miRNA与小细胞肺癌关系的研究进展
Advances in the Relationship between miRNA and Small Cell Lung Cancer
DOI: 10.12677/acm.2024.143897, PDF, HTML, XML, 下载: 18  浏览: 46 
作者: 郑 杨, 帕提古力·阿尔西丁*:新疆医科大学附属肿瘤医院肺内科一病区,新疆 乌鲁木齐
关键词: 微小RNA小细胞肺癌转移耐药预后MicroRNA Small Cell Lung Cancer Metastasis Drug Resistance Prognosis
摘要: 小细胞肺癌(Small Cell Lung Cancer, SCLC)是一种恶性程度高的神经内分泌肿瘤,其病情进展快,短期内易出现耐药或复发,预后很差。微小RNA (microRNA, miRNA)是一类由19~25个核苷酸组成的非编码单链RNA,广泛分布于真核生物中,参与多种疾病的发生过程。有研究显示,miRNA在SCLC中表达失调,发挥抑癌或促癌作用,参与SCLC的增殖、侵袭、转移及耐药的生物学过程。同时,也有报道,miRNA作为SCLC的诊断及预后的生物标志物提供了可能性。本文就miRNA在SCLC的增殖转移、耐药、诊断、预后等相关的研究进展作一综述。
Abstract: Small cell lung cancer (SCLC) is a highly malignant neuroendocrine tumor with rapid progression, short-term susceptibility to drug resistance or recurrence, and poor prognosis. MicroRNA (miRNA) is a class of non-coding single-stranded RNAs consisting of 19~25 nucleotides, which are widely distributed in eukaryotes and are involved in the process of many diseases. Some studies have shown that miRNAs are dysregulated in SCLC expression, exert oncogenic or pro-oncogenic effects, and participate in the biological processes of proliferation, invasion, metastasis, and drug resistance in SCLC. Meanwhile, it has also been reported that miRNAs offer possibilities as biomarkers for the diagnosis and prognosis of SCLC. In this paper, we present a review of the research progress of miRNAs related to proliferation and metastasis, drug resistance, diagnosis and prognosis of SCLC.
文章引用:郑杨, 帕提古力·阿尔西丁. miRNA与小细胞肺癌关系的研究进展[J]. 临床医学进展, 2024, 14(3): 1704-1709. https://doi.org/10.12677/acm.2024.143897

1. 引言

小细胞肺癌(Small Cell Lung Cancer, SCLC)是一种高级别神经内分泌肿瘤,约占所有肺癌15%,其恶性程度高,倍增时间短,易出现远处转移 [1] 。多数患者确诊时为广泛期,目前依托泊苷联合铂类化疗是一线治疗的标准方案。SCLC对一线治疗非常敏感,客观缓解率(Objective Response Rate, ORR)为70%,但多数患者会在1年内出现耐药或复发,预后极差,2年生存率低于5% [2] [3] 。

微小RNA (microRNA, miRNA)是一类由19~25个核苷酸(nucleotid, nt)组成的内源性非编码单链RNA,其广泛分布于真核生物中 [4] 。通过与mRNA的3'-非翻译区(3'-URT)的识别并结合,降解或抑制mRNA翻译,发挥调控靶基因表达的作用。研究表明,miRNA的异常表达可以影响肿瘤的增殖、转移及耐药等过程,在肿瘤细胞的发生发展中起着重要作用 [5] [6] [7] 。

近年来,miRNA在肺癌中的研究越来越多,但是关于miRNA与SCLC的研究较少。本文就miRNA与SCLC的研究进展做一简要综述。

2. miRNA产生机制及分类

miRNA的合成首先是由细胞核中的miRNA基因的初级转录产物pri-miRNA (primary miRNA)被核糖核酸酶Drosha切割形成长度大约为70~90个碱基且有茎环结构的前体miRNA (pre-miRNA)。pre-miRNA在转运蛋白esportin-5的作用下转运到细胞质中,通过核糖核酸内切酶Dicer切割成长约20~24 nt成熟的miRNA (mature miRNA)。成熟的miRNA与其他蛋白质结合形成RNA诱导的沉默复合体(RNA Induced Silencing Complex, RISC),引起靶mRNA降解或翻译抑制,影响其生物学功能 [8] [9] [10] 。

miRNA按其功能不同可分为两类,一类是促癌基因的miRNA,其过表达与肿瘤的发生有关。另一类是抑癌基因的miRNA,其过表达则会起到抗肿瘤的作用。研究表明,miR-21在肺癌细胞中表达上调并靶向PTEN促进肺癌细胞的生长、转移及耐药 [11] 。let-7低表达与肺癌患者术后预后不良相关。let-7的过表达可以抑制肺癌细胞的生长 [12] 。let-7c通过降低ITGB3和MAP4K3的表达来抑制肺癌的生长及转移 [13] 。miR-582-5p通过下调NOTCH1表达抑制肿瘤细胞的生长和侵袭 [14] 。

3. miRNA参与细胞生长、侵袭和转移

研究发现miRNA的异常表达与SCLC的生长、侵袭及转移等生物学行为密切相关 [7] 。

一项研究 [15] 评估了Ets家族的转录因子Friend白血病病毒整合蛋白1 (Friend Leukemia virus Integration 1, FLI1)在SCLC中调节miR-17-92基因簇表达的作用。miR-17-92基因簇包含miR-17-5p,miR-18,miR-19a,miR-19b,miR-20a和miR-92a,位于13号染色体(13q31.3)上miR-17宿主基因的非蛋白编码区。研究发现,在SCLC中FLI1通过ETs结合位点激活miR-17-92基因簇的启动子,FLI1过表达诱导其与miR-17-92启动子结合并激活基因簇转录。相反,在敲低FLI1后,miR-17-5p和miR20a均显著下调,调节靶基因P21和Bim-S,促进SCLC细胞凋亡,抑制细胞增殖及肿瘤生长。因此,FLI1可以通过激活miR-17-92基因簇促进肿瘤发生,是SCLC生长的重要驱动因子。Zhou等 [16] 通过微阵列和实时荧光定量PCR分析了SCLC转移和预后相关的miRNA以及血清和组织之间的相关性。研究者采用3'UTR报告基因检测和免疫印迹技术探讨了miRNA的作用机理。研究显示miR-184高表达可以抑制SCLC的转移,而miR-574-5p高表达则促进了SCLC的转移。研究发现,miR-574-5p可作为SCLC的独立预后危险因素。因此,部分miRNA高表达会促进肿瘤细胞的发生。

另有研究表明,FLOT2 (Flotillin 2)是miR-485-5p的靶基因。miR-485-5P通过调控FLOT2抑制SCLC的生长和转移。因此,miR-485-5P作为肿瘤抑制因子,上调miR-485-5p的表达可能是SCLC治疗的一个新思路 [17] 。Gao等研究发现,miR-485-5p在SCLC组织中的低表达。通过体外细胞研究证明,miR-485-5p在SCLC中过表达可抑制肿瘤细胞的增殖、迁移和侵袭,而敲低miR-485-5p则作用相反 [17] 。Cao等对42例SCLC患者标本中924个miRNAs的表达进行分析,发现在SCLC中miR-886-3p低表达与其预后不良有关。在其他40例病例研究中也得到了这种相关性。此外,miR-886-3p可抑制SCLC细胞的增殖、迁移和侵袭,其作用机制可能与抑制靶基因PLK1和TGF-b1的表达有关。在SCLC细胞中,上调miR-886-3p的表达可明显抑制体内肿瘤生长、骨/肌肉侵袭和肺转移 [18] 。为了确定调控SCLC的新miRNA,对SCLC患者和健康者的血清和组织进行研究发现,miR-1在SCLC中表达显著下调。对SCLC细胞系研究发现,miR-1过表达会抑制SCLC细胞的生长和转移,而miR-1低表达会促进SCLC细胞的生长和转移。研究者对小鼠模型心内注射miR-1发现远处器官转移减少,而miR-1功能丧失的小鼠模型则促进SCLC生长和转移。机制研究表明,CXCR4是miR-1在SCLC中的直接靶点。使用无偏转录组分析发现,CXCR4/FOXM1/RRM2是调控SCLC生长和转移的独特轴。FOXM1直接与RRM2启动子结合并调节其在SCLC中的活性。因此,miR-1是SCLC的肿瘤抑制基因。miR-1通过调节CXCR4/FOXM1/RRM2轴来抑制SCLC的生长和转移 [19] 。因此,部分miRNA高表达会抑制肿瘤细胞的增殖、转移及侵袭。

研究证明,miRNA异常表达在肿瘤血管生成调节中也发挥了重要作用。Mao等研究发现 [20] ,122例SCLC患者外周血中miR-141高表达且与临床分期密切相关,miR-141在SCLC中具有潜在的致癌作用。在体外,miR-141通过外泌体输送到人脐静脉血管内皮细胞(Human Umbilical Vein Vascular Endothelial Cells, HUVECs),并可促进HUVEC的增殖、侵袭、迁移及管状形成,诱导微血管的萌发。研究证明SCLC细胞来源的外泌体miR-141促进新生血管形成。进一步研究发现,miR-141高表达的小鼠皮下肿瘤结节具有较高的微血管密度,且生长的更快。研究表明,KLF12是miR-141的靶基因,KLF12高表达可以抑制miR-141在SCLC中促血管生成的作用 [20] 。

另外,miRNA异常表达还参与细胞周期调控。Zhao等 [21] 采用qRT-PCR方法检测了miR-25在5种SCLC细胞和9种SCLC组织中的表达,发现miR-25在SCLC细胞和组织中均表达上调。此外,通过研究发现,miR-25表达下调可以抑制SCLC细胞的增殖、侵袭性和对顺铂的耐药。miR-25表达下调通过Cyclin E2诱导G0/G1期细胞周期停滞。研究表明 [22] ,miR-216a-5p在SCLC细胞中表达下调可促进SCLC细胞的增殖和迁移,并调节G2期细胞周期。

4. miRNA调控SCLC化疗耐药

SCLC一线治疗采用依托泊苷联合铂类化疗,多数患者对初始治疗较为敏感,但容易出现耐药或复发,预后差。越来越多的研究表明,miRNA异常表达与肿瘤细胞的耐药性密切相关。

Liu等研究 [23] 表明miR-7低表达与SCLC患者化疗耐药和总生存期(Overall Survival, OS)缩短密切相关。通过检测44例SCLC组织中miR-7和MRP1/ABCC1的表达,发现耐药组的miR-7的表达水平低于敏感组,miR-7的表达与化疗疗效密切相关。SCLC组织中MRP1/ABCC1的表达与miR-7水平呈负相关。此外,miR-7通过抑制MRP1/ABCC1介导SCLC化疗耐药。另一研究 [24] 发现钾离子通道KCNJ2/Kir2.1通过调节MRP1/ABCC1的表达来调节SCLC细胞生长和耐药。KCNJ2/Kir2.1可能成为干预SCLC化疗耐药的新靶点。Cui等研究 [25] 发现,hsa-miR-340-5p的表达下调可能通过介导性别决定区Y-box 2 (Sex-determining region Y-box 2, SOX2)的表达而影响SCLC细胞对顺铂的耐药性。Lai等研究 [26] 发现,miR-7-5p的表达水平在SCLC耐药细胞(H69AR和H446AR)中表达明显下调,多聚ADP核糖聚合酶1 (Poly ADP-Ribose Polymerase 1, PARP1)是miR-7-5p的靶基因。研究表明,通过调控miR-7-5p的表达水平可能是逆转SCLC化疗耐药的新途径。

Yang等研究 [27] 发现,在SCLC耐药细胞中Beclin-1表达上调。抑制Beclin-1表达可导致SCLC耐药细胞自噬减少,凋亡增加,细胞周期G2/M期增加,S期减少。Beclin-1是miR-30a-5p的直接靶点,研究表明,通过miR-30a-5p高表达,抑制Beclin-1表达,可能增加SCLC耐药细胞对化疗的敏感性,改善治疗结果。Pan等研究 [28] 发现miR-24-3p在SCLC耐药细胞(H446/EP)中显著下调。ATG4A是miR-24-3p的直接靶点。在耐药细胞中过表达miR-24-3p导致ATG4A蛋白水平降低,SCLC细胞对依托泊苷联合顺铂治疗重新敏感。因此,通过上调miR-24-3p抑制自噬可能是对抗SCLC化疗耐药的一种策略。

上述研究表明,通过调节miRNA的表达可以增加SCLC细胞对化疗药物的敏感性,改善化疗耐药,为解决SCLC化疗耐药提供了新方法。

5. miRNA作为SCLC诊断和预后标志物

Yu等研究 [29] 发现SCLC患者血浆中miR-92a-2表达显著高于对照组,受试者工作特征(Receiver Operating Characteristic, ROC)曲线显示特异性和敏感性分别为100%和56%,ROC曲线下面积(Area Under Curve, AUC)为0.761。因此,通过检测血浆中miR-92a-2表达水平有望成为一种SCLC无创诊断的方法。Khan等 [19] 为了分析miR-1在SCLC中的表达,开发了一种高灵敏度的基于纳米探针的生物传感方法,该方法可以对血清或细胞系样本中miR-1进行绝对定量。研究者用金纳米探针对SCLC患者和健康者的血清样本中的miR-1进行检测,发现SCLC血清样本中miR-1的表达明显降低。该研究 [19] 采用了一种高灵敏度的纳米探针作为非侵入性miR-1检测方法,该方法可以作为未来miR-1的诊断工具,也可以优化用于检测其他miRNAs。

Zhou等研究 [16] 发现SCLC患者中miR-574-5p的高表达与无进展生存期(Progression-Free Survival, PFS)和OS的降低有关,miR-574-5p被证实为SCLC的独立预后危险因素。因此,miR-574-5p可作为SCLC潜在的治疗和预后预测指标。Cao等研究 [18] 表明miR-886-3p的表达缺失和miR-886启动子的高甲基化都是SCLC预后不良的指标。miR-886-3p低表达组的OS明显短于高表达组,低表达组的5年生存率为27.0%,高表达组为77.0%,这种相关性另外40例患者中得到了进一步验证,miR-886-3p低表达组的OS短于高表达组。Liu等研究 [23] 发现,miR-7的低水平表达与化疗耐药和OS缩短密切相关。研究表明,miR-7可以作为SCLC患者化疗耐药的预测生物标志物和预后生物标志物。Liu等研究 [24] 表明KCNJ2/Kir2.1可能是SCLC的预后预测因子和潜在的干预化疗耐药的新靶点。Yan等通过对GSE27435的miRNA表达谱进行单因素Cox回归分析 [30] ,发现7个miRNAs (hsa-miR-142-5p、hsa-miR-146a、hsa-miR-194、hsa-miR-220、hsa-miR-222、hsa-miR-424和hsa-miR-621)高表达与较长的OS相关,4个miRNAs (hsa-miR-198、hsa-miR-532-3p、hsa-miR-608和hsa-miR-9)的高表达与较短的OS有关。采用多因素Cox回归分析方法,发现miR-194、miR-608和miR-9可能会预测可切除SCLC患者的OS。上述研究表明,miRNA可能作为SCLC的诊断和预后评估的生物标志物,为SCLC的无创诊断及治疗提供了新方向。

6. 小结

miRNA是目前肿瘤领域的研究热点,在SCLC中作用机制复杂,目前尚未完全清楚。越来越多的研究证明,miRNA在SCLC的发生发展及转移过程中具有重要的调控作用。随着对miRNA的进一步研究,发现其在SCLC的诊断、治疗、预后等方面有潜在的应用价值,为SCLC的诊断及预后提供了新思路。

目前通过干预miRNA达到治疗SCLC的研究多数集中在体外细胞试验或动物模型上,将这些研究应用到临床治疗上的有效性及安全性还需要进一步的探索和研究。随着miRNA的研究越来越成熟,miRNA将会在SCLC的诊断和治疗中带来新方向。

NOTES

*通讯作者。

参考文献

[1] Liu, X., Xing, H. and Liu, B. (2022) Current Status and Future Perspectives of Immune Checkpoint Inhibitors in Extensive-Stage Small Cell Lung Cancer. American Journal of Cancer Research, 12, 2447-2464.
[2] Guo, H., Li, L. and Cui, J. (2020) Advances and Challenges in Immunotherapy of Small Cell Lung Cancer. Chinese Journal of Cancer Research, 32, 115-128.
https://doi.org/10.21147/j.issn.1000-9604.2020.01.13
[3] Yang, S., Zhang, Z. and Wang, Q. (2019) Emerging Therapies for Small Cell Lung Cancer. Journal of Hematology & Oncology, 12, Article No. 47.
https://doi.org/10.1186/s13045-019-0736-3
[4] Yang, H., Liu, Y., Chen, L., et al. (2023) miRNA-Based Therapies for Lung Cancer: Opportunities and Challenges? Biomolecules, 13, Article 877.
https://doi.org/10.3390/biom13060877
[5] Lei, Y., Chen, L., Liu, J., et al. (2022) The MicroRNA-Based Strategies to Combat Cancer Chemoresistance via Regulating Autophagy. Frontiers in Oncology, 12, Article 841625.
https://doi.org/10.3389/fonc.2022.841625
[6] Wani, J.A., Majid, S., Imtiyaz, Z., et al. (2022) MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel), 12, Article 1610.
https://doi.org/10.3390/diagnostics12071610
[7] Pandey, M., Mukhopadhyay, A., Sharawat, S.K., et al. (2021) Role of MicroRNAs in Regulating Cell Proliferation, Metastasis and Chemoresistance and Their Applications as Cancer Biomarkers in Small Cell Lung Cancer. Biochimica et Biophysica Acta, 1876, Article 188552.
https://doi.org/10.1016/j.bbcan.2021.188552
[8] Rajgor, D., Sanderson, T.M., Amici, M., et al. (2018) NMDAR-Dependent Argonaute 2 Phosphorylation Regulates miRNA Activity and Dendritic Spine Plasticity. The EMBO Journal, 37, e97943.
https://doi.org/10.15252/embj.201797943
[9] Hutvagner, G., McLachlan, J., Pasquinelli, A.E., et al. (2001) A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the Let-7 Small Temporal RNA. Science, 293, 834-838.
https://doi.org/10.1126/science.1062961
[10] Sell, M.C., Ramlogan-Steel, C.A., Steel, J.C., et al. (2023) MicroRNAs in Cancer Metastasis: Biological and Therapeutic Implications. Expert Reviews in Molecular Medicine, 25, e14.
https://doi.org/10.1017/erm.2023.7
[11] Liu, Z.L., Wang, H., Liu, J., et al. (2013) MicroRNA-21 (miR-21) Expression Promotes Growth, Metastasis, and Chemo-or Radioresistance in Non-Small Cell Lung Cancer Cells by Targeting PTEN. Molecular and Cellular Biochemistry, 372, 35-45.
https://doi.org/10.1007/s11010-012-1443-3
[12] Takamizawa, J., Konishi, H., Yanagisawa, K., et al. (2004) Reduced Expression of the Let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival. Cancer Research, 64, 3753-3756.
https://doi.org/10.1158/0008-5472.CAN-04-0637
[13] Zhao, B., Han, H., Chen, J., et al. (2014) MicroRNA Let-7c Inhibits Migration and Invasion of Human Non-Small Cell Lung Cancer by Targeting ITGB3 and MAP4K3. Cancer Letters, 342, 43-51.
https://doi.org/10.1016/j.canlet.2013.08.030
[14] Liu, J., Liu, S., Deng, X., et al. (2019) MicroRNA-582-5p Suppresses Non-Small Cell Lung Cancer Cells Growth and Invasion via Downregulating NOTCH1. PLOS ONE, 14, e217652.
https://doi.org/10.1371/journal.pone.0217652
[15] Li, L., Song, W., Yan, X., et al. (2017) Friend Leukemia Virus Integration 1 Promotes Tumorigenesis of Small Cell Lung Cancer Cells by Activating the miR-17-92 Pathway. Oncotarget, 8, 41975-41987.
https://doi.org/10.18632/oncotarget.16715
[16] Zhou, R., Zhou, X., Yin, Z., et al. (2015) Tumor Invasion and Metastasis Regulated by MicroRNA-184 and MicroRNA-574-5p in Small-Cell Lung Cancer. Oncotarget, 6, 44609-44622.
https://doi.org/10.18632/oncotarget.6338
[17] Gao, F., Wu, H., Wang, R., et al. (2019) MicroRNA-485-5p Suppresses the Proliferation, Migration and Invasion of Small Cell Lung Cancer Cells by Targeting Flotillin-2. Bioengineered, 10, 1-12.
https://doi.org/10.1080/21655979.2019.1586056
[18] Cao, J., Song, Y., Bi, N., et al. (2013) DNA Methylation-Mediated Repression of miR-886-3p Predicts Poor Outcome of Human Small Cell Lung Cancer. Cancer Research, 73, 3326-3335.
https://doi.org/10.1158/0008-5472.CAN-12-3055
[19] Khan, P., Siddiqui, J.A., Kshirsagar, P.G., et al. (2023) MicroRNA-1 Attenuates the Growth and Metastasis of Small Cell Lung Cancer through CXCR4/FOXM1/RRM2 Axis. Molecular Cancer, 22, Article No. 1.
https://doi.org/10.1186/s12943-022-01695-6
[20] Mao, S., Lu, Z., Zheng, S., et al. (2020) Exosomal miR-141 Promotes Tumor Angiogenesis via KLF12 in Small Cell Lung Cancer. Journal of Experimental & Clinical Cancer Research, 39, Article No. 193.
https://doi.org/10.1186/s13046-020-01680-1
[21] Zhao, Z., Liu, J., Wang, C., et al. (2014) MicroRNA-25 Regulates Small Cell Lung Cancer Cell Development and Cell Cycle through Cyclin E2. International Journal of Clinical and Experimental Pathology, 7, 7726-7734.
[22] Sun, Y., Hu, B., Wang, Y., et al. (2018) miR-216a-5p Inhibits Malignant Progression in Small Cell Lung Cancer: Involvement of the Bcl-2 Family Proteins. Cancer Management and Research, 10, 4735-4745.
https://doi.org/10.2147/CMAR.S178380
[23] Liu, H., Wu, X., Huang, J., et al. (2015) miR-7 Modulates Chemoresistance of Small Cell Lung Cancer by Repressing MRP1/ABCC1. International Journal of Experimental Pathology, 96, 240-247.
https://doi.org/10.1111/iep.12131
[24] Liu, H., Huang, J., Peng, J., et al. (2015) Upregulation of the Inwardly Rectifying Potassium Channel Kir2. 1 (KCNJ2) Modulates Multidrug Resistance of Small-Cell Lung Cancer under the Regulation of miR-7 and the Ras/MAPK Pathway. Molecular Cancer, 14, Article No. 59.
https://doi.org/10.1186/s12943-015-0298-0
[25] Cui, F., Hao, Z.X., Li, J., et al. (2020) SOX2 Mediates Cisplatin Resistance in Small-Cell Lung Cancer with Downregulated Expression of hsa-miR-340-5p. Molecular Genetics & Genomic Medicine, 8, e1195.
https://doi.org/10.1002/mgg3.1195
[26] Lai, J., Yang, H., Zhu, Y., et al. (2019) miR-7-5p-Mediated Downregulation of PARP1 Impacts DNA Homologous Recombination Repair and Resistance to Doxorubicin in Small Cell Lung Cancer. BMC Cancer, 19, Article No. 602.
https://doi.org/10.1186/s12885-019-5798-7
[27] Yang, X., Bai, F., Xu, Y., et al. (2017) Intensified Beclin-1 Mediated by Low Expression of miR-30a-5p Promotes Chemoresistance in Human Small Cell Lung Cancer. Cellular Physiology and Biochemistry, 43, 1126-1139.
https://doi.org/10.1159/000481754
[28] Pan, B., Chen, Y., Song, H., et al. (2015) miR-24-3p Downregulation Contributes to VP16-DDP Resistance in Small-Cell Lung Cancer by Targeting ATG4A. Oncotarget, 6, 317-331.
https://doi.org/10.18632/oncotarget.2787
[29] Yu, Y., Zuo, J., Tan, Q., et al. (2017) Plasma miR-92a-2 as a Biomarker for Small Cell Lung Cancer. Cancer Biomarkers, 18, 319-327.
https://doi.org/10.3233/CBM-160254
[30] Yan, H., Xin, S., Ma, J., et al. (2019) A Three MicroRNA-Based Prognostic Signature for Small Cell Lung Cancer Overall Survival. Journal of Cellular Biochemistry, 120, 8723-8730.
https://doi.org/10.1002/jcb.28159