PPARs在皮肤生理学中的意义
The Significance of PPARs in Skin Physiology
DOI: 10.12677/acm.2024.143857, PDF, HTML, XML, 下载: 14  浏览: 33 
作者: 金超颖, 吴慧玲*:浙江大学医学院,浙江 杭州;浙江大学医学院附属第一医院整形美容中心,浙江 杭州
关键词: 过氧化物酶体增殖激活受体皮肤生理学成纤维细胞角质细胞黑色素细胞毛囊皮脂腺Peroxisome Proliferator-Activated Receptors Skin Biology Fibroblast Keratinocyte Melanocyte Hair Follicle Sebaceous Gland
摘要: 过氧化物酶体增殖激活受体(PPARs)是配体激活的转录因子,属于核激素受体家族。PPARs具有3种亚型:PPARα、PPARβ/δ和PPARγ,具有不同组织分布和细胞功能。3种PPARs亚型均在皮肤中有分布,参与皮肤细胞的脂质代谢与能量代谢,与角质形成细胞的增殖和分化密切相关,调节成纤维细胞的分泌功能,介导皮脂腺的生成与免疫稳态的维持,促进黑色素细胞的分化和黑素小体的成熟,并对促进毛囊的分化发育有益。基于PPARs在皮肤中的生物学效应,PPAR激动剂或拮抗剂可能为治疗各种皮肤疾病提供新的机会。
Abstract: Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor family. The 3 isoforms of PPARs, which are PPARα, PPARβ/δ, and PPARγ, have different tissue distributions and cellular functions. PPARs are also found in the skin and are involved in the lipid metabolism and energy metabolism of skin cells and are closely related to proliferation and differentiation of keratinocytes and the regulation of the secretion of fibroblasts, mediate the production of sebaceous glands and the maintenance of immune homeostasis. They also promote the differentiation of melanocytes and the maturation of melanosomes. Besides, they are beneficial for the promotion of hair follicles. Based on the biological effects of PPARs in the skin, PPAR agonists or antagonists may provide new opportunities for the treatment of various skin diseases.
文章引用:金超颖, 吴慧玲. PPARs在皮肤生理学中的意义[J]. 临床医学进展, 2024, 14(3): 1396-1404. https://doi.org/10.12677/acm.2024.143857

1. 引言

皮肤是人体最大的器官,具有表皮、真皮和皮下组织3层结构。皮肤具有重要的保护作用,是人体抵御外界环境中物理化学因素及病原体的屏障,也是水和溶质流失的防线,皮肤屏障的完整性对于保持人体健康具有重要意义。皮肤的发育、分化、更新是由多种因素和通路协调的结果,而皮肤稳态的急性或慢性受损则是多种皮肤疾病的病理基础。因此,理解皮肤生理学的机制基础不仅对维持皮肤的健康,也对确定新的皮肤病治疗靶点至关重要。

过氧化物酶体增殖激活受体(PPARs)与甲状腺激素、类维生素a、类固醇激素和维生素D受体一起属于核激素受体家族,在人体各系统和器官中具有广泛的分布 [1] [2] 。近年来的研究表明,除了脂质代谢和脂肪生成中的作用,PPARs也介导组织分化再生等生理功能。本文对PPARs在皮肤中的分布和在皮肤稳态中的作用进行总结,并对其潜在的临床意义进行展望。

2. PPARs的结构

过氧化物酶体增殖物激活受体(Peroxisome proliferator activated receptor, PPARs)是隶属于核受体超家族的核转录因子亚家族,也是迄今被研究最多的脂肪酸激活核受体。与其余大多数核受体的基本结构相似,PPARs的模块化结构由4个功能域组成,分别命名为A/B,C,D,和E/F。A/B结构域位于N端,具有配体无关的激活功能区1 (AF-1),负责PPARs的磷酸化。C结构域的结构高度保守,由2个锌指组成,是PPAR靶基因启动子中的过氧化物酶体增殖反应元件(PPRE)结合位置,因此又称为DNA结合域(DBD)。D结构域为各种辅因子提供了结合位点。E/F结构域为配体结合域(LBD),在该结构域中13个α-螺旋和1个小的4链β-薄片组成Y形的疏水口袋,以结合内源性或外源性的亲脂配体。另外,在LBD的C端还存在有配体依赖性激活域(AF-2),该结构与参与转录过程的PPARs辅助因子结合袋的形成密切相关。PPARs的转录活性不仅依赖于PPRE,还需要类视黄嘌呤-x受体(RXR)的参与。与配体结合后,PPARs易位于细胞核,与RXR结合形成异二聚体,PPAR:RXR以相反的极性结合PPRE,从而完成对靶基因的调控。除了与PPRE直接结合以外,PPAR和PPAR配体还可以通过蛋白间的直接作用来调节基因表达,这种作用通常会抑制转录因子的功能,因此又被称为转抑制 [3] 。

目前已鉴定出3种PPARs的亚型:PPARα,PPARγ和PPARβ/δ,分别由不同的基因独立编码。这3种亚型对不同的配体分别具有亲和性,在人体中的分布和功能也有着重叠和差异。

3. PPARs的分类与功能

3.1. PPARα的功能

PPARα也被称为核受体亚家族1C组成员1 (NR1C1),编码基因位于人的第22号染色体,是PPARs家族中首个被鉴定的成员,在肝脏和棕色脂肪组织的表达量最高,其次是小肠、心脏和肾脏 [4] 。近年的研究表明,PPARα通过调控代谢相关靶基因,在能量及糖脂代谢稳态中起关键作用,也介导多种代谢相关疾病的发生发展 [5] [6] 。PPARa是禁食期间肝脏脂质代谢的主要调节因子,在饥饿状态下,PPARα mRNA被诱导上调,同时bHLH亮氨酸zipper转录因子TFEB介导PGC1α-PPARα-靶基因轴的激活,Cpt1a、Cpt2、Acadvl、Hadha等靶基因上调并肝脏脂肪酸氧化的激活,同时Hmgcs2、Hmgcl、Acat1等基因表达增加并促进酮体的生成 [7] [8] [9] [10] [11] 。此外,PPARα通过增加糖原合成和促进糖异生途径维持禁食期间的肝脏葡萄糖稳态,也可以减少氨基酸降解和尿素生成 [12] [13] [14] [15] 。另外,PPARα在免疫细胞(如单核细胞/巨噬细胞)中的表达也很显著,这说明其在免疫和炎症反应中也有重要的调节作用。PPARα通过降低巨噬细胞促炎介质IL-15和IL-18的生成来抑制炎症反应,也通过靶向NF-kB、IL-2和c-Jun来拮抗T淋巴细胞和B淋巴细胞的促炎信号 [16] [17] [18] 。

3.2. PPARβ/δ的功能

编码基因位于人的第6号染色体的PPARβ/δ也被称为核受体亚家族1C组成员2 (NR1C2),在骨骼肌、脂肪组织、心血管系统、子宫、肠道、大脑和皮肤等诸多组织中均有广泛的分布,不仅参与能量代谢,还在炎症反应、细胞增殖分化、组织修复、血管生成和癌症进展中发挥重要作用。PPARβ/δ已被确定为调节组织胰岛素敏感性的重要靶点,通过抑制STAT3的激活来阻止IRS-1与胰岛素受体的偶联并促进蛋白酶体介导的IRS-1降解,以此抑制胰岛素信号传导 [19] 。PPARβ/δ过表达也通过增加葡萄糖转运蛋白4型(Glut4)表达而增加葡萄糖利用 [20] 。此外,PPARβ/δ的活性增加可通过Akt通路、p38-MAPK通路、Wnt/β-catenin通路等促进血管内皮细胞、心肌细胞以及角质形成细胞等的增殖,也可以通过Wnt信号传导促进成骨细胞分化 [21] [22] [23] 。PPARβ/δ通过诱导HIF-1α的生成来促进骨骼肌和心肌的生理性血管生成,并通过增加内皮型一氧化氮合酶(eNOS)的表达发挥血管保护作用 [24] [25] 。基于以上特点,PPARβ/δ又被称为“连接代谢与再生的桥梁”。

3.3. PPARγ的功能

PPARγ也被称为核受体亚家族1C组成员3 (NR1C3),编码基因位于人的第3号染色体,包含9个外显子,产生4个剪接变体(PPARG1-4),通过差异启动子和选择性剪接产生两种蛋白质亚型,分别为PPARγ1和PPARγ2。PPARγ1表达水平相对较高,在脂肪组织、肝脏、结肠、心脏、各种上皮细胞类型和骨骼肌中广泛表达,而PPARγ2的表达相对保守,在生理条件下基本仅在脂肪组织中可见。PPARγ在脂肪形成和分化中的作用最为人所知,在白色脂肪组织中,PPARγ通过靶向LPL,ANGTPL4和CIDEC等基因促进脂肪的自我更新,通过FABP4等促进脂肪酸运输,同时也增加Clut4的表达、维持葡萄糖稳态,此外PPARγ也调控脂肪组织分泌功能,对胰岛素敏感性有重要影响 [26] [27] 。PPARγ还具有多种组织特异性的生理功能。在免疫系统中,PPARγ是巨噬细胞分化和极化的重要调节因子,参与树突状细胞的抗原呈递过程,并调节Tregs的发育和功能 [28] [29] [30] [31] 。另外也有大量证据表明,PPARγ是一种抑癌因子,PPARγ/PXRα通路的激活在多种癌症中具有抑制肿瘤细胞生长和降低肿瘤侵袭性的作用 [32] [33] [34] 。

4. PPARs在皮肤中的分布和生理学意义

3种PPARs亚型在人体皮肤的各层结构中均可检测,其中PPARβ/δ的表达占优势。研究证据表明,PPARs在皮肤各类细胞的正常生理功能及代谢稳态中有着必不可少的作用,以此维持皮肤正常的屏障功能。

4.1. PPARs在皮肤角质细胞中的功能

角质层由角质形成细胞和细胞间脂质组成,是表皮最外层水分经皮流失的屏障,也有对物理化学损伤和微生物等的防御作用,而表皮更新则是由角质形成细胞的增殖和抗增殖回路动态协调的结果。研究表明,PPARs与角质形成细胞的增殖和分化密切相关。在体外培养的角化细胞分化和体外表皮模型的分层和角化过程中均能观察到PPARβ/δ的持续高表达,虽然PPARα和PPARγ的基础表达量相对低,但在分化完全的角质形成细胞中有着相对丰富的表达 [35] [36] 。利用受体特异性激动剂,3种PPARs的激活均可以促进角质形成细胞中分化标志物(如involucrin、filaggrin等)的上调 [37] [38] 。而对于角质形成细胞的增殖,PPARs的作用并不一致,PPARα和PPARγ的激活抑制角质形成细胞的增殖,而PPARβ/δ在体内实验中对正常角质细胞的增殖没有显著影响,但在病理情况下过度增殖的角质形成细胞中,表达量明显增加 [39] 。同时,表皮中的脂质代谢也相当活跃,角质细胞在从基底层向角质层迁移的过程中,细胞脂质组分也随之发生变化,包括磷脂和鞘糖脂含量的逐渐降低,同时神经酰胺、胆固醇、游离脂肪酸和胆固醇酯的增加,这些脂质以前体混合物的形式,通过板层体(LB)分泌传递到角质层间隙,形成疏水屏障。PPARα的激活不仅能诱导角质形成细胞的脂质合成,还能增强板层体生成、分泌和脂质加工 [40] [41] 。PPARβ/δ通过诱导脂肪分化相关蛋白(ADRP)和禁食诱导脂肪因子(FIAF) mRNA,增加角质形成细胞中的脂质尤其是甘油三酯的积累 [38] 。而PPARβ/δ和PPARγ的激活可以增加ABCA12基因的表达,介导鞘脂向LB的转运,促进脂质在表皮的移动和LB的形成,从而维持表皮屏障稳态,而其中的分子机制仍有待进一步探索 [42] [43] 。

4.2. PPARs在皮肤成纤维细胞中的功能

成纤维细胞是真皮层的主要细胞成分,是细胞外间质(ECM)稳态和更新的主要效应细胞,也是具有可塑性转换的异质性细胞类型。脂肪酸氧化(FAO)和糖酵解是控制成纤维细胞行为和ECM稳态的关键代谢途径,而脂质代谢的重新排布也在成纤维细胞的异质性中具有决定性作用,这些研究证据也表明,PPARs在成纤维细胞中具有重要的生理意义 [44] [45] 。PPARα的激活诱导真皮成纤维细胞中各型胶原纤维的分泌,也刺激成纤维细胞中透明质酸合成酶(HAS)的表达,促进真皮透明质酸产生 [46] [47] 。目前对成纤维细胞中PPARβ/δ的作用的了解还较为有限,有证据表明,PPARβ/δ通过活化TGF-β1通路介导成纤维细胞I型和III型胶原纤维的分泌,而在另一项研究中,原纤维化成纤维细胞中PPARβ/δ的活化通过靶向LRG1来调节TGF-β1通路抑制胶原纤维和α-SMA的生成,这说明PPARβ/δ在不同来源的成纤维细胞中可能有着不同的作用 [48] [49] 。另外,PPARγ的激活可以防止胶原纤维的过度生成。CD36是FAO-PPARγ途径的重要下游标志物,也是目前已知唯一可以与ECM中成分结合的脂肪酸转运蛋白,在正常皮肤中与ECM的丰度负相关,敲除成纤维细胞中的PPARγ可下调CD36的表达,从而降低胶原纤维的降解 [45] 。

4.3. PPARs在皮脂腺中的功能

皮脂腺脂质占青少年和成人皮肤表面脂质的90%,参与皮肤屏障功能和真皮先天免疫过程,在炎症性皮肤病的发病机制中有重要作用。PPARγ主要分布于基底层的处于分化过程中的皮脂腺细胞,表达量与分化程度负相关,同时PPARγ作为雄激素对皮脂腺作用的辅因子,表达量也与雄激素水平密切相关。PPARγ活化诱导靶基因ADRP和血管生成素相关基因(PGAR)的上调,促进皮脂腺细胞的脂肪酸代谢和胆固醇合成 [50] [51] [52] 。SCD1和SCD3是控制单不饱和脂肪酸(MUFA)生成的关键酶,而在PPARγ敲除的小鼠皮肤中,可以观察到Scd1和Scd3基因的抑制,伴随皮脂腺的丧失 [53] 。同时PPARγ也可诱导β-catenin降解、抑制WNT信号,在皮脂细胞分化程序中起促进作用 [51] [54] 。另外,皮脂腺中的PPARγ可以通过泛素化促进NFκB降解,或通过抑制IκBα阻止NFκB的核易位,从而发挥抗炎作用,调控皮脂腺免疫功能稳态,因此,PPARγ也是炎症性皮肤疾病的潜在治疗靶点 [55] [56] 。

4.4. PPARs在黑色素细胞中的功能

黑色素细胞分布于表皮,产生的黑素小体出到邻近的角化细胞,起着决定皮肤颜色、提供光保护与体温调节等功能。同时,在毛囊中也分布有黑色素干细胞与分化完全的黑色素细胞,组成与周围角质细胞群紧密相连的毛囊单位,在调节毛发颜色中有重要作用 [57] 。3种PPARs在黑色素细胞中均有分布,并参与其生理功能。研究表明,PPARα和PPARγ的活化对黑色素细胞的增殖有抑制作用,但可增加黑色素生成 [58] 。黑色素细胞中PPARγ的激活通过上调EDNRB基因,促进MITF,TYR,TRP-1和TRP-2等黑色素合成因子的表达 [59] 。另有研究证实,PPARγ可以在体外促进黑色素细胞的终末分化和迁移 [60] 。黑色素细胞中,黑素皮质素-1受体(MC1R)在α-促黑素细胞激素(α-MSH)的刺激下,驱动黑色素的生成,而PPARγ也是此过程的重要介质。α-MSH显著增加黑色素细胞中PPARγ共激活因子PGC-1α的表达,并通过Ca2+/PLC的方式促进PPARγ的核易位,从而促进黑色素细胞的分化和黑素小体的成熟 [61] [62] [63] 。

4.5. PPARs在毛囊中的功能

毛囊位于表皮和真皮之间,又称毛囊皮脂腺单位或pilary复合体,由诸多亚结构组成,包括外毛根鞘(ORS)、内毛根鞘(IRS)、毛球部、髓质细胞、皮质细胞、毛小皮细胞、硬化区以及毛囊周围结构,如立毛肌、皮脂腺和分泌腺等。毛囊干细胞位于毛囊隆突部位,包括多向分化潜能,在毛囊增殖循环中发挥重要作用。PPARγ是毛囊单位中分布的主要PPAR类型,在毛发生长活跃的阶段,PPARγ主要可见于内、外根鞘角质形成细胞(IRS-KCs和ORS-KCs)、毛基质角质形成细胞和毛囊干细胞中。有证据表明,在ORS-KCs中,PPARγ的激活可上调呼吸链的关键酶MTCO1和控制线粒体DNA合成的转录因子TFAM的蛋白表达,使ATP释放增加,促进ORS-KCs的线粒体能量代谢,此过程对毛囊上皮的存活和内稳态至关重要 [64] 。PPARγ的活化可诱导毛基质角质形成细胞的凋亡、抑制增殖,但可上调K15和K19基因的表达,同时PPARγ也被证实促进毛囊干细胞K15和K19基因的上调,也通过抑制TGF-β信号传导来抑制病理性上皮–间质转化,从而维持毛囊干细胞的正常功能 [65] [66] 。目前,虽然PPARα和PPARβ/δ在毛囊中也有分布,但对于它们的生理作用仍知之甚少。目前的体内外实验对PPARα促进和抑制毛发生长的作用均有报道,对此仍需要进一步研究 [67] [68] 。也有研究表明,PPARβ/δ对毛发的形态发生有潜在作用,具体机制尚不明确 [69] [70] 。

5. 总结与展望

PPARs不仅与皮肤的脂质代谢和能量代谢相关,也是皮肤中多种结构的分化、再生和稳态的重要内源性调节剂。也因此,PPARs可能成为诸多正常组织稳态紊乱导致的皮肤疾病(如皮肤创伤、皮肤衰老、痤疮、脱发、皮肤肿瘤、牛皮癣、银屑病等)的主要研究靶标,目前也有相当多的研究表明,PPARs的激动剂或拮抗剂对皮肤疾病有潜在治疗作用。然而,要实现PPARs相关药物从实验室到临床的转化,仍面临着诸多挑战:(1) PPARs的激动剂或拮抗剂的特异性问题,由于PPARs不仅对皮肤中各种结构有调节作用,也参与皮肤局部与全身系统的正常代谢,因此PPARs激动剂或拮抗剂的应用可能会带来潜在副作用,限制其在对应疾病治疗中的使用,所以研发出皮肤特异性的PPARs调节剂有重要意义,同时对其药代动力学和用药途径的选择也应当有严格的把握;(2) 目前PPARs对皮肤结构功能调节的具体信号通路尚不明确,仍需进一步研究,以更加精准地实现治疗效果,并为加强药物治疗作用提供更新的思路;(3) 目前PPARs调节剂在皮肤病治疗领域的临床实验仍较少,体内研究的证据主要来源于动物实验,为了更加安全有效地跨越从动物模型到临床病人的鸿沟,需要开发更加接近于人类皮肤的体外模型用于药物的筛选,而当下新兴发展的3D打印和组织工程技术在构建这样的模型上具有广阔的前景。综上所述,PPARs在皮肤生理学中具有重要作用,PPARs调节剂在皮肤病治疗上有巨大的潜力,但仍需进一步研究。

NOTES

*通讯作者。

参考文献

[1] Wahli, W., Braissant, O. and Desvergne, B. (1995) Peroxisome Proliferator Activated Receptors: Transcriptional Regulators of Adipogenesis, Lipid Metabolism and More. Chemistry & Biology, 2, 261-266.
https://doi.org/10.1016/1074-5521(95)90045-4
[2] Kuenzli, S. and Saurat, J.H. (2003) Peroxisome Proliferator-Activated Receptors in Cutaneous Biology. British Journal of Dermatology, 149, 229-236.
https://doi.org/10.1046/j.1365-2133.2003.05532.x
[3] Venteclef, N., Jakobsson, T., Steffensen, K.R. and Treuter, E. (2011) Metabolic Nuclear Receptor Signaling and the Inflammatory Acute Phase Response. Trends in Endocrinology & Metabolism, 22, 333-343.
https://doi.org/10.1016/j.tem.2011.04.004
[4] Issemann, I. and Green, S. (1990) Activation of a Member of the Steroid Hormone Receptor Superfamily by Peroxisome Proliferators. Nature, 347, 645-650.
https://doi.org/10.1038/347645a0
[5] Bougarne, N., Basiel, W., Sofie, J.D., et al. (2018) Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocrine Reviews, 39, 760-802.
https://doi.org/10.1210/er.2018-00064
[6] Kersten, S., Seydoux, J., Peters, J.M., et al. (2014) Integrated Physiology and Systems Biology of PPARα. Molecular Metabolism, 3, 354-371.
https://doi.org/10.1016/j.molmet.2014.02.002
[7] Kersten, S., (1990) Peroxisome Proliferator-Activated Receptor α Mediates the Adaptive Response to Fasting. Journal of Clinical Investigation, 103, 1489-1498.
https://doi.org/10.1172/JCI6223
[8] Settembre, C., Cegli, D.R., Mansueto, G., et al. (2013) TFEB Controls Cellular Lipid Metabolism through a Starvation-Induced Autoregulatory Loop. Nature Cell Biology, 15, 647-658.
https://doi.org/10.1038/ncb2718
[9] Sanderson, L.M., Boekschoten, M.V., Desvergne, B., et al. (2010) Transcriptional Profiling Reveals Divergent Roles of PPARα and PPARβ/Delta in Regulation of Gene Expression in Mouse Liver. Physiological Genomics, 41, 42-52.
https://doi.org/10.1152/physiolgenomics.00127.2009
[10] Sugden, M.C., Bulmer, K., Gibbons, G.F., et al. (2002) Peroxisome-Proliferator-Activated Receptor-α (PPARα) Deficiency Leads to Dysregulation of Hepatic Lipid and Carbohydrate Metabolism by Fatty Acids and Insulin. Biochemical Journal, 364, 361-368.
https://doi.org/10.1042/bj20011699
[11] Patsouris, D., Mandard, S., Voshol, P.J., et al. (2004) PPARα Governs Glycerol Metabolism. Journal of Clinical Investigation, 114, 94-103.
https://doi.org/10.1172/JCI200420468
[12] Rakhshandehroo, M., Sanderson, L.M., Matilainen, M., et al. (2007) Comprehensive Analysis of PPARα-Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling. PPAR Research, 2007, Article ID: 26839.
https://doi.org/10.1155/2007/26839
[13] Xu, J., Chang, V., Joseph, S.B., et al. (2004) Peroxisomal Proliferator-Activated Receptor α Deficiency Diminishes Insulin-Responsiveness of Gluconeogenic/Glycolytic/Pentose Gene Expression and Substrate Cycle Flux. Endocrinology, 145, 1087-1095.
https://doi.org/10.1210/en.2003-1173
[14] Makowski, L., Noland, R.C., Koves, T.R., et al. (2009) Metabolic Profiling of PPARα-/- Mice Reveals Defects in Carnitine and Amino Acid Homeostasis That Are Partially Reversed by Oral Carnitine Supplementation. FASEB Journal, 23, 586-604.
https://doi.org/10.1096/fj.08-119420
[15] Kersten, S., Mandard, S., Escher, P., et al. (2001) The Peroxisome Proliferator-Activated Receptor α Regulates Amino Acid Metabolism. FASEB Journal, 15, 1971-1978.
https://doi.org/10.1096/fj.01-0147com
[16] Chinetti, G., Zawadski, C., Fruchart, J.C. and Staels, B. (2004) Expression of Adiponectin Receptors in Human Macrophages and Regulation by Agonists of the Nuclear Receptors PPARα, PPARγ, and LXR. Biochemical and Biophysical Research Communications, 314, 151-158.
https://doi.org/10.1016/j.bbrc.2003.12.058
[17] Jones, D.C., Ding, X. and Daynes, R.A. (2002) Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) Is Expressed in Resting Murine Lymphocytes. The PPARα in T and B Lymphocytes Is Both Transactivation and Transrepression Competent. Journal of Biological Chemistry, 277, 6838-6845.
https://doi.org/10.1074/jbc.M106908200
[18] Dunn, S.E., Ousman, S.S., Sobel, R.A., et al. (2007) Peroxisome Proliferator-Activated Receptor (PPAR)α Expression in T Cells Mediates Gender Differences in Development of T Cell-Mediated Autoimmunity. Journal of Experimental Medicine, 204, 321-330.
https://doi.org/10.1084/jem.20061839
[19] Serrano-Marco, L., Rodriguez-Calvo, R., El Kochairi, I., et al. (2011) Activation of Peroxisome Proliferator-Activated Receptor-β/-Delta (PPAR-β/-Delta) Ameliorates Insulin Signaling and Reduces SOCS3 Levels by Inhibiting STAT3 in Interleukin-6-Stimulated Adipocytes. Diabetes, 60, 1990-1999.
https://doi.org/10.2337/db10-0704
[20] Burkart, E.M., Sambandam, N., Han, X., et al. (2007) Nuclear Receptors PPARβ/Delta and PPARα Direct Distinct Metabolic Regulatory Programs in the Mouse Heart. Journal of Clinical Investigation, 117, 3930-3939.
https://doi.org/10.1172/JCI32578
[21] Lopaschuk, G.D. and Jaswal, J.S. (2010) Energy Metabolic Phenotype of the Cardiomyocyte during Development, Differentiation, and Postnatal Maturation. Journal of Cardiovascular Pharmacology, 56, 130-140.
https://doi.org/10.1097/FJC.0b013e3181e74a14
[22] Han, J.K., Lee, H.S., Yang, H.M., et al. (2008) Peroxisome Proliferator-Activated Receptor-Delta Agonist Enhances Vasculogenesis by Regulating Endothelial Progenitor Cells through Genomic and Nongenomic Activations of the Phosphatidylinositol 3-Kinase/Akt Pathway. Circulation, 118, 1021-1033.
https://doi.org/10.1161/CIRCULATIONAHA.108.777169
[23] Scholtysek, C., Katzenbeisser, J., Fu, H., et al. (2013) PPARβ/Delta Governs Wnt Signaling and Bone Turnover. Nature Medicine, 19, 608-613.
https://doi.org/10.1038/nm.3146
[24] Wagner, N., Jehl-Pietri, C., Lopez, P., et al. (2009) Peroxisome Proliferator-Activated Receptor β Stimulation Induces Rapid Cardiac Growth and Angiogenesis via Direct Activation of Calcineurin. Cardiovascular Research, 83, 61-71.
https://doi.org/10.1093/cvr/cvp106
[25] Maccallini, C., Mollica, A. and Amoroso, R. (2017) The Positive Regulation of ENOS Signaling by PPAR Agonists in Cardiovascular Diseases. American Journal of Cardiovascular Drugs, 17, 273-281.
https://doi.org/10.1007/s40256-017-0220-9
[26] Tang, W., Zeve, D., Suh, J.M., et al. (2008) White Fat Progenitor Cells Reside in the Adipose Vasculature. Science, 322, 583-586.
https://doi.org/10.1126/science.1156232
[27] Tomaru, T., Steger, D.J., Lefterova, M.I., et al. (2009) Adipocyte-Specific Expression of Murine Resistin Is Mediated by Synergism between Peroxisome Proliferator-Activated Receptor γ and CCAAT/Enhancer-Binding Proteins. Journal of Biological Chemistry, 284, 6116-6125.
https://doi.org/10.1074/jbc.M808407200
[28] Moore, K.J., Rosen, E.D., Fitzgerald, M.L., et al. (2001) The Role of PPAR-γ in Macrophage Differentiation and Cholesterol Uptake. Nature Medicine, 7, 41-47.
https://doi.org/10.1038/83328
[29] Bouhlel, M.A., Derudas, B., Rigamonti, E., et al. (2007) PPARγ Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-Inflammatory Properties. Cell Metabolism, 6, 137-143.
https://doi.org/10.1016/j.cmet.2007.06.010
[30] Cipolletta, D., Feuerer, M., Li, A., et al. (2012) PPAR-γ Is a Major Driver of the Accumulation and Phenotype of Adipose Tissue Treg Cells. Nature, 486, 549-553.
https://doi.org/10.1038/nature11132
[31] Szatmari, I., Rajnavolgyi, E. and Nagy, L. (2006) PPARγ, a Lipid-Activated Transcription Factor as a Regulator of Dendritic Cell Function. Annals of the New York Academy of Sciences, 1088, 207-218.
https://doi.org/10.1196/annals.1366.013
[32] Sarraf, P., Mueller, E., Jones, D., et al. (1998) Differentiation and Reversal of Malignant Changes in Colon Cancer through PPARγ. Nature Medicine, 4, 1046-1052.
https://doi.org/10.1038/2030
[33] Bren-Mattison, Y., Van Putten, V., Chan, D., et al. (2005) Peroxisome Proliferator-Activated Receptor-γ (PPARγ) Inhibits Tumorigenesis by Reversing the Undifferentiated Phenotype of Metastatic Non-Small-Cell Lung Cancer Cells (NSCLC). Oncogene, 24, 1412-1422.
https://doi.org/10.1038/sj.onc.1208333
[34] Bonofiglio, D., Cione, E., Qi, H., et al. (2009) Combined Low Doses of PPARγ and RXR Ligands Trigger an Intrinsic Apoptotic Pathway in Human Breast Cancer Cells. The American Journal of Pathology, 175, 1270-1280.
https://doi.org/10.2353/ajpath.2009.081078
[35] Westergaard, M., Henningsen, J., Svendsen, M.L., et al. (2001) Modulation of Keratinocyte Gene Expression and Differentiation by PPAR-Selective Ligands and Tetradecylthioacetic Acid. Journal of Investigative Dermatology, 116, 702-712.
https://doi.org/10.1046/j.1523-1747.2001.01329.x
[36] Rivier, M., Safonova, I., Lebrun, P., et al. (1998) Differential Expression of Peroxisome Proliferator-Activated Receptor Subtypes during the Differentiation of Human Keratinocytes. Journal of Investigative Dermatology, 111, 1116-1121.
https://doi.org/10.1046/j.1523-1747.1998.00439.x
[37] Mao-Qiang, M., Fowler, A.J., Schmuth, M., et al. (2004) Peroxisome-Proliferator-Activated Receptor (PPAR)-γ Activation Stimulates Keratinocyte Differentiation. Journal of Investigative Dermatology, 123, 305-312.
https://doi.org/10.1111/j.0022-202X.2004.23235.x
[38] Schmuth, M., Haqq, C.M., Cairns, W.J., et al. (2004) Peroxisome Proliferator-Activated Receptor (PPAR)-β/Delta Stimulates Differentiation and Lipid Accumulation in Keratinocytes. Journal of Investigative Dermatology, 122, 971-983.
https://doi.org/10.1111/j.0022-202X.2004.22412.x
[39] Xiao, Y., Wang, H., Wang, C., et al. (2020) MiR-203 Promotes HaCaT Cell Overproliferation through Targeting LXR-α and PPAR-γ. Cell Cycle, 19, 1928-1940.
https://doi.org/10.1080/15384101.2020.1783934
[40] Rivier, M., Castiel, I., Safonova, I., et al. (2000) Peroxisome Proliferator-Activated Receptor-α Enhances Lipid Metabolism in a Skin Equivalent Model. Journal of Investigative Dermatology, 114, 681-687.
https://doi.org/10.1046/j.1523-1747.2000.00939.x
[41] Batheja, P., Song, Y., Wertz, P. and Michniak-Kohn, B. (2009) Effects of Growth Conditions On the Barrier Properties of a Human Skin Equivalent. Pharmaceutical Research, 26, 1689-1700.
https://doi.org/10.1007/s11095-009-9879-1
[42] Jiang, Y.J., Uchida, Y., Lu, B., et al. (2009) Ceramide Stimulates ABCA12 Expression via Peroxisome Proliferator-Activated Receptor Delta in Human Keratinocytes. Journal of Biological Chemistry, 284, 18942-18952.
https://doi.org/10.1074/jbc.M109.006973
[43] Jiang, Y.J., Lu, B., Kim, P., et al. (2008) PPAR and LXR Activators Regulate ABCA12 Expression in Human Keratinocytes. Journal of Investigative Dermatology, 128, 104-109.
https://doi.org/10.1038/sj.jid.5700944
[44] Capolupo, L., Khven, I., Lederer, A.R., et al. (2022) Sphingolipids Control Dermal Fibroblast Heterogeneity. Science, 376, eabh1623.
https://doi.org/10.1126/science.abh1623
[45] Zhao, X., Psarianos, P., Ghoraie, L.S., et al. (2019) Metabolic Regulation of Dermal Fibroblasts Contributes to Skin Extracellular Matrix Homeostasis and Fibrosis. Nature Metabolism, 1, 147-157.
https://doi.org/10.1038/s42255-018-0008-5
[46] Majewski, G.P., Singh, S. and Bojanowski, K. (2021) Olive Leaf-Derived PPAR Agonist Complex Induces Collagen IV Synthesis in Human Skin Models. International Journal of Cosmetic Science, 43, 662-676.
https://doi.org/10.1111/ics.12742
[47] Kim, S.H., Nam, G.W., Lee, H.K., et al. (2006) The Effects of Musk T on Peroxisome Proliferator-Activated Receptor [PPAR]-α Activation, Epidermal Skin Homeostasis and Dermal Hyaluronic Acid Synthesis. Archives of Dermatological Research, 298, 273-282.
https://doi.org/10.1007/s00403-006-0684-y
[48] Sng, M.K., Chan, J.S.K., Teo, Z., et al. (2018) Selective Deletion of PPARβ/Delta in Fibroblasts Causes Dermal Fibrosis by Attenuated LRG1 Expression. Cell Discovery, 4, Article No. 15.
https://doi.org/10.1038/s41421-018-0014-5
[49] Jung, Y.R., Lee, E.K., Kim, D.H., et al. (2015) Upregulation of Collagen Expression via PPARβ/Delta Activation in Aged Skin by Magnesium Lithospermate B from Salvia Miltiorrhiza. Journal of Natural Products, 78, 2110-2115.
https://doi.org/10.1021/acs.jnatprod.5b00348
[50] Dozsa, A., Mihaly, J., Dezso, B., et al. (2016) Decreased Peroxisome Proliferator-Activated Receptor γ Level and Signalling in Sebaceous Glands of Patients with Acne Vulgaris. Clinical and Experimental Dermatology, 41, 547-551.
https://doi.org/10.1111/ced.12794
[51] Dozsa, A., Dezso, B., Toth, B.I., et al. (2014) PPARγ-Mediated and Arachidonic Acid-Dependent Signaling Is Involved in Differentiation and Lipid Production of Human Sebocytes. Journal of Investigative Dermatology, 134, 910-920.
https://doi.org/10.1038/jid.2013.413
[52] Trivedi, N.R., Cong, Z., Nelson, A.M., et al. (2006) Peroxisome Proliferator-Activated Receptors Increase Human Sebum Production. Journal of Investigative Dermatology, 126, 2002-2009.
https://doi.org/10.1038/sj.jid.5700336
[53] Konger, R.L., Derr-Yellin, E., Zimmers, T.A., et al. (2021) Epidermal PPARγ Is a Key Homeostatic Regulator of Cutaneous Inflammation and Barrier Function in Mouse Skin. International Journal of Molecular Sciences, 22, Article 8634.
https://doi.org/10.3390/ijms22168634
[54] Kovacs, D., Lovaszi, M., Poliska, S., et al. (2016) Sebocytes Differentially Express and Secrete Adipokines. Experimental Dermatology, 25, 194-199.
https://doi.org/10.1111/exd.12879
[55] Zouboulis, C.C. (2020) Endocrinology and Immunology of Acne: Two Sides of the Same Coin. Experimental Dermatology, 29, 840-859.
https://doi.org/10.1111/exd.14172
[56] Bharti, S. and Vadlamudi, H.C. (2021) A Strategic Review on the Involvement of Receptors, Transcription Factors and Hormones in Acne Pathogenesis. Journal of Receptors and Signal Transduction, 41, 105-116.
https://doi.org/10.1080/10799893.2020.1805626
[57] Lin, J.Y. and Fisher, D.E. (2007) Melanocyte Biology and Skin Pigmentation. Nature, 445, 843-850.
https://doi.org/10.1038/nature05660
[58] Kang, H.Y., Chung, E., Lee, M., et al. (2004) Expression and Function of Peroxisome Proliferator-Activated Receptors in Human Melanocytes. British Journal of Dermatology, 150, 462-468.
https://doi.org/10.1111/j.1365-2133.2004.05844.x
[59] Zhao, S., Chen, X., Dutta, K., et al. (2023) Multiple Gene-Drug Prediction Tool Reveals Rosiglitazone Based Treatment Pathway for Non-Segmental Vitiligo. Inflammation.
https://doi.org/10.1007/s10753-023-01937-9
[60] Lee, J.S., Choi, Y.M. and Kang, H.Y. (2007) PPAR-γ Agonist, Ciglitazone, Increases Pigmentation and Migration of Human Melanocytes. Experimental Dermatology, 16, 118-123.
https://doi.org/10.1111/j.1600-0625.2006.00521.x
[61] Maresca, V., Flori, E., Camera, E., et al. (2013) Linking αMSH with PPARγ in B16-F10 Melanoma. Pigment Cell & Melanoma Research, 26, 113-127.
https://doi.org/10.1111/j.1755-148X.2012.01042.x
[62] Shoag, J., Haq, R., Zhang, M., et al. (2013) PGC-1 Coactivators Regulate MITF and the Tanning Response. Molecular Cell, 49, 145-157.
https://doi.org/10.1016/j.molcel.2012.10.027
[63] Herraiz, C., Martinez-Vicente, I. and Maresca, V. (2021) The α-Melanocyte-Stimulating Hormone/Melanocortin-1 Receptor Interaction: A Driver of Pleiotropic Effects Beyond Pigmentation. Pigment Cell & Melanoma Research, 34, 748-761.
https://doi.org/10.1111/pcmr.12980
[64] Ramot, Y., Alam, M., Olah, A., et al. (2018) Peroxisome Proliferator-Activated Receptor-γ-Mediated Signaling Regulates Mitochondrial Energy Metabolism in Human Hair Follicle Epithelium. Journal of Investigative Dermatology, 138, 1656-1659.
https://doi.org/10.1016/j.jid.2018.01.033
[65] Ramot, Y., Mastrofrancesco, A., Herczeg-Lisztes, E., et al. (2014) Advanced Inhibition of Undesired Human Hair Growth by PPAγ Modulation? Journal of Investigative Dermatology, 134, 1128-1131.
https://doi.org/10.1038/jid.2013.473
[66] Imanishi, H., Ansell, D.M., Cheret, J.,et al. (2018) Epithelial-To-Mesenchymal Stem Cell Transition in a Human Organ: Lessons from Lichen Planopilaris. Journal of Investigative Dermatology, 138, 511-519.
https://doi.org/10.1016/j.jid.2017.09.047
[67] Billoni, N., Buan, B., Gautier, B., et al. (2000) Expression of Peroxisome Proliferator Activated Receptors (PPARs) in Human Hair Follicles and PPAR α Involvement in Hair Growth. Acta Dermato-Venereologica, 80, 329-334.
https://doi.org/10.1080/000155500459240
[68] Huang, C.F., Chang, Y.J., Hsueh, Y.Y., et al. (2016) Assembling Composite Dermal Papilla Spheres with Adipose-Derived Stem Cells to Enhance Hair Follicle Induction. Scientific Reports, 6, Article No. 26436.
https://doi.org/10.1038/srep26436
[69] Tan, N.S., Icre, G., Montagner, A., et al. (2007) The Nuclear Hormone Receptor Peroxisome Proliferator-Activated Receptor β/Delta Potentiates Cell Chemotactism, Polarization, and Migration. Molecular and Cellular Biology, 27, 7161-7175.
https://doi.org/10.1128/MCB.00436-07
[70] Di-Poi, N., Ng, C.Y., Tan, N.S., et al. (2005) Epithelium-Mesenchyme Interactions Control the Activity of Peroxisome Proliferator-Activated Receptor β/Delta during Hair Follicle Development. Molecular and Cellular Biology, 25, 1696-1712.
https://doi.org/10.1128/MCB.25.5.1696-1712.2005