老年脑小血管病患者合并认知衰弱的研究进展
Research Progress of Cognitive Frailty in El-derly Patients with Small Cerebral Vascular Disease
DOI: 10.12677/ACM.2024.143768, PDF, HTML, XML, 下载: 21  浏览: 42 
作者: 张梓莘, 刘宴廷:西安医学院研工部,陕西 西安;杨俊生*:陕西省人民医院康复医学科,陕西 西安
关键词: 脑小血管病认知衰弱干预措施预后研究进展 Cerebral Small Vessel Disease Cognitive Frailty Interventions Prognosis Research Progress
摘要: 脑小血管病(Cerebral Small Vessel Disease, CSVD)是指由颅内小动脉、小静脉、毛细血管病变及脑实质结构改变引起的不同临床表现和神经影像学特征的一组综合征。认知衰弱是指存在身体虚弱和认知障碍,且排除了神经退行性疾病引起的痴呆和认知障碍。随着对脑小血管病研究的深入以及认知衰弱概念的提出,人们发现在脑小血管病中认知衰弱的患病率高且预后效果不佳。因此,在对脑小血管病合并认知衰弱早期识别,尽早给与危险因素干预改善预后显得至关重要。本文旨在帮助临床医师具体认识脑小血管病合并认知衰弱这一病症,并为进一步研究提供参考,对脑小血管病合并认知衰弱相关进行综述。
Abstract: Cerebral small vessel disease (CSVD) is a group of syndromes with different clinical manifestations and neuroimaging features caused by intracranial small arterial, venous, and capillary vasculopa-thy and structural changes in the brain parenchyma. Cognitive decline is defined as the presence of physical weakness and cognitive impairment and excludes dementia and cognitive impairment caused by neurodegenerative diseases. With the deepening of research on cerebral small- vessel disease and the introduction of the concept of cognitive decline, it has been found that the preva-lence of cognitive decline in cerebral small-vessel disease is high and the prognosis is poor. There-fore, it is crucial to recognize cognitive decline in small vessel cerebrovascular disease at an early stage and provide risk factor interventions as early as possible to improve the prognosis. The aim of this article is to help clinicians to specifically recognize the condition of cerebral small vessel dis-ease combined with cognitive weakness, and to provide a reference for further research, and to provide a review of the association of cerebral small vessel disease combined with cognitive weak-ness.
文章引用:张梓莘, 刘宴廷, 杨俊生. 老年脑小血管病患者合并认知衰弱的研究进展[J]. 临床医学进展, 2024, 14(3): 764-771. https://doi.org/10.12677/ACM.2024.143768

1. 引言

脑小血管病(Cerebral Small Vessel Disease, CSVD)是指由颅内小动脉、小静脉、毛细血管病变及脑实质结构改变引起的不同临床表现和神经影像学特征的一组综合征 [1] [2] ,影像学特征可表现:为近期皮质下小梗死(Recent Small Subcortical Infarct, RSSI)、血管源性腔隙、血管源性脑白质高信号(White Matter Hyperintensity, WMH)、血管周围间隙(Perivascular Spaces, PVS)、脑微出血(Cerebral Microbleed, CMB)和脑萎缩等,其临床可表现为以急性起病的缺血性卒中综合征,包括运动障碍、感觉麻痹、共济失调性偏瘫及构音障碍,也可慢性隐匿性起病,表现为进行性认知障碍、主要姿势与步态障碍、跌倒、情绪障碍 [3] 。如今,痴呆症已成为我国老龄人口的重要健康问题,在中国60岁或以上人群中,痴呆的患病率可达6.0%,其中阿尔茨海默病(Alzheimer’s Disease, AD)为3.9%,血管性痴呆为1.6%,轻度认知障碍(Mild Cognitive Impairment, MCI)被认为是痴呆症和正常认知老化的中间状态,患病率为15.5% [4] [5] ,而脑小血管病是造成血管性痴呆的主要因素。近年来,研究者们逐渐开始重视衰弱与认知障碍之间的关系,认为两者之间存在关联,双向增加患病风险,形成恶性循环,被广泛认为会增加不良后果的风险 [6] [7] [8] [9] [10] 。同时一个新的概念——“认知衰弱”(Cognitive Frailty, CF)被提出,将同时存在的认知障碍和衰弱定义为认知衰弱 [11] 。脑小血管病与认知衰弱关系密切,在临床工作中愈发显现出其重要性,本文对认知衰弱的概念、评估、流行病学及脑小血管病患者中可能的发病机制等进行综述。

2. 概念及评估

国际营养与衰老学会和国际老年病学协会于2013年首次提出了认知衰弱的概念及判断标准。认知衰弱被定义为同时存在身体虚弱和认知障碍,且排除了由神经退行性疾病引起的明确痴呆和认知障碍。为了充分发挥其临床应用,有研究 [12] 完善了认知衰弱的概念,将其分为两个亚型:可逆性认知衰弱和潜在可逆性认知衰弱。可逆性认知衰弱又被定义为存在身体衰弱/衰弱前期,且认知方面存在主观认知障碍(Subjective Cognitive Decline, SCD),没有急性损伤、神经退行性病变和其他精神疾病。而潜在可逆性认知衰弱则被定义为存在身体衰弱/衰弱前期,且认知方面存在轻度认知障碍,其中可以伴有认知损害的客观证据但须排除各种痴呆。

在研究和临床实践中目前还没有统一的评估工具,因此在临床工作中通常分别从身体和认知两个方面进行评估。

在身体方面的评估中,我们回顾之前的大多数研究,在临床上应用最广泛的是由Fried提出的身体衰弱表型,包括以下五个标准:1) 不明原因体重下降;2) 握力减弱;3) 行走缓慢;4) 体力活动不足;5) 疲乏感。以上标准符合任意1~2个即可判定为衰弱前期,而符合3个以上则可判定衰弱 [13] 。此外还有FRAIL量表、Tilburg衰弱指标、临床虚弱量表、Gerontople虚弱筛查工具等评估工具。工具和选择的多样化使不同临床医师间难以保证同质化,对临床诊疗工作带来不便,我们期待权威的工具选择标准的出现。

而认知方面的评估有着几种不同的选择,应用最广泛的是简易智力状态检查(Mini-Mental State Examination, MMSE)、蒙特利尔认知评估量表(Montreal Cognitive Assessment, MoCA)、画钟试验等。

MMSE是临床上目前应用最广泛的认知功能评估量表之一,检测覆盖的认知域包括定向、注意、记忆、计算、语言运用和视空间结构功能。MMSE量表总分30分,评估完成用时约7分钟。评分受年龄、教育程度、语言、运动、视觉障碍等因素的影响,所以划分界在不同年龄、不同教育程度的受试者中应有所不同。MoCA量表则涵盖了更广泛的认知域,增加了语言、注意、抽象思维和执行功能方面的评估。MoCA量表总分30分,评估完成约需10分钟。与MMSE量表相比,MoCA量表更敏感,可以很好地检测认知异质性 [14] 。画钟试验内容简单,涉及包括理解、计划性、视觉记忆、图形重建、视觉空间能力、抽象思维能力、数字记忆排列能力、运动操作能力、注意力、抗干扰能力以及对挫折的耐受能力等多个认知域。画钟试验适用于对早期认知障碍患者的筛查 [15] ,因其对轻微的认知障碍不敏感,且不适用于低教育水平、失语或命名障碍患者的评估,在临床实践中相对较少选择。

脑小血管合并认知衰弱患者的复杂社会功能也存在一定程度的损害日常生活能力(Activities of Daily Living, ADL)减退更是其核心症状之一。对于ADL的评估中,最常用的是于1969年制定的日常生活能力量表,由基本日常生活能力(Basic Activities of Daily Living, BADL)量表和工具性日常生活能力(Instrumental Activity of Daily Living, IADL)量表组成 [16] 。

3. 流行病学

认知衰弱的流行病学自首次提出认知衰弱这个概念以来,认知衰弱在短时间内得到了广泛的研究,但因其定义及评估工具还未达成共识,研究人群的不同,各研究报道认知衰弱的患病率可能存在一些差异。我国在一项对9283例年龄 ≥ 65岁的住院患者调查中,认知衰弱的患病率为5.44%;另一项涉及9192例住院患者的调查结果与之相似,其中认知衰弱、衰弱、认知障碍的患病率分别为5.42%、11.45%、15.08% [17] [18] 。相比较住院患者而言,社区人群的患病率相对较低,在一项对我国7个城市3203例60岁以上社区居民的调查中发现认知衰弱的患病率为2.0% [19] ,但在对泰国社区居住老年人的一项调查中发现其认知衰弱患病率为28.72% [20] ,我们猜想这是否有经济相关因素的影响或较大偏倚的存在,需要进一步研究论证。

脑小血管病患者认知衰弱的流行病学以往的大多研究大多是探讨衰弱或认知障碍与脑小血管病的关系,关于认知衰弱的流行病学证据较少,相比较其他人群,认知衰弱在脑小血管病患者中的患病率显著增高 [21] [22] [23] 。在281例脑小血管病患者中,衰弱或衰弱前期的患病率为51%,认知衰弱的患病率为9.2% [24] 。对130例白质高信号患者与认知衰弱的研究中,认知衰弱的患病率为23.08%,此外在日本一项对333例白质高信号患者的横断面观察中发现,认知衰弱的患病率高达59.2%,认知衰弱组的CSVD负荷显著高于非认知衰弱组,这揭示了白质高信号可能是认知衰弱的潜在机制之一 [25] 。

4. 机制

炎症相关近年来,有研究已经表明一些炎症标志物与脑小血管病密切相关,包括C反应蛋白、血浆淀粉样蛋白、TNF-a等 [24] [26] [27] 。而慢性炎症作为衰老的一个过程,不仅是识别衰弱的一个重要信号,同时也被认为是促进衰弱发展的一个重要因素 [28] ,有研究发现衰弱与肌少症有一组共有的炎症标志物 [29] ,可能通过直接分解代谢作用或通过间接机制对骨骼肌代谢产生负面影响,例如生长激素的减少,从而导致衰弱的发生 [30] 。白介素、C反应蛋白作为炎症反应的一部分也被认为是小血管疾病和虚弱的危险因素,同时淋巴细胞与血管炎症亦被证实相关性 [31] [32] [33] 。

氧化相关脑小血管病会造成患者损伤部位缺氧,从而生成大量的自由基,自由基破坏脂质、DNA、蛋白质和碳水化合物进一步造成细胞死亡,而自由基和神经递质之间的反应可形成内源性神经毒素,引起血脑屏障通透性和神经组织损伤,包括神经退行性变和凋亡,以及神经可塑性下降,继而可能致使认知功能的减退 [34] [35] 。

心脑血管病变及白质高信号认知障碍与衰弱都与常见的血管危险因素有关。长期的高血压、糖尿病、高脂血症等危险因素都会导致动脉粥样硬化病变及血栓形成,进而导致相应组织供血、供氧不足。

心脏与肌肉系统的供血不足可致肌肉的无力,诱发衰弱。供应脑组织的血管出现动脉粥样硬化病变可导致脑部急性或慢性缺血缺氧,促使脑部结构损伤,特别是小血管及微小血管病变引起的脑白质病变与血管性认知障碍紧密相关,白质高信号被认为是认知障碍发生和进展的重要因素,其引起认知障碍的机制可能是因为共同的神经退行性病变和其他血管炎症及氧化因子作用 [36] [37] 。

肌肉–大脑轴衰老的肌肉可能通过循环中分泌的肌因子或微小RNA影响脑组织 [38] [39] 。而小脑和海马灰质体积减少以及海马–杏仁核–小脑连接中断与行动能力衰弱以及并发认知障碍相关 [40] 。同时,有研究表明海马灰质体积是脑小血管病认知障碍的潜在预测因子 [41] 。那么综合看来,我们有理由怀疑衰老的肌肉可能对大脑存在潜在的有害影响。因此,这一衰老过程中的肌肉–大脑轴也可能与脑小血管病认知能力下降的病理生理学有关,但很明显这需要进一步研究论证,我们将持续关注。

5. 干预措施

行动能力衰弱当前是一种易于评估的表型,是脑小血管病合并认知衰弱的早期标志。它可用于识别脑小血管病早期、亚临床阶段有患痴呆症风险的人群。此外,可以考虑针对衰弱的干预措施来预防或治疗脑小血管病合并认知衰弱。认知衰弱是多因素造成的,多模式干预措施包括体力活动、锻炼、健康饮食、戒烟、积极的社会参与、避免多重用药、口腔护理和代谢控制可能是认知衰弱的预防措施 [42] 。进一步的干预试验研究认知衰弱是否可能更加可逆且解决老年脑小血管病合并认知衰弱患者的认知、身体、营养和心理及社会领域问题的干预措施具有重要的临床意义。

在一项针对老年人生活方式干预和独立试验的研究表明,24个月的结构化、中等强度的体力活动计划可降低久坐老年人认知衰弱的严重程度 [43] 。据报道,阻力训练也对认知和身体状况的改善有积极作用 [44] 。一项随机对照试验针对43名患有认知衰弱的社区老年人进行研究,高速阻力运动训练可以在4个月的时间内提高处理速度和执行功能以及步态表现和肌肉力量 [44] 。目前有一项探索中国传统身心运动八段锦对认知衰弱老年人的认知和身体功能的影响的研究 [45] ,我们对此产生了兴趣,将持续关注这一领域的研究成果,期待能为认知衰弱患者的诊疗带来新的方案。

对脑部MRI测量的探索性分析中发现,干预对认知(处理速度)在白质高信号较少的个体中的益处更为明显,这表明如果在脑小血管病早期阶段,尽早行多域干预可能会更有效。同时,与对照组相比,结果显示干预组通过维持或改善认知表现而导致的白质高信号变化无显着差异,这再次强调了脑小血管病病变可能无法完全干扰其的认知衰退轨迹 [46] 。

对于认知功能的新靶点的研究日渐增多,我们从中可以发现大量有指导意义的研究成果。有研究发现,使用右美托咪定可以降低IL-6水平,进而改善长期认知功能障碍 [47] 。此外,在大鼠模型中,研究人员发现右美托咪定可以降低TNF-α和NF-κB的表达水平,改善大鼠术后认知功能 [48] 。另一项研究表明,MMP-3可能参与阿尔茨海默病的早期发病机制,可能导致神经元变性、神经原纤维缠结和认知功能障碍 [49] 。且MDA是老年髋部骨折手术患者术后认知功能障碍的独立危险因素 [50] 。研究表明,木犀草素可以阻止IL-6、TNF-α、IL-1β和MDA的生成,增加氧化物歧化酶和谷胱甘肽过氧化物酶的活性,抑制小胶质细胞的过度激活和星形胶质细胞的增殖,从而提高患者学习能力等认知功能 [51] 。上述证据表明,CRP、TNF-α、MMP-3、MDA有望成为改善脑小血管病患者认知功能的新靶点,具有潜在的临床应用价值。

6. 预后

目前有关脑小血管病合并认知衰弱患者预后的相关文献缺乏。衰弱被认为是一种在各种医疗条件下更容易患病、功能结果更差、住院率更高以及死亡率增加的状态。既往多项研究表明老年认知衰弱的死亡率及死亡风险明显增加。有一项对2375例年龄 ≥ 55岁的人群进行的3年的随访调查,发现衰弱前期合并认知障碍老年人的死亡风险与非衰弱且认知功能正常的老年人相比增加了1.8倍,衰弱合并认知障碍老年人的死亡风险增加了5倍 [10] 。另一项研究表明认知障碍是老年病人出院后再入院的危险因素 [52] 。我们考虑对脑小血管病合并认知衰弱进行早期危险因素的干预或许可以改善其预后。所以在临床工作中应加强对脑小血管病合并认知衰弱的早期识别,并通过积极的危险因素干预及药物治疗,阻止或延缓病情进展。

7. 小结及展望

随着认知衰弱的概念及操作定义的提出,广泛研究证实同时患有衰弱/衰弱前期和认知障碍的人与各种不良健康结局风险较高相关,包括死亡、残疾、生活质量下降、痴呆等。认知衰弱在老年脑小血管病患者中有着较高的发病率,虽然具体发病机制目前还并不十分明确,但一些研究证实可能与炎症、氧化、白质高信号等相关,然而目前关于脑小血管病与认知衰弱的研究较少,且当前认知衰弱的定义及评估工具存在争议,这减弱了人们对其不良健康结局的认识及研究,因此当务之急是建立有效统一的操纵定义及评估工具,重视脑小血管病患者中认知衰弱人群的筛查,明确其发病机制,及早采取有效的干预措施。

利益冲突

所有作者均声明无利益冲突。

NOTES

*通讯作者。

参考文献

[1] Cuadrado-Godia, E., Dwivedi, P., Sharma, S., et al. (2018) Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. Journal of Stroke, 20, 302-320.
https://doi.org/10.5853/jos.2017.02922
[2] Li, Q., Yang, Y., Reis, C., et al. (2018) Cerebral Small Vessel Disease. Cell Transplantation, 27, 1711-1722.
https://doi.org/10.1177/0963689718795148
[3] Wardlaw, J.M., Smith, E.E., Biessels, G.J., et al. (2013) Neu-roimaging Standards for Research into Small Vessel Disease and Its Contribution to Ageing and Neurodegeneration. The Lancet Neurology, 12, 822-838.
https://doi.org/10.1016/S1474-4422(13)70124-8
[4] Jia, L., Du, Y., Chu, L., et al. (2020) Prevalence, Risk Fac-tors, and Management of Dementia and Mild Cognitive Impairment in Adults Aged 60 Years or Older in China: A Cross-Sectional Study. The Lancet Public Health, 5, E661-E671.
https://doi.org/10.1016/S2468-2667(20)30185-7
[5] Petersen, R.C., Doody, R., Kurz, A., et al. (2001) Current Concepts in Mild Cognitive Impairment. Arch Neurology, 58, 1985-1992.
https://doi.org/10.1001/archneur.58.12.1985
[6] Yuan, Y., Lapane, K.L., Tjia, J., et al. (2021) Physical Frailty and Cognitive Impairment in Older Nursing Home Residents: A Latent Class Analysis. BMC Geriatrics, 21, Article No. 487.
https://doi.org/10.1186/s12877-021-02433-1
[7] Bai, G., Wang, Y., Kuja-Halkola, R., et al. (2021) Frailty and the Risk of Dementia: Is the Association Explained by Shared Environmental and Genetic Factors? BMC Medicine, 19, Arti-cle No. 248.
https://doi.org/10.1186/s12916-021-02104-3
[8] Chu, N.M., Xue, Q.L., Mcadams-Demarco, M.A., et al. (2021) Frailty—A Risk Factor of Global and Domain-Specific Cognitive Decline among a Nationally Representative Sample of Community-Dwelling Older Adult U.S. Medicare Beneficiaries. Age and Ageing, 50, 1569-1577.
https://doi.org/10.1093/ageing/afab102
[9] Gross, A.L., Xue, Q.L., Bandeen-Roche, K., et al. (2016) Declines and Impairment in Executive Function Predict Onset of Physical Frailty. The Journals of Gerontology: Series A, 71, 1624-1630.
https://doi.org/10.1093/gerona/glw067
[10] Feng, L., Zin Nyunt, M.S., Gao, Q., et al. (2017) Cogni-tive Frailty and Adverse Health Outcomes: Findings from the Singapore Longitudinal Ageing Studies (SLAS). Journal of the American Medical Directors Association, 18, 252-258.
https://doi.org/10.1016/j.jamda.2016.09.015
[11] Kelaiditi, E., Cesari, M., Canevelli, M., et al. (2013) Cognitive Frailty: Rational and Definition from an (I.A.N.A./ I.A.G.G.) International Consensus Group. The Journal of Nutrition, Health and Aging, 17, 726-734.
https://doi.org/10.1007/s12603-013-0367-2
[12] Ruan, Q., Yu, Z., Chen, M., et al. (2015) Cognitive Frailty, a Novel Target for the Prevention of Elderly Dependency. Ageing Research Reviews, 20, 1-10.
https://doi.org/10.1016/j.arr.2014.12.004
[13] Fried, L.P., Tangen, C.M., Walston, J., et al. (2001) Frailty in Older Adults: Evidence for a Phenotype. The Journals of Gerontology: Series A, 56, M146-M156.
https://doi.org/10.1093/gerona/56.3.M146
[14] 倪秀石, 吴方, 宋娟, 等. 老年人认知障碍评估中国专家共识(2022) [J]. 中华老年医学杂志, 2022, 41(12): 1430-1440.
[15] Carnero-Pardo, C., Rego-García, I., Barrios-López, J.M., et al. (2022) Assessment of the Diagnostic Accuracy and Discriminative Validity of the Clock Drawing and Mini-Cog Tests in Detecting Cognitive Impairment. Neurologia, 37, 13-20.
https://doi.org/10.1016/j.nrl.2018.12.002
[16] 杨小龙, 梁文佳, 赵鑫, 等. 老年人认知能力对抑郁情绪的影响: 日常生活能力的中介作用[J]. 国际精神病学杂志, 2023, 50(4): 744-748.
[17] Zhang, X.M., Jiao, J., Zhu, C., et al. (2021) Cognitive Frailty and 30-Day Mortality in a National Cohort of Older Chinese Inpatients. Clinical Interventions in Aging, 16, 389-401.
https://doi.org/10.2147/CIA.S294106
[18] Zhang, X.M., Yuan, L., Guo, N., et al. (2021) Cognitive Frailty and Falls in a National Cohort of Older Chinese Inpatients. The Journal of Nutrition, Health and Aging, 25, 993-998.
https://doi.org/10.1007/s12603-021-1670-y
[19] Ma, L., Zhang, L., Sun, F., et al. (2019) Cognitive Function in Prefrail and Frail Community-Dwelling Older Adults in China. BMC Geriatrics, 19, Article No. 53.
https://doi.org/10.1186/s12877-019-1056-8
[20] Seesen, M., Sirikul, W., Ruangsuriya, J., et al. (2021) Cognitive Frailty in Thai Community-Dwelling Elderly: Prevalence and Its Association with Malnutrition. Nutrients, 13, Article 4239.
https://doi.org/10.3390/nu13124239
[21] 魏微, 赵弘轶, 刘宇, 等. 老年脑小血管病患者认知衰弱的临床研究[J]. 中华老年心脑血管病杂志, 2021, 23(7): 743-746.
[22] Kant, I.M.J., Mutsaerts, H., Van Montfort, S.J.T., et al. (2019) The Association between Frailty and MRI Features of Cerebral Small Vessel Disease. Scientific Reports, 9, Article No. 11343.
https://doi.org/10.1038/s41598-019-47731-2
[23] 王艳玲, 孙洪茹, 申雪花, 等. 老年脑小血管病患者衰弱现状及其影响因素[J]. 济宁医学院学报, 2023, 46(4): 249-252.
[24] Mu, L., Jiang, L., Chen, J., et al. (2021) Serum Inflammatory Factors and Oxidative Stress Factors Are Associated with Increased Risk of Frailty and Cognitive Frailty in Patients with Cerebral Small Vessel Disease. Frontiers in Neurology, 12, Article 786277.
https://doi.org/10.3389/fneur.2021.786277
[25] Zhào, H., Wei, W., Liu, Y., et al. (2020) Cognitive Frailty among Elderly Chinese Patients with Cerebral Small Vessel Disease: A Structural MRI Study. Frontiers in Medicine, 7, Article 397.
https://doi.org/10.3389/fmed.2020.00397
[26] Hilal, S., Ikram, M.A., Verbeek, M.M., et al. (2018) C-Reactive Protein, Plasma Amyloid-β Levels, and Their Interaction with Magnetic Resonance Imaging Markers. Stroke, 49, 2692-2698.
https://doi.org/10.1161/STROKEAHA.118.022317
[27] Rouhl, R.P., Damoiseaux, J.G., Lodder, J., et al. (2012) Vascular Inflammation in Cerebral Small Vessel Disease. Neurobiology of Aging, 33, 1800-1806.
https://doi.org/10.1016/j.neurobiolaging.2011.04.008
[28] Zhang, L., Zeng, X., He, F., et al. (2023) Inflammatory Biomarkers of Frailty: A Review. Experimental Gerontology, 179, Article ID: 112253.
https://doi.org/10.1016/j.exger.2023.112253
[29] Picca, A., Coelho-Junior, H.J., Calvani, R., et al. (2022) Bi-omarkers Shared by Frailty and Sarcopenia in Older Adults: A Systematic Review and Meta-Analysis. Ageing Research Reviews, 73, Article ID: 101530.
https://doi.org/10.1016/j.arr.2021.101530
[30] Sakuma, K., Aoi, W. and Yamaguchi, A. (2015) Current Under-standing of Sarcopenia: Possible Candidates Modulating Muscle Mass. Pflügers Archiv—European Journal of Physiol-ogy, 467, 213-229.
https://doi.org/10.1007/s00424-014-1527-x
[31] Li, T., Huang, Y., Cai, W., et al. (2020) Age-Related Cerebral Small Vessel Disease and Inflammaging. Cell Death & Disease, 11, Article No. 932.
https://doi.org/10.1038/s41419-020-03137-x
[32] Wu, I.C., Lin, C.C. and Hsiung, C.A. (2015) Emerging Roles of Frailty and Inflammaging in Risk Assessment of Age-Related Chronic Diseases in Older Adults: The Intersection be-tween Aging Biology and Personalized Medicine. Biomedicine, 5, Article 1.
https://doi.org/10.7603/s40681-015-0001-1
[33] Low, A., Mak, E., Rowe, J.B., et al. (2019) Inflammation and Cerebral Small Vessel Disease: A Systematic Review. Ageing Research Reviews, 53, Article ID: 100916.
https://doi.org/10.1016/j.arr.2019.100916
[34] Choi, D.H., Lee, K.H., Kim, J.H., et al. (2014) NADPH Oxidase 1, A Novel Molecular Source of ROS in Hippocampal Neuronal Death in Vascular Dementia. Antioxidants & Redox Sig-naling, 21, 533-550.
https://doi.org/10.1089/ars.2012.5129
[35] Porte, Y., Buhot, M.C. and Mons, N. (2008) Alteration of CREB Phosphorylation and Spatial Memory Deficits in Aged 129T2/Sv Mice. Neurobiology of Aging, 29, 1533-1546.
https://doi.org/10.1016/j.neurobiolaging.2007.03.023
[36] Chen, Y., Wang, X., Guan, L., et al. (2021) Role of White Matter Hyperintensities and Related Risk Factors in Vascular Cognitive Impairment: A Review. Biomolecules, 11, Article 1102.
https://doi.org/10.3390/biom11081102
[37] Hirao, K., Yamashita, F., Sakurai, S., et al. (2021) Asso-ciation of Regional White Matter Hyperintensity Volumes with Cognitive Dysfunction and Vascular Risk Factors in Pa-tients with Amnestic Mild Cognitive Impairment. Geriatrics & Gerontology International, 21, 644-650.
https://doi.org/10.1111/ggi.14211
[38] Pedersen, B.K. (2019) Physical Activity and Muscle-Brain Crosstalk. Na-ture Reviews Endocrinology, 15, 383-392.
https://doi.org/10.1038/s41574-019-0174-x
[39] Yang, C.P., Yang, W.S., Wong, Y.H., et al. (2020) Muscle At-rophy-Related Myotube-Derived Exosomal MicroRNA in Neuronal Dysfunction: Targeting both Coding and Long Noncoding RNAs. Aging Cell, 19, e13107.
https://doi.org/10.1111/acel.13107
[40] Liu, L.K., Chou, K.H., Hsu, C.H., et al. (2020) Cerebellar-Limbic Neu-rocircuit Is the Novel Biosignature of Physio-Cognitive Decline Syndrome. Aging, 12, 25319-25336.
https://doi.org/10.18632/aging.104135
[41] Van, Uden, I.W., Van, Der, Holst, H.M., Tuladhar, A.M., et al. (2016) White Matter and Hippocampal Volume Predict the Risk of Dementia in Patients with Cerebral Small Vessel Disease: The RUN DMC Study. Journal of Alzheimer’s Disease, 49, 863-873.
https://doi.org/10.3233/JAD-150573
[42] Arai, H., Satake, S. and Kozaki, K. (2018) Cognitive Frailty in Geriatrics. Clinics in Geriatric Medicine, 34, 667-675.
https://doi.org/10.1016/j.cger.2018.06.011
[43] Kwan, R.Y., Lee, D., Lee, P.H., et al. (2020) Effects of an MHealth Brisk Walking Intervention on Increasing Physical Activity in Older People with Cognitive Frailty: Pilot Randomized Controlled Trial. JMIR mHealth and uHealth, 8, e16596.
https://doi.org/10.2196/16596
[44] Yoon, D.H., Lee, J.Y. and Song, W. (2018) Effects of Resistance Exercise Training on Cognitive Function and Physical Performance in Cogni-tive Frailty: A Randomized Controlled Trial. The Journal of Nutrition, Health and Aging, 22, 944-951.
https://doi.org/10.1007/s12603-018-1090-9
[45] Xia, R., Wan, M., Lin, H., et al. (2020) Effects of a Traditional Chinese Mind-Body Exercise, Baduanjin, on the Physical and Cognitive Functions in the Community of Older Adults with Cognitive Frailty: Study Protocol for a Randomised Controlled Trial. BMJ Open, 10, e034965.
https://doi.org/10.1136/bmjopen-2019-034965
[46] Stephen, R., Liu, Y., Ngandu, T., et al. (2019) Brain Volumes and Cortical Thickness on MRI in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disabil-ity (FINGER). Alzheimer’s Research & Therapy, 11, Article No. 53.
https://doi.org/10.1186/s13195-019-0506-z
[47] Lei, D., Sha, Y., Wen, S., et al. (2020) Dexmedetomidine May Reduce IL-6 Level and the Risk of Postoperative Cognitive Dysfunction in Patients After Surgery: A Meta-Analysis. Dose-Response, 18, 1-8.
https://doi.org/10.1177/1559325820902345
[48] Chen, N., Chen, X., Xie, J., et al. (2019) Dexmedetomidine Pro-tects Aged Rats from Postoperative Cognitive Dysfunction by Alleviating Hippocampal Inflammation. Molecular Medi-cine Reports, 20, 2119-2126.
https://doi.org/10.3892/mmr.2019.10438
[49] Stomrud, E., Björkqvist, M., Janciauskiene, S., et al. (2010) Altera-tions of Matrix Metalloproteinases in the Healthy Elderly with Increased Risk of Prodromal Alzheimer’s Disease. Alz-heimer’s Research & Therapy, 2, Article No. 20.
https://doi.org/10.1186/alzrt44
[50] Wu, C., Gao, B. and Gui, Y. (2019) Malondialdehyde on Postoperative Day 1 Predicts Postoperative Cognitive Dysfunction in Elderly Patients After Hip Fracture Surgery. Bioscience Reports, 39, BSR20190166.
https://doi.org/10.1042/BSR20190166
[51] Yao, Z.H., Yao, X.L., Zhang, Y., et al. (2018) Luteolin Could Improve Cognitive Dysfunction by Inhibiting Neuroinflammation. Neurochemical Research, 43, 806-820.
https://doi.org/10.1007/s11064-018-2482-2
[52] Fogg, C., Meredith, P., Culliford, D., et al. (2019) Cognitive Im-pairment Is Independently Associated with Mortality, Extended Hospital Stays and Early Readmission of Older People with Emergency Hospital Admissions: A Retrospective Cohort Study. International Journal of Nursing Studies, 96, 1-8.
https://doi.org/10.1016/j.ijnurstu.2019.02.005