细胞外囊泡在器官移植中作为生物标志物的研究进展
Research Progress of Extracellular Vesicles as Biomarkers in Organ Transplantation
DOI: 10.12677/acm.2024.143856, PDF, HTML, XML, 下载: 16  浏览: 48 
作者: 崔明虎:山东大学齐鲁医学院,山东 济南;王云超:山东第一医科大学第一附属医院(山东省千佛山医院)泌尿外科,山东医药卫生器官移植肾病重点实验室,山东省肾脏科学研究所,山东 济南
关键词: 细胞外囊泡外泌体器官移植Extracellular Vesicles Exosomes Organ Transplantation
摘要: 器官移植是终末期器官功能障碍的唯一有效的治疗方法。细胞外囊泡是释放到周围体液中的纳米级双层脂质囊泡,细胞外囊泡在器官移植术后无创功能监测和早期诊断移植器官功能障碍方面具有极大的应用前景,本文就细胞外囊泡作为一种新兴生物标志物在器官移植领域中的进展进行综述。
Abstract: Organ transplantation is the only effective treatment for end-stage organ dysfunction. Extracellular vesicles are nanoscale bilayer lipid vesicles released into the surrounding body fluids. Extracellular vesicles have great application prospects in non-invasive function monitoring and early diagnosis of organ dysfunction after organ transplantation. This article reviews the progress of extracellular vesicles as a new biomarker in the field of organ transplantation.
文章引用:崔明虎, 王云超. 细胞外囊泡在器官移植中作为生物标志物的研究进展[J]. 临床医学进展, 2024, 14(3): 1390-1395. https://doi.org/10.12677/acm.2024.143856

1. 引言

器官移植是现代手术医学中最具有挑战性和复杂度的医学领域之一,随着医疗科学技术水平的提高和器官移植领域研究持续深入,器官移植领域取得了极大的发展。随着相应终末期器官功能的病人数量逐年递增,全球范围内器官供应面临短缺问题,器官移植术后各种并发症严重影响了移植器官的短期生存率与长期生存率,并加重患者与社会的医疗负担,因此对提高移植器官存活率和改善器官移植受者临床预后的需求与日俱增 [1] 。

细胞外囊泡(extracellular vesicles, EVs)是一种由机体细胞持续分泌至胞外的纳米级膜双层脂质囊泡结构,囊泡由磷脂双分子膜、蛋白质、脂质、核酸等物质组成 [2] ,由外层的磷脂双分子膜包裹内部的核酸,保护后者不被酶类降解。EVs来源细胞种类广泛,广泛存在于机体内环境中,可见于血液、尿液、脑脊液等体液 [3] ,其内携带的大量的遗传物质,相较于游离DNA、循环肿瘤DNA等物质具备更加细致反映机体细胞的自身状态、病理特征、功能变化的能力。EVs通过血液中循环囊泡方式调控邻近与远处受体细胞内在的生物学功能和实现不同细胞间通讯的作用 [4] 。受体细胞通过摄取血液中EVs进入细胞内或细胞膜表面受体与EVs表面蛋白相互作用,从而释放EVs内所携带的生物活性因子,使EVs参与到细胞内多种生理病理过程 [5] 。因此EVs作为一种新型的分子生物标记物在器官移植领域具有重要的临床价值。本文就不同种类EVs在器官移植领域中作为分子生物标志物的研究进行综述,为EVs在器官移植术后无创功能监测和早期诊断移植器官功能障碍方面应用提供参考。

2. 细胞外囊泡分类及生成机制

EVs按照囊泡尺寸大小和来源可分为三类:(1) 来源于多泡小体,50~150 nm的外泌体;(2) 来源于细胞膜,100~1000 nm的微泡;(3) 来源于凋亡细胞,1000~5000 nm的凋亡小体 [6] [7] [8] [9] 。每个亚型的生成机制并不相同,外泌体通过膜内出芽方式形成,胞膜内吞作用形成早期内体,早期内体在高尔基复合体和内体网络参与的共同作用下形成多囊泡体,其可通过细胞膜胞吐作用作为外泌体分泌到细胞外 [10] [11] 。微泡直接通过细胞膜向外出芽形成,并伴随着细胞骨架的降解 [12] 。凋亡小体通过细胞凋亡生物过程形成,凋亡细胞在经历细胞核凝集断裂、细胞器解体、细胞膜起泡突起等严格细胞凋亡生物学过程形成较大的细胞凋亡体(大小超过5 μm),细胞凋亡体通过进一步的分裂脱落形成凋亡小体(约1~5 μm) [5] [11] [13] [14] 。

3. 细胞外囊泡的分离制备

迄今为止,EVs的分离纯化方案仍然尚未统一,尚无一种制备方法可将血浆中的EVs完全分离。EVs主要从各种体液和细胞培养液离心后上清液中分离 [15] 。差速超速离心法是目前最常用的EVs分离制备技术。分离过程由多个连续的离心步骤组成,每个步骤都增加了不同的离心力和持续时间 [16] 。目的是根据物质密度的差异和不同的沉降系数从较大的颗粒中分离出较小的颗粒 [17] 。EVs其他分离方法包括尺寸排阻色谱法、超过滤分离法、聚合物沉淀法、密度梯度离心法、免疫亲和捕获法 [18] 。新兴的膜分离技术与微流体过滤技术的是EVs分离纯化制备发展的新方向 [16] [19] 。

4. 细胞外囊泡在器官移植中的应用

在肾移植中,目前多项研究认为EVs在血液中的含量可以反映肾脏和内皮细胞的恢复能力,以及内皮细胞的损伤程度。Al-Massarani等人发现在肾移植受者相较于处于血液透析状态时,肾移植后循环EVs的含量水平与其促凝血活性下降,并改善了肾移植受者的高凝状态,认为循环EVs可能与肾移植后血管功能改善具有相关性 [20] 。Qamri等人最终纳入分析了213例肾移植受者和14例胰肾联合移植受者移植术后早期循环内皮细胞CD31+/CD42b-细胞外囊泡含量水平的变化。研究发现终末期肾病患者在接受肾移植手术治疗后,血液循环EVs水平有轻度下降。移植肾功能受损与肾移植急性排斥反应受者组具有相关性时,后者血液循环EVs水平是增加的,而移植肾功能受损与肾移植急性排斥反应无关时,其血液循环EVs水平没有明显变化。根据移植肾病理活检C4d染色进行分层时,C4d染色阳性的患者相较于C4d染色阴性的患者,血液循环EVs水平下降更慢。因此,认为血液循环EVs水平可以反映内皮细胞损伤 [21] 。Sigdel等人发现了11种在移植肾急性排斥反应患者尿液外泌体中富集的蛋白质 [22] 。Park等人开发了一种基于肾移植受者尿液检测分析方法——综合肾脏外泌体分析(iKEA),iEKA将T细胞来源的EVs作为炎症替代物,检测免疫细胞释放到尿液中的EVs,获取机体T细胞来源特异性标志物含量变化,实现早期诊断移植肾急性排斥反应。iKEA对肾移植急性排斥患者尿样的检测准确率高,iKEA平台的便携性简化了肾移植受者监测与随访难度 [23] 。Zhang等人证明,基于AMR肾移植受者血浆外泌体mRNA的转录水平分析可以成为早期诊断肾移植受者抗体介导的移植肾排斥反应的潜在工具,并挑选出gp130、SH2D18、CCL4、TNFα四个基因组成基因评分,其对AMR具有良好的预测性能 [24] 。Chen等人通过27个健康者对照组和58个肾移植受者获取血浆中外泌体进行miRNA转录水平分析,miR-21,miR-210和miR-4639转录含量组成的预测体系可以有效区分慢性移植肾功能不全受者和移植肾功能正常的受者,具有监测和预测移植肾移植后功能方面的潜在价值 [25] 。Braun等人的研究了尿液来源的EVs (small urinary extracellular vesicles, suEVs)在不同时间阶段中蛋白质组学的变化,发现磷酸酚丙酮酸羧激酶(PCK2)的含量变化能实现1年内对移植肾功能的有效预测,也可通过suEVs中蛋白质的含量变化,检测肾移植受者补体活化情况 [26] 。

在肝脏移植中,Zhang等人发现肝脏移植发生急性排斥反应的患者血液循环中外泌体中半乳糖凝集-9含量相较于非排斥组有显著升高,外泌体来源的半乳糖凝集素-9含量水平变化可能是肝脏移植急性排斥反应和预后的一个新的预测指标 [27] 。Wang等人证明从肝脏移植急性排斥患者血清中分离的EVs中miR-223,let-7e-5p,miR-199a-3p含量水平与肝脏移植急性排斥反应显著相关。表明EVs具有作为诊断性生物标志物的潜在作用 [28] 。Cui等人发现CD80阳性树突状细胞来源的外泌体可通过减少NLRP3基因表达来抑制CD8阳性的T细胞,减轻肝脏移植物急性排斥反应中免疫损伤 [29] 。

在心脏移植中,在Singh等人发现,发生心脏移植物血管病的患者,血中EVs更倾向于激活内皮细胞,而非增加其凋亡,通过对EVs的含量水平检测预测心脏移植受者是否罹患术后并发心脏移植物血管病 [30] 。Habertheuer等人研究中最近发现移植心脏会释放供体来源特异性EVs,在小鼠同种异位心脏移植模型中,同种异体心脏移植释放了独特的供体特异性EVs进入受体血液循环,其信号在急性排斥反应早期达到高峰,用于诊断心脏移植物早期急性排斥反应具有较高的特异性和敏感性 [31] 。Joo等人研究中通过对41例心脏移植受者在移植再灌注前后12小时进行RNA测序,分析了血浆EVs的整体转录水平,发现在再灌注后12小时,4个血浆中EVs基因(ITPKA、DDIT4L、CD19和CYP4A11)与心肌细胞损伤和原发性心脏移植物功能不良具有相关性,认为EVs是反映心脏移植物术后再灌注损伤的敏感指标 [32] 。Kennel等人证明,在发生排斥反应的心脏移植受者与非排斥组相比较,血清外泌体蛋白有15种蛋白表达显著不同,主要与补体活化和特异性免疫应答有关。外泌体蛋白质分析具有成为监测心脏移植排斥反应发生、发展与预后的生物标志物的潜力 [33] 。Dewi等人发现来自心脏移植排斥反应患者富含miR-142-3p外泌体被转移到内皮细胞中,前者通过下调RAB11FIP2表达破坏内皮细胞屏障功能,从而使血管内皮通透性增加 [34] 。

在胰岛移植中,Mattke等人认为外泌体已经成为胰岛移植中重要的参与者,其携带的供体抗原,可通过免疫识别途径激活免疫反应和导致同种异体移植排斥反应 [35] [36] [37] 。胰岛移植后,由于外界环境的变化,胰岛细胞状态会发生变化,胰岛特异性外泌体携带的蛋白质和核酸也会有所改变,其携带特异性miRNA含量水平提高 [35] 。Vallabhajosyula等人认为供体HLA相关外泌体的蛋白质组学和RNA特征、数量和其他信号变化可以提示早期胰岛移植物功能损伤 [38] 。在部分糖尿病与外泌体研究中,鉴定了人胰岛细胞释放外泌体中含有的19种具有差异表达的miRNA,除了miRNA,其他小RNA包括piRNA,lncRNA,snoRNA和tRNA也在外泌体中被鉴定。目前认为胰岛移植特异性外泌体具有作为监测胰岛移植患者胰岛功能和移植物存活可靠生物标志物的巨大潜力。

在肺脏移植中,Gunasekaran等人研究中发现肺移植受者支气管肺泡灌洗液中分离外泌体含有供体HLA、肺相关自身抗原(lung-associated self-antigens, SAgs)、MHC-II,共刺激分子,细胞粘着分子和各种转录因子,认为肺移植受者持续释放的外泌体与肺移植急慢性排斥反应发病进程相关,有助于预测肺脏异体移植排斥反应 [39] [40] 。Habertheuer等人利用Wistar转基因大鼠表达CD63-GFP外泌体标志物,研究供体来源特异性外泌体在肺移植物损伤中的作用,前者能有效早期发现肺移植物急性排斥反应,由于排斥反应是引起肺移植物功能障碍发生的主要因素,因此,供体来源特异性外泌体未来有可能成为肺移植患者的早期诊断干预手段 [41] 。Gregson等人基于肺移植受者肺泡灌洗液外泌体miRNA和外泌体穿梭RNA (exosomal shuttle RNA, esRNA)的分析,在肺移植受者患有AR的样本中相较于非AR组呈现趋向于抗原呈递活化与适应性免疫活化的特征,认为esRNA是肺移植急性排斥反应发生过程中生物标志物的一个重要来源 [42] 。在Billanna等人研究中认为外泌体介导的同种异体识别过程涉及机体先天性和特异性免疫系统。外泌体可通过直接、间接和半直接途径基因外显识别在同种异体肺移植中发挥免疫应答作用 [43] 。

5. 总结与展望

近年来,EVs因其广泛参与到细胞间通讯的生理和病理过程,在器官移植领域内关注度不断上升,EVs作为液体活检技术中一种非侵入性、无创、新兴的生物标志物拥有着广泛的临床应用前景,但其目前仍存在诸多不足之处:(1) 分离制备难度较高,面临着制备产物纯度低、耗时长、价格高昂、脂蛋白污染等问题;(2) EVs检测技术仍然不能替代移植物活检技术作为疾病诊断金标准;(3) 检测手段有待优化,不同EVs检测平台差异度大,测量变异程度高。总之,EVs作为一种新兴生物标志物,有利于实现器官移植术后无创功能监测、诊断移植器官早期排斥反应、早期诊断移植器官功能延迟恢复以及移植器官功能减退等目标。有利于器官移植受者个体化精确化治疗随访,预防移植器官过早丢失。尽管EVs作为一种生物标志物还存在诸多不足,但随着临床研究的深入进展,EVs将开辟其器官移植领域应用的新方向,开启器官移植领域的新纪元。

NOTES

*通讯作者。

参考文献

[1] Wekerle, T., Segev, D., Lechler, R., et al. (2017) Strategies for Long-Term Preservation of Kidney Graft Function. The Lancet, 389, 2152-2162.
https://doi.org/10.1016/S0140-6736(17)31283-7
[2] Yáñez-Mó, M., Siljander, P.R.M., Andreu, Z., et al. (2015) Biological Properties of Extracellular Vesicles and Their Physiological Functions. Journal of Extracellular Vesicles, 4, 27066-27098.
[3] Street, J.M., Barran, P.E., Mackay, C.L., et al. (2012) Identification and Proteomic Profiling of Exosomes in Human Cerebrospinal Fluid. Journal of Translational Medicine, 10, Article No. 5.
https://doi.org/10.1186/1479-5876-10-5
[4] Van Niel, G., D’Angelo, G. and Raposo, G. (2018) Shedding Light on the Cell Biology of Extracellular Vesicles. Nature Reviews Molecular Cell Biology, 19, 213-228.
https://doi.org/10.1038/nrm.2017.125
[5] Jeppesen, D.K., Zhang, Q., Franklin, J.L., et al. (2023) Extracellular Vesicles and Nanoparticles: Emerging Complexities. Trends in Cell Biology, 33, 667-681.
https://doi.org/10.1016/j.tcb.2023.01.002
[6] Sailliet, N., Ullah, M., Dupuy, A., et al. (2022) Extracellular Vesicles in Transplantation. Frontiers in Immunology, 13, Article ID: 800018.
https://doi.org/10.3389/fimmu.2022.800018
[7] Gholizadeh, S., Shehata, Draz, M., Zarghooni, M., et al. (2017) Microfluidic Approaches for Isolation, Detection, and Characterization of Extracellular Vesicles: Current Status and Future Directions. Biosensors and Bioelectronics, 91, 588-605.
https://doi.org/10.1016/j.bios.2016.12.062
[8] Karpman, D., Ståhl, A.-L. and Arvidsson, I. (2017) Extracellular Vesicles in Renal Disease. Nature Reviews Nephrology, 13, 545-562.
https://doi.org/10.1038/nrneph.2017.98
[9] Sedgwick, A.E. and D’Souza-Schorey, C. (2018) The Biology of Extracellular Microvesicles. Traffic, 19, 319-327.
https://doi.org/10.1111/tra.12558
[10] Frankel, E.B. and Audhya, A. (2018) ESCRT-Dependent Cargo Sorting at Multivesicular Endosomes. Seminars in Cell & Developmental Biology, 74, 4-10.
https://doi.org/10.1016/j.semcdb.2017.08.020
[11] Tan, M., Ge, Y., Wang, X., et al. (2023) Extracellular Vesicles (EVs) in Tumor Diagnosis and Therapy. Technology in Cancer Research & Treatment, 22.
https://doi.org/10.1177/15330338231171463
[12] Hyenne, V., Labouesse, M. and Goetz, J.G. (2018) The Small GTPase Ral Orchestrates MVB Biogenesis and Exosome Secretion. Small GTPases, 9, 445-451.
https://doi.org/10.1080/21541248.2016.1251378
[13] Santavanond, J.P., Rutter, S.F., Atkin-Smith, G.K., et al. (2021) Apoptotic Bodies: Mechanism of Formation, Isolation and Functional Relevance. Subcellular Biochemistry, 97, 61-88.
https://doi.org/10.1007/978-3-030-67171-6_4
[14] Mahmoudi, F., Hanachi, P. and Montaseri, A. (2023) Extracellular Vesicles of Immune Cells; Immunomodulatory Impacts and Therapeutic Potentials. Clinical Immunology, 248, Article ID: 109237.
https://doi.org/10.1016/j.clim.2023.109237
[15] Höög, J.L. and Lötvall, J. (2015) Diversity of Extracellular Vesicles in Human Ejaculates Revealed by Cryo-Electron Microscopy. Journal of Extracellular Vesicles, 4, 28680.
https://doi.org/10.3402/jev.v4.28680
[16] Théry, C., Witwer, K.W., Aikawa, E., et al. (2018) Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. Journal of Extracellular Vesicles, 7, Article ID: 1535750.
https://doi.org/10.1080/20013078.2018.1535750
[17] Théry, C., Amigorena, S., Raposo, G., et al. (2006) Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology, 30, 3.22.1-3.22.29.
https://doi.org/10.1002/0471143030.cb0322s30
[18] Li, P., Kaslan, M., Lee, S.H., et al. (2017) Progress in Exosome Isolation Techniques. Theranostics, 7, 789-804.
https://doi.org/10.7150/thno.18133
[19] Stam, J., Bartel, S., Bischoff, R., et al. (2021) Isolation of Extracellular Vesicles with Combined Enrichment Methods. Journal of Chromatography B, 1169, Article ID: 122604.
https://doi.org/10.1016/j.jchromb.2021.122604
[20] Al-Massarani, G., Vacher-Coponat, H., Paul, P., et al. (2009) Kidney Transplantation Decreases the Level and Procoagulant Activity of Circulating Microparticles. American Journal of Transplantation, 9, 550-557.
https://doi.org/10.1111/j.1600-6143.2008.02532.x
[21] Qamri, Z., Pelletier, R., Foster, J., et al. (2014) Early Posttransplant Changes in Circulating Endothelial Microparticles in Patients with Kidney Transplantation. Transplant Immunology, 31, 60-64.
https://doi.org/10.1016/j.trim.2014.06.006
[22] Sigdel, K.R., Cheng, A., Wang, Y., et al. (2015) The Emerging Functions of Long Noncoding RNA in Immune Cells: Autoimmune Diseases. Journal Of Immunology Research, 2015, Article ID: 848790.
https://doi.org/10.1155/2015/848790
[23] Park, J., Lin, H.-Y., Assaker, J.P., et al. (2017) Integrated Kidney Exosome Analysis for the Detection of Kidney Transplant Rejection. ACS Nano, 11, 11041-11046.
https://doi.org/10.1021/acsnano.7b05083
[24] Zhang, H., Huang, E., Kahwaji, J., et al. (2017) Plasma Exosomes from HLA-Sensitized Kidney Transplant Recipients Contain MRNA Transcripts Which Predict Development of Antibody-Mediated Rejection. Transplantation, 101, 2419-2428.
https://doi.org/10.1097/TP.0000000000001834
[25] Chen, Y., Han, X., Sun, Y., et al. (2020) A Circulating Exosomal MicroRNA Panel as a Novel Biomarker for Monitoring Post-Transplant Renal Graft Function. Journal of Cellular and Molecular Medicine, 24, 12154-12163.
https://doi.org/10.1111/jcmm.15861
[26] Braun, F., Rinschen, M., Buchner, D., et al. (2020) The Proteomic Landscape of Small Urinary Extracellular Vesicles during Kidney Transplantation. Journal of Extracellular Vesicles, 10, E12026.
https://doi.org/10.1002/jev2.12026
[27] Zhang, A.-B., Peng, Y.-F., Jia, J.-J., et al. (2019) Exosome-Derived Galectin-9 May Be a Novel Predictor of Rejection and Prognosis after Liver Transplantation. Journal of Zhejiang University. Science B, 20, 605-612.
https://doi.org/10.1631/jzus.B1900051
[28] Wang, W., Li, W., Cao, L., et al. (2022) Serum Extracellular Vesicle MicroRNAs as Candidate Biomarkers for Acute Rejection in Patients Subjected to Liver Transplant. Frontiers in Genetics, 13, Article ID: 1015049.
https://doi.org/10.3389/fgene.2022.1015049
[29] Cui, B., Sun, J., Li, S.-P., et al. (2022) CD80 Dendritic Cell Derived Exosomes Inhibit CD8 T Cells through Down-Regulating NLRP3 Expression after Liver Transplantation. International Immunopharmacology, 109, Article ID: 108787.
https://doi.org/10.1016/j.intimp.2022.108787
[30] Singh, N., Vanhaecke, J., Van Cleemput, J., et al. (2015) Markers of Endothelial Injury and Platelet Microparticles Are Distinct in Patients with Stable Native Coronary Artery Disease and with Cardiac Allograft Vasculopathy. International Journal of Cardiology, 179, 331-333.
https://doi.org/10.1016/j.ijcard.2014.11.052
[31] Habertheuer, A., Korutla, L., Rostami, S., et al. (2018) Donor Tissue-Specific Exosome Profiling Enables Noninvasive Monitoring of Acute Rejection in Mouse Allogeneic Heart Transplantation. The Journal of Thoracic and Cardiovascular Surgery, 155, 2479-2489.
https://doi.org/10.1016/j.jtcvs.2017.12.125
[32] Joo, S., Dhaygude, K., Westerberg, S., et al. (2023) Transcriptomic Landscape of Circulating Extracellular Vesicles in Heart Transplant Ischemia-Reperfusion. Genes (Basel), 14, Article No. 2101.
https://doi.org/10.3390/genes14112101
[33] Kennel, P.J., Saha, A., Maldonado, D.A., et al. (2018) Serum Exosomal Protein Profiling for the Non-Invasive Detection of Cardiac Allograft Rejection. The Journal of Heart and Lung Transplantation, 37, 409-417.
https://doi.org/10.1016/j.healun.2017.07.012
[34] Sukma Dewi, I., Celik, S., Karlsson, A., et al. (2017) Exosomal MiR-142-3p Is Increased during Cardiac Allograft Rejection and Augments Vascular Permeability through Down-Regulation of Endothelial RAB11FIP2 Expression. Cardiovascular Research, 113, 440-452.
https://doi.org/10.1093/cvr/cvw244
[35] Mattke, J., Vasu, S., Darden, C.M., et al. (2021) Role of Exosomes in Islet Transplantation. Frontiers in Endocrinology (Lausanne), 12, Article ID: 681600.
https://doi.org/10.3389/fendo.2021.681600
[36] Boardman, D.A., Jacob, J., Smyth, L.A., et al. (2016) What Is Direct Allorecognition? Current Transplantation Reports, 3, 275-283.
https://doi.org/10.1007/s40472-016-0115-8
[37] Benichou, G., Takizawa, P.A., Olson, C.A., et al. (1992) Donor Major Histocompatibility Complex (MHC) Peptides Are Presented by Recipient MHC Molecules during Graft Rejection. Journal of Experimental Medicine, 175, 305-308.
https://doi.org/10.1084/jem.175.1.305
[38] Vallabhajosyula, P., Korutla, L., Habertheuer, A., et al. (2017) Tissue-Specific Exosome Biomarkers for Noninvasively Monitoring Immunologic Rejection of Transplanted Tissue. Journal of Clinical Investigation, 127, 1375-1391.
https://doi.org/10.1172/JCI87993
[39] Gunasekaran, M., Xu, Z., Nayak, D.K., et al. (2017) Donor-Derived Exosomes with Lung Self-Antigens in Human Lung Allograft Rejection. American Journal of Transplantation, 17, 474-484.
https://doi.org/10.1111/ajt.13915
[40] Gunasekaran, M., Sharma, M., Hachem, R., et al. (2018) Circulating Exosomes with Distinct Properties during Chronic Lung Allograft Rejection. The Journal of Immunology, 200, 2535-2541.
https://doi.org/10.4049/jimmunol.1701587
[41] Habertheuer, A., Ram, C., Schmierer, M., et al. (2022) Circulating Donor Lung-Specific Exosome Profiles Enable Noninvasive Monitoring of Acute Rejection in a Rodent Orthotopic Lung Transplantation Model. Transplantation, 106, 754-766.
https://doi.org/10.1097/TP.0000000000003820
[42] Gregson, A.L., Hoji, A., Injean, P., et al. (2015) Altered Exosomal RNA Profiles in Bronchoalveolar Lavage from Lung Transplants with Acute Rejection. American Journal of Respiratory and Critical Care Medicine, 192, 1490-1503.
https://doi.org/10.1164/rccm.201503-0558OC
[43] Hwang, B., Bryers, J. and Mulligan, M.S. (2021) Potential Role of Exosome-Based Allorecognition Pathways Involved in Lung Transplant Rejection. The Journal of Thoracic and Cardiovascular Surgery, 161, E129-E134.
https://doi.org/10.1016/j.jtcvs.2020.04.183