000年,Russell等人发现在巨噬细胞感染过程中,分枝杆菌成分(如脂阿拉伯糖甘露聚糖(LAM))向MVB转运。此外,他们还报道,这些纳米囊泡的含量可以在邻近未感染的巨噬细胞中发现 [26] 。在另一篇报道中,LAM和19kda蛋白作为两种分枝杆菌抗原,在感染牛分枝杆菌(M. bovis Bacillus calmette-gusamrin, BCG)的小鼠BAL液分离的外泌体中被鉴定出来 [24] 。考虑到内吞转运途径在分枝杆菌发病机制中的重要性,外泌体在结核病中的作用仍在研究中 [22] 。

3. 外泌体在肺结核疾病中的作用

外泌体生物标志物被用作潜在的诊断生物标志物,特别是在感染性疾病中。对活动性结核病患者血清的分析发现,与对照血清相比,外泌体浓度较高(高出30倍以上) [27] 。这一特征可能与结核感染的进展有关,并可作为诊断工具。LYU等 [28] 通过对60例健康对照组、60例潜伏期结核分枝杆菌感染患者(LTBI)和60例活动性肺结核患者(ATB)血清外泌体miRNAs的表达谱分析发现,LTBI血清外泌体miR-let-7e-5p、miR-let-7d-5p、miR-450a-5p和miR-140-5p表达水平明显升高,而ATB血清外泌体miR-1246、miR-2110、miR-370-3P和miR-28-3p、miR-193b-5p表达水平显著升高。另有研究发现,血浆外泌体miR-NAs与电子健康记录(EHR)相结合对结核病的诊断具有显著的临床意义,与对照组相比,结核病患者血浆中外泌体miR-20a、miR-20b、miR-26a、miR-106a、miR-191和miR-486具有差异性表达,血浆外泌体miRNAs的表达水平和HER结合具有潜在的临床诊断价值,且对肺结核诊断的灵敏度、特异度分别为100%、84% [29] 。

外泌体蛋白含量在分枝杆菌感染过程中发生变化 [4] 。在这方面,Kruh-Garcia等人 [30] 研究了活动性(肺或肺外结核)或潜伏性结核患者血清中潜在的外泌体分枝杆菌肽标记物。他们鉴定出活动性结核病患者外泌体所独有的分枝杆菌生物标志物,并发现它们在结核病诊断中很有用。这些潜在的诊断性生物标志物可用于改善对个体的监测和控制结核病流行地区的传播。

来自结核分枝杆菌感染小鼠的BAL来源外泌体的蛋白质组学分析显示,在感染期间(感染后14~112天) [27] 。因此,确定可以检测到外泌体生物标志物的阶段对于检测感染阶段非常重要。此外,监测宿主蛋白可以有效地利用活性疾病生物标志物和提高诊断。基于外泌体的诊断可能对合并感染人类免疫缺陷病毒(HIV)的患者有效,因为许多现有的诊断方法对免疫功能低下患者无效 [31] [32] 。总的来说,基于外泌体的生物标志物可以作为结核病诊断的替代生物标志物。有研究表明,在外泌体内容物中发现了不同的RNA分子,包括mRNA、核糖体RNA (rRNA)、miRNA和长链非编码RNA [33] 。外泌体RNA (尤其是miRNA),由于外泌体介导的抗RNA酶降解保护所带来的稳定性,成为开发诊断性生物标志物的理想平台 [34] [35] 。Singh等人研究了外泌体中细菌来源的RNA。来自外泌体的结核分枝杆菌感染巨噬细胞的RNA谱显示,在结核分枝杆菌感染期间,宿主miRNA、mRNA和分枝杆菌RNA的特异性mRNA特征和外泌体的选择性包装。巨噬细胞是先天免疫系统中的一种关键细胞类型,具有复杂的生理功能和在整个身体的广泛分布。它们不仅是对宿主先天免疫反应的第一道防线,而且通过参与废物清除和组织修复,在维持生物体的平衡方面发挥了重要作用 [36] 。巨噬细胞具有强大吞噬能力,是重要的免疫效应细胞,其可发挥免疫自稳作用,是机体抵御MTB入侵的第一道防线。巨噬细胞既可以吞噬和杀伤MTB,也可以作为抗原提呈细胞启动获得性免疫应答。根据结果,外泌体RNA可能在分枝杆菌感染中具有潜在的诊断应用 [25] 。

4. 外泌体miRNA有望为肺结核的早期诊断提供新思路

miRNA是一种18~25个核苷酸长的单链RNA分子,其功能是在基因表达的转录后阶段限制其靶基因的功能。miRNA是一种不编码蛋白质的RNA。相反,它的最终转录物与靶基因的信使核糖核酸(信使核糖核酸)相互作用。miRNA与包括转录因子在内的其他调节成分协同作用,调节mRNA翻译。大多数miRNA位于基因组中被认为是非编码的区域。整个基因组中大约2%~5%的人类基因被认为编码miRNA。在许多情况下,多顺反子转录物编码miRNA。据估计,miRNA调节超过三分之一的人类基因,因为一个miRNA可能有几个靶Mrna [37] [38] 。一些研究表明外泌体miRNA可能在疾病过程中被检测到 [39] [40] 。Wang等人报道了三种外泌体miRNA的差异表达,包括miR-148a-3p、miR-451a和miR-150-5p,在良性病变胸腔积液和TB胸腔积液中 [41] 。这些miRNA是有希望的疾病生物标志物。来自健康个体和活动性和潜伏性结核病患者血清标本的外泌体mRNA谱显示,除了在潜伏性结核病感染中特异性富集一些RNA外,在不同生理条件下外泌体对RNA进行选择性包装 [42] 。

Lv等人 [42] 研究了不同基因的表达,这些基因可以作为一组外泌体RNA生物标志物,用于诊断潜伏性和活动性结核感染。此外,Lyu等 [43] 分析了活动性和潜伏性TB患者血清中的外泌体miRNA谱,发现miRNA在所有靶组织中的表达均有显著差异。一组miRNA参与了结核病的进展,被认为是结核病诊断的生物标志物。其他研究也评估了外泌体miRNA作为结核病感染潜在诊断生物标志物的作用 [44] 。有证据表明,在卡介苗感染的人巨噬细胞中,一组外泌体miRNA (即miRs-1224、-1293、-425、-4467、-4732、-484、-5094、-6848、-6849、-96和-4488)的表达水平不同。这些外泌体miRNA可能在结核分枝杆菌的发病机制中发挥作用,并在结核病诊断标志物的开发中具有潜在的应用价值。

5. 总结

近年来,对于外泌体的研究日益增多,这些研究不仅为各类疾病的诊断提供了新方法,也为疾病的发生发展甚至治疗提供了新思路。这些研究结果揭示了外泌体在不同疾病中的新的诊断和治疗应用。然而,在这些研究中,关于结核病的外泌体来源的生物分子较少,所以针对结核病的外泌体来源的生物分子的研究仍比较欠缺,而结核病本身的复杂性及诊断的局限性一直是困扰临床的问题。在结核病诊断中,没有敏感或特异性的临床检测方法来检测结核病感染的不同表现。因此,将基于外泌体的生物标志物应用于诊断和治疗目的是有希望的。未来的研究,解决基于外泌体的生物标志物在结核病诊断中的优势,是必要的。

参考文献

[1] Suárez, I., Fünger, S.M., Kröger, S., Rademacher, J., Fätkenheuer, G. and Rybniker, J. (2019) The Diagnosis and Treatment of Tuberculosis. Deutsches Ärzteblatt International, 116, 729-735.
https://doi.org/10.3238/arztebl.2019.0729
[2] Bagcchi, S. (2023) WHO’S Global Tuberculosis Report 2022. The Lancet Microbe, 4, E20.
https://doi.org/10.1016/S2666-5247(22)00359-7
[3] 卢春容, 谭卫国, 陆普选, 等. 2023年WHO全球结核病报告: 全球与中国关键数据分析[J]. 新发传染病电子杂志, 2023, 8(6): 73-78.
https://doi.org/10.19871/J.Cnki.Xfcrbzz.2023.06.014
[4] GBD 2019 Diseases and Injuries Collaborators (2020) Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 396, 1204-1222.
https://doi.org/10.1016/S0140-6736(20)30925-9
[5] World Health Organization (2020) Cause-Specific Mortality, 2000-2019.
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
[6] Houben, R.M. and Dodd, P.J. (2016) The Global Burden of Latenttuberculosis Infection: A Re-Estimation Using Mathematical Model-ling. PLOS Medicine, 13, e1002152.
https://doi.org/10.1371/journal.pmed.1002152
[7] Diaz, G., Wolfe, L.M., Kruh-Garcia, A. and Dobos, K.M. (2016) Chang in the Membrane-Associated Proteins of Exosomes Released from Human Macrophages after Mycobacterium Tuberculosis Infection. Scientific Reports, 6, Article No. 37975.
https://doi.org/10.1038/srep37975
[8] Brouwers, J.F., Aalberts, M., Jansen, J.W.A., Van Niel, G., Wauben, M.H., Stout, T.A.E., Stoorvogel, W., et al. (2013) Distinct Lipid Compositions of Two Types of Human Prostasomes. Proteomics, 13, 1660-1666.
https://doi.org/10.1002/pmic.201200348
[9] Conde-Vancells, J., Rodriguez-Suarez, E., Embade, N., Gil, D., Matthiesen, R., Valle, M., Falcon-Perez, J.M., et al. (2008) Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes. Journal of Proteome Research, 7, 5157-5166.
https://doi.org/10.1021/pr8004887
[10] Subra, C., Laulagnier, K., Perret, B. and Record, M. (2007) Exosome Lipidomics Unravels Lipid Sorting at the Level of Multivesicular Bodies. Biochimie, 89, 205-212.
https://doi.org/10.1016/j.biochi.2006.10.014
[11] Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J. and Lötvall, J.O. (2007) Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mecha-nism of Genetic Exchange between Cells. Nature Cell Biology, 9, 654-659.
https://doi.org/10.1038/ncb1596
[12] Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J.P., Primdal-Bengtson, B., Théry, C., et al. (2016) Proteomic Comparison Defines Novel Markers to Characterize Heterogeneous Populations of Extracel-lular Vesicle Subtypes. Proceedings of the National Academy of Sciences of the United States of America, 113, E968-E977.
https://doi.org/10.1073/pnas.1521230113
[13] Théry, C., Amigorena, S., Raposo, G. and Clayton, A. (2006) Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology, 30, 3.22.1-3.22.29.
https://doi.org/10.1002/0471143030.cb0322s30
[14] Yáñez-Mó, M., Siljander, P.R.M., Andreu, Z., Bedina Zavec, A., Borràs, F.E., Buzas, E.I., De Wever, O., et al. (2015) Biological Properties of Extracellular Vesicles and Their Physiological Functions. Journal of Extracellular Vesicles, 4, Article ID: 27066.
https://doi.org/10.3402/jev.v4.27066
[15] Beatty, W.L., Ullrich, H.J. and Russell, D.G. (2001) Mycobacterialsurface Moieties Are Released from Infected Macrophages by Aconstitu-tive Exocytic Event. European Journal of Cell Biology, 80, 31-40.
https://doi.org/10.1078/0171-9335-00131
[16] Hassani, K., Shio, M.T., Martel, C., Faubert, D. and Olivier, M. (2014).Absence of Metalloprotease GP63 Alters the Protein Content of Leishmania Exosomes. PLOS ONE, 9, e95007.
https://doi.org/10.1371/journal.pone.0095007
[17] Narayanan, A., Iordanskiy, S., Das, R., Van Duyne, R., Santos, S., Jaworski, E., Kashanchi, F., et al. (2013) Exosomes Derived from HIV-1-Infectedcells Contain Trans-Activation Response El-ement RNA. Journal of Biological Chemistry, 288, 20014-20033.
https://doi.org/10.1074/jbc.M112.438895
[18] Yang, C., Chalasani, G., Ng, Y.H. and Robbins, P.D. (2012) Exosomesreleased from Mycoplasma Infected Tumor Cells Activate Inhibi-tory Bcells. PLOS ONE, 7, e36138.
https://doi.org/10.1371/journal.pone.0036138
[19] Anand, P.K., Anand, E., Bleck, C.K.E., Anes, E. and Griffiths, G. (2010) Exosomal Hsp70 Induces a Pro-Inflammatory Response to Foreignparticles Including Mycobacteria. PLOS ONE, 5, e10136.
https://doi.org/10.1371/journal.pone.0010136
[20] Bhatnagar, S., Shinagawa, K., Castellino, F.J. and Schorey, J.S. (2007) Exosomes Released from Macrophages Infected with Intracellularpathogens Stimulate a Proinflammatory Response in Vitro and in Vivo. Blood, 110, 3234-3244.
https://doi.org/10.1182/blood-2007-03-079152
[21] Schorey, J.S., Cheng, Y., Singh, P.P. and Smith, V.L. (2015). Exo-somes Andother Extracellular Vesicles in Host- Pathogen Interactions. EMBO Reports, 16, 24-43.
https://doi.org/10.15252/embr.201439363
[22] Singh, P.P., LeMaire, C., Tan, J.C., Zeng, E. and Schorey, J.S. (2011) Exosomes Released from M. tuberculosis Infected Cells Can Suppress IFN-γ Mediated Activation of Naïve Macrophages. PLOS ONE, 6, e18564.
https://doi.org/10.1371/journal.pone.0018564
[23] Wang, J., Chen, C., Xie, P., Pan, Y., Tan, Y. and Tang, L. (2014) Pro-teomicanalysis and Immune Properties of Exosomes Released by Macrophages Infected with Mycobacterium avium. Microbes and Infection, 16, 283-291.
https://doi.org/10.1016/j.micinf.2013.12.001
[24] Bhatnagar, S. and Schorey, J.S. (2007) Exosomes Released from In-fected macrophages Contain Mycobacterium avium Glycopeptidolipids and Areproinflammatory. Journal of Biological Chemis-try, 282, 25779-25789.
https://doi.org/10.1074/jbc.M702277200
[25] Singh, P.P., Li, L. and Schorey, J.S. (2015) Exosomal RNA from Myco-bacterium tuberculosis-Infected Cells Is Functional in Recipient Macrophages. Traffic, 16, 555-571.
https://doi.org/10.1111/tra.12278
[26] Beatty, W.L. and Russell, D.G. (2000) Identification of Mycobacterial Surface Pro-teins Released into Subcellular Compartments of Infected Macrophages. Infection and Immunity, 68, 6997-7002.
https://doi.org/10.1128/IAI.68.12.6997-7002.2000
[27] Kruh-Garcia, N.A., Schorey, J.S. and Dobos, K.M. (2012). Exo-somes: Newtuberculosis Biomarkers-Prospects from the Bench to the Clinic. In: Cardona, P.J., Ed., Understanding Tuberculo-sis-Global Experiences and Innovative Approaches to the Diagnosis, InTech Open.
https://doi.org/10.5772/30720
[28] Lyu, L., Zhang, X., Li, C., et al. (2019) Small RNA Profiles of Serum Exosomes De-rived from Individuals with Latent and Active Tuberculosis. Frontiers in Microbiology, 10, Article 1174.
https://doi.org/10.3389/fmicb.2019.01174
[29] Hu, X., Liao, S., Bai, H., et al. (2019) Integrating Exosomal MicroRNAs and Electronic Health Data Improved Tuberculosis Diagnosis. eBioMedicine, 40, 564-573.
https://doi.org/10.1016/j.ebiom.2019.01.023
[30] Kruh-Garcia, N.A., Wolfe, L.M., Chaisson, L.H., Worodria, W.O., Na-hid, P., Schorey, J.S., Dobos, K.M., et al. (2014) Detection of Mycobacterium tuberculosis Peptides in the Exosomes of Pa-tients with Active Andlatent M. Tuberculosis Infection Using MRM-MS. PLOS ONE, 9, e103811.
https://doi.org/10.1371/journal.pone.0103811
[31] Sadri Nahand, J., Bokharaei-Salim, F., Karimzadeh, M., Moghoofei, M., Karampoor, S., Mirzaei, H.R., Tabibzadeh, A., Jafari, A., Ghaderi, A., Asemi, Z., Mirzaei, H. and Hamblin, M.R. (2020) MicroRNAs and Exosomes: Key Players in HIV Pathogenesis. HIV Medicine, 21, 246-278.
https://doi.org/10.1111/hiv.12822
[32] Li, S., Lv, D., Yang, H., Lu, Y. and Jia, Y. (2023) A Review on the Current Liter-ature Regarding the Value of Exosome MiRNAs in Various Diseases. Annals of Medicine, 55, Article ID: 2232993.
https://doi.org/10.1080/07853890.2023.2232993
[33] Gusachenko, O.N., Zenkova, M.A. and Vlassov, V.V. (2013) Nu-cleic Acidsin Exosomes: Disease Markers and Intercellular Communication Molecules. Biochemistry, 78, 1-7.
https://doi.org/10.1134/S000629791301001X
[34] Hunter, M.P., Ismail, N., Zhang, X., Aguda, B.D., Lee, E.J., Yu, L., Marsh, C.B., et al. (2008). Detection of MicroRNA Expression in Human Peripheralblood Microvesicles. PLOS ONE, 3, e3694.
https://doi.org/10.1371/journal.pone.0003694
[35] Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Tewari, M., et al. (2008) Circulating MicroRNAs as Stable Blood-Based Markers for Cancer De-tection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513-10518.
https://doi.org/10.1073/pnas.0804549105
[36] Hirayama, D., Iida, T. and Nakase, H. (2017) The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. International Journal of Molecular Sciences, 19, Article 92.
https://doi.org/10.3390/ijms19010092
[37] Wuchty, S., Arjona, D., Bozdag, S. and Bauer, P.O. (2012) Involvement of MicroRNA Families in Cancer. Nucleic Acids Research, 40, 8219-8226.
https://doi.org/10.1093/nar/gks627
[38] Xu, J., Li, C.X., et al. (2011) MiRNA-MiRNA Synergistic Network:Construction via Co-Regulating Functional Modules and Disease MiRNA Topological Features. Nucleic Acids Research, 39, 825-836.
https://doi.org/10.1093/nar/gkq832
[39] Rabinowits, G., Gerçel-Taylor, C., Day, J.M., Taylor, D.D. and Kloecker, G.H. (2009) Exosomal MicroRNA: A Diagnostic Marker for Lung Cancer. Clinical Lung Cancer, 10, 42-46.
https://doi.org/10.3816/CLC.2009.n.006
[40] Skog, J., Würdinger, T., Van Rijn, S., Meijer, D.H., Gainche, L., Curry, W.T., Breakefield, X.O., et al. (2008) Glioblastoma Microvesicles Transport RNA and Proteins That Promote Tumour Growth and Provide Diagnostic Biomarkers. Nature Cell Biology, 10, 1470-1476.
https://doi.org/10.1038/ncb1800
[41] Wang, Y., Xu, Y.M., Zou, Y.Q., Lin, J., Huang, B., Liu, J., Wang, X.Z., et al. (2017) Identification of Differential Expressed PE Exoso-mal MiRNA in Lung Adenocarcinoma, Tuberculosis, and Other Benign Lesions. Medicine, 96, e8361.
https://doi.org/10.1097/MD.0000000000008361
[42] Lv, L., Li, C., Zhang, X., Ding, N., Cao, T., Jia, X., Zhang, Z., et al. (2017). RNA Profiling Analysis of the Serum Exosomes Derived from Patients with Active and Latent Mycobacterium Tuber-culosis Infection. Frontiers in Microbiology, 8, Article 1051.
https://doi.org/10.3389/fmicb.2017.01051
[43] Lyu, L., Wang, J., Jia, H.Y., Pan, L., Li, Z.H, Du, F.J, Sun, Q., et al. (2018). MiRNA Expression Profiles of Serum Exosomes Derived from Individuals with Latent and Active Tuberculosis. BioRxiv.
https://doi.org/10.1101/316794
[44] Alipoor, S.D., Mor-taz, E., Tabarsi, P., Farnia, P., Mirsaeidi, M., Garssen, J., Adcock, I.M., et al. (2017) Bovis Bacillus Calmette-Guerin (BCG) Infection Induces Exosomal MiRNA Release by Human Macrophages. Journal of Translational Medicine, 15, Article No. 105.
https://doi.org/10.1186/s12967-017-1205-9