新型冠状病毒感染与睡眠障碍关系研究进展
Research Progress on the Relationship between Novel Coronavirus Infection and Sleep Disorder
DOI: 10.12677/ijpn.2024.131001, PDF, HTML, XML, 下载: 45  浏览: 71 
作者: 温玉墀*, 廖晓睿:中国人民解放军63710部队医院急诊医学科,山西 忻州;张 燕:中国人民解放军63710部队医院外科,山西 忻州;卿为家, 李广云, 李宏伟, 陈 强:中国人民解放军63710部队医院内科,山西 忻州
关键词: 新型冠状病毒感染睡眠障碍研究进展Novel Coronavirus Infection Sleep Disorder Research Progress
摘要: 新型冠状病毒肺炎是由严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)感染引起的一种新的高传染性疾病,2019年底出现,引发全球大流行。临床观察发现,部分新冠患者发病后数月仍未完全恢复,出现咳嗽、胸闷、气短、嗅觉、味觉减退、疲劳、失眠、焦虑、抑郁等症状,即长新冠综合征。其中睡眠障碍非常常见,且对于感染后人群的工作、生活及心理造成了很大困扰,但其发病机制尚不清楚,因此很有必要进行探究。本文对新型冠状病毒感染引起睡眠障碍的可能机制进行综述,以利于更深入地了解长新冠的发病机制、预警信号、早期干预措施,从而提出更好的治疗方案。
Abstract: COVID-19 is a new highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which emerged in late 2019, triggering a global pandemic. Clinical observations have found that some COVID-19 patients still have not fully recovered after several months of onset, and they have symptoms such as cough, chest tightness, shortness of breath, decreased sense of smell and taste, fatigue, insomnia, anxiety, and depression, namely long COVID-19 syndrome. Among them, sleep disorder is very common, and it causes great distress to the work, life, and psychology of the infected population. However, its pathogenesis is still unclear, so it is necessary to explore. This article reviews the possible mechanisms of sleep disorder caused by novel coronavirus infection, in order to better understand the pathogenesis, warning signals, and early intervention measures of COVID-19, so as to put forward better treatment plans.
文章引用:温玉墀, 张燕, 卿为家, 李广云, 李宏伟, 陈强, 廖晓睿. 新型冠状病毒感染与睡眠障碍关系研究进展[J]. 国际神经精神科学杂志, 2024, 13(1): 1-7. https://doi.org/10.12677/ijpn.2024.131001

1. 引言

2020年1月底,世界卫生组织宣布新冠疫情构成“国际关注的突发公共卫生事件”,全球各国即采取了一系列疫情防控措施应对新冠感染,现阶段已取得显著成效,在2023年5月5日,世界卫生组织(World Health Organization, WHO)宣布新冠疫情不再构成“国际关注的突发公共卫生事件”。但这并不意味着新冠疫情的结束,也并不意味着疫情危害就彻底消失。临床观察发现,部分新冠患者发病后数月仍未完全恢复,出现咳嗽、胸闷、气短、嗅觉、味觉减退、疲劳、失眠、焦虑、抑郁等症状,即长新冠综合征:新冠感染者发病后或无症状感染者确诊后3个月存在的、持续至少2个月,且无法用其他诊断解释的症状 [1] 。症状可以是急性期康复后新发症状,也可以是急性期症状的持续存在。黄朝林等 [2] 对武汉市金银潭医院2020年1月至5月期间出院的1733例COVID-19患者进行了集中随访,发现76%的患者在发病6个月后仍有至少一个症状,其中疲劳或肌肉无力占63%,睡眠障碍26%,焦虑或抑郁23%。住院时病情更重的患者更可能呈现肺功能下降和胸部影像学异常。来自荷兰的Aranka V Ballering [3] 对荷兰的一项大型研究表明,12.7%的感染新冠肺炎的成年人中就有一人会出现“长期新冠”症状。但因为本研究没有把心理症状以及脑雾、失眠等症状纳入进来,所以患病率会有一定程度的低估。黄朝林等人的研究中新冠后遗症状患病率之所以高,可能与所纳入的患者病情较重、病毒毒力较大有一定关系。Maxime Taquet等 [4] 研究发现,33.62%的COVID-19幸存者会在感染后6个月内诊断精神或神经系统疾病,比如颅内出血、缺血性卒中、精神病、焦虑症、失眠等。17.39%的为焦虑症,是患病人数最多的诊断,且焦虑症的发生与COVID-19的严重程度无关。Janiri D等 [5] 研究发现,有30.2%的患者在康复后经历创伤后应激障碍(PTSD)。本文仅围绕新冠感染后出现的睡眠问题、发病机制及影响因素等复习相关研究,以期提高对长新冠的认识。

2. 长新冠患者的睡眠问题

睡眠障碍指患者对睡眠时间和(或)睡眠质量不满足并影响日间社会功能的一种主观体验,对身体、心理、社会功能会产生负面影响。世界卫生组织(WHO)统计显示,全球27%的人都存在睡眠问题,也就是说每3个人就有一个人睡不好觉。中国情况也并不乐观,据2023年3月《中国睡眠大数据报告》统计数据显示,中国平均睡眠时长为6.5小时,患各类睡眠障碍的人群占比高达38.2%,约5.1亿中国人存在睡眠障碍,失眠严重影响人的生活和工作质量。Nicholson K等 [6] 发现,长期睡眠障碍可引起多种身体疾病,比如心血管疾病、代谢异常、高血压、糖尿病、焦虑、抑郁和认知功能下降等。Sabia S等 [7] 研究发现,与睡7小时的人相比,睡眠时间不足5小时的人,在25年内被诊断出慢性病的几率高20%。中老年人睡眠时间不足5小时者发生多种慢性疾病的风险比夜间睡眠7小时者增高30%~40%。这些慢性病包括糖尿病、癌、冠心病、中风、心衰、慢性肺病、慢性肾病、肝病、抑郁症、痴呆与关节炎等。Mengyu Fan等 [8] 对385,292位没有心血管病的人进行了8年半的随访,研究发现,与睡眠不健康的人相比,睡眠健康的人发生发生心血管病的风险降低35%,发生冠心病和脑中风的风险分别降低34%。李雪丽等 [9] 研究发现,睡眠紊乱者的抑郁症发病率明显升高,其中失眠者抑郁症发病率为31.1%,而无睡眠紊乱者中抑郁症发病率仅为2.7%。

Evgenia Kalamara等 [10] 进行的一项研究显示,在新冠大流行期间,睡眠问题很常见,普通人群睡眠问题的发生率约为32.2%,新冠感染者有52%出现了睡眠障碍。最容易出现睡眠问题的人群有儿童和青少年、大学生、医护人员尤其是护士、孕妇、老人、患有情绪障碍的人,这些睡眠问题中失眠占80%。Al-Aly Z等 [11] 研究显示,新冠感染者精神健康事件诊断或处方的风险增加60%。其中,新冠组发生焦虑症的风险增加35%,抑郁症的风险增加39%,压力和适应障碍风险增加38%,发生认知障碍的风险增加80%,睡眠障碍的风险增加41%。Zawilska JB等 [12] 调查发现,失眠在新冠后6~12个月持续存在的比例约为12.3%,睡眠呼吸暂停或呼吸困难所致睡眠障碍约为8%。长新冠睡眠障碍与一般睡眠障碍有所不同,其主要表现为难以入睡或持续睡眠、压力水平增加、睡眠时间表延迟以及睡眠剥夺表现(如白天嗜睡、注意力难集中以及情绪不佳),学术界称其为新冠失眠症。

3. 长新冠患者睡眠障碍的发病机制

3.1. 过度觉醒机制

很多研究发现 [13] ,慢性失眠症的患者不仅夜间睡眠不理想,日间虽然非常疲倦、困乏,但依然存在入睡困难、睡眠轻浅易醒等现象,表现为24 h的过度兴奋状态。这种过度觉醒状态既是失眠的结果又是失眠的原因,并且在生理、皮层以及认知水平上都有表现。与睡眠良好者相比,失眠患者表现出更多的皮层和外周神经系统觉醒,并且二者之间的时间连续性是紊乱的 [14] 。慢性失眠症的过度兴奋可以表现在认知和情绪方面 [13] 。

在新冠大流行期间,每个人或多或少会受到疫情的影响。医护人员工作在战疫第一线,工作任务繁重、工作时间紧张,接触新冠发生感染的几率较大,可能因为工作原因面临社会歧视,承受着多方面的压力。因此,他们很容易出现焦虑、恐惧等情绪问题 [15] 。荟萃研究显示,新冠感染大流行初期,长期工作于临床一线医护人员抑郁、焦虑和失眠症状 的患病率分别为23.2%、22.8%、38.9% [16] 。青少年长期居家学习与生活,面临着学习压力、毕业压力和就业压力等多重压力,这些压力可以导致情绪问题出现 [17] 。青壮年人群担心经济状况、就业状况以及自己或者周围人感染,也会出现焦虑。上述因素作为应激源,可引起过度觉醒,进而导致失眠发生。任栓成/胡志安团队 [18] 等聚焦于觉醒睡眠调控的神经机制和急性失眠的发病机理,综合运用神经电生理记录、光纤钙活动记录、光遗传学、化学遗传学和行为学等多种技术手段,证明了丘脑室旁核(PVT)→中央杏仁核(CeA)神经环路不仅在生理条件下具有促进觉醒的功能,而且在急性应激情况下也被显著激活,从而介导急性应激导致的过度觉醒或失眠。该研究为阐明过度觉醒与失眠的发病机制提供了一定的理论基础。

3.2. 3P机制

3P假说是目前用来解释失眠症的广为接受的病因学理论模型,认为失眠的发生和维持是由3P因素累积超过了发病阈值所致。3P指的是Predisposing factor (易感因素)、Precipitating factor (诱发因素)和Perpetuating factor (维持因素) [19] 。易感因素是指容易产生失眠的个人特质,它决定了一个人是不是容易失眠,主要包括年龄、性别、家族史、精神疾患、性格等。年龄越大,患病率越高 [20] 。女性患病风险约为男性的1.4倍,该比例在45岁以上人群中甚至增至1.7倍 [21] 。有家族史人群更易出现失眠 [22] 。70%~80%的精神障碍患者均报告有失眠症状,而50%的失眠患者同时患有一种或多种精神障碍 [23] 。有神经质、内向、敏感、焦虑、完美主义个性特征的人也容易失眠。诱发因素是最开始引起失眠的原因,可引起失眠症状的急性发生,主要包括社会、情绪、生理三个方面。社会因素比如重大生活事件、出国倒时差、上夜班等,情绪因素如吵架、失恋、丧亲等,生理因素如生病、睡前饮用咖啡、酒精滥用等。维持因素是指使失眠得以持续的行为和信念,主要包括不良的睡眠习惯或不恰当的睡眠观念 [24] 。新冠疫情期间,因为封控等因素影响,人们的睡眠习惯被改变,在家上班、远程上课,不规律的作息,运动减少等等,都会影响人体正常的生物钟,改变睡眠节律。新型冠状病毒感染后,部分患者会出现明显的咳嗽、咳痰、头痛、流涕、咽痛、发热、呼吸困难、胸闷气短等症状,对病人的身体产生很大的影响,影响夜间睡眠,导致入睡困难、眠浅易醒和早醒等症状。短期失眠发生在易感者身上,加之对失眠不正确的认知或者不良的睡眠习惯,导致长期失眠存在。

3.3. 神经损伤机制

1) 新冠病毒导致神经细胞与组织直接损伤。因为人体存在血脑屏障(blood brain barrier, BBB),病毒感染通常从外周组织开始,很少会扩散到中枢神经系统 [25] 。但是有部分病毒具有神经毒力,可透过血脑屏障,引起神经系统感染。新冠病毒就是其中之一。Rhea等 [26] 利用放射性元素标记过的SARS-CoV-2刺突蛋白(S1) I-S1亚基可轻松越过小鼠BBB,进入大脑实质。黄朝林等人 [27] 研究发现,部分患者脑脊液中可检测到SARS-CoV-2 mRNA,表明SARS-CoV-2可穿过BBB。已有研究发现,血管紧张素转化酶受体(ACE2)对新型冠状病毒穿透细胞至关重要 [28] 。ACE2主要在胃肠道、口鼻腔黏膜、心脏、肾脏、肺和睾丸中表达,亦可见于大脑皮质和海马等部位 [29] 。目前研究发现,新冠病毒进入中枢神经系统有多种途径。在外周病毒可能通过与嗅球细胞表面的ACE2受体结合,进而通过神经元轴突逆行进入中枢神经系统 [30] 。此外,病毒也可以通过全身循环到达中枢神经系统,进而与ACE2受体结合 [31] 。当新冠病毒感染大脑中与控制清醒和睡眠状态的区域时,就会引起睡眠相关问题。新冠病毒会损伤大脑,引发严重的神经并发症如炎症、精神症状和谵妄等,已有多篇研究予以证实。有报道多达73%的住院重症患者存在神经系统症状,最常见的为头疼、肌痛、意识障碍。而各类非特异性脑病,发生率在13%~40%不等。新冠病毒感染后神经损害包括横贯性脊髓炎、脑膜炎和脑炎等 [32] 。Jiang等报道,35%以上的SARS-CoV-2感染患者出现了神经系统症状,部分患者可能以神经系统症状作为疾病的最初表现 [33] 。Douaud G等 [34] 发现,在感染新冠病毒近5个月后,感染者的眶额皮质和海马旁回的灰质厚度相比未感染者显著下降,整体脑容量下降,嗅皮质相关脑区组织损伤,即使是轻症感染者也会如此。Sydney R S等 [35] 对44名感染新冠病毒的死亡患者进行了尸检,并对其中11名死亡患者的中枢神经系统进行了广泛采样,结果显示,新冠病毒感染后在身体内广泛分布,并不局限于呼吸道。新冠病毒在感染早期就在呼吸道和非呼吸道组织中复制,包括大脑。新型冠状病毒对脑组织一定的损伤,神经元有部分的坏死缺失,脑血管周围也有炎症细胞的浸润。

2) 新冠病毒持续存在引发慢性炎症。Ramakrishnan R K等 [36] 在感染者的多种器官中检测到了新冠病毒的存在,因此这些器官有可能成为新冠病毒的栖息之所。此外,有研究发现新冠病毒的部分核酸序列可以整合到人的基因组中,而且整合到人体基因组中的新冠病毒片段能够正常转录 [37] 。Sydney R S [35] 报道,有1例患者在出现症状230多天后死亡,他的多个组织(包括大脑)中能够检测到持续存在的新冠病毒RNA。该研究显示新冠病毒能在人体内包括大脑长期存在。由于病毒的持续存在,引发了慢性炎症以及长新冠症状。

3) 炎症介导的间接损伤。新冠病毒感染人体后会触发免疫反应,中性粒细胞、单核细胞、巨噬细胞等大量激活,进而释放大量炎症因子、细胞因子及趋化因子,如白细胞介素-6、白细胞介素-12、白细胞介素-15和肿瘤坏死因子-α,引起炎症风暴 [38] 。白细胞介素-6与COVID-19症状的严重程度呈正相关 [39] 。Klironomos有研究发现,新冠肺炎患者的中枢和外周神经系统均有广泛的血管和炎症受累 [40] 。细胞因子可影响血管通透性,引起水肿,从而对神经系统造成损害,引起精神症状。

4. 总结及展望

新冠大流行结束后,部分感染者新冠病毒转阴后出现疲劳、失眠、焦虑、抑郁等长新冠症状。当前全球多数人均已感染,后续的长新冠患者对于各国的医疗是一个比较严峻的挑战。由于目前对于长新冠的发病机制还没有完全阐明,各国科学家对于本病都在进行深入研究。作为长新冠的一个常见症状,失眠的发病人数多,合并焦虑、抑郁等心理疾患的比例高,但因为影响睡眠的因素较为庞杂,所以对于新冠后睡眠障碍的研究存在一定困难。本文总结了新冠病毒感染后引起的睡眠问题及可能的发病机制,但目前对于新冠睡眠障碍的机制研究还很有限,对于新冠具体影响哪个脑区出现失眠症状还没有明确结论,其致病机制研究仍是当前工作的重点。下一步需要多学科、多中心的联合来进一步深入了解其发病机制。

NOTES

*通讯作者。

参考文献

[1] Brodin, P. (2021) Immune Determinants of COVID-19 Disease Presentation and Severity. Nature Medicine, 27, 28-33.
https://doi.org/10.1038/s41591-020-01202-8
[2] Huang, C., Huang, L., Wang, Y., et al. (2021) 6-Month Consequences of COVID-19 in Patients Discharged from Hospital: A Cohort Study. The Lancet, 397, 220-232.
https://doi.org/10.1016/S0140-6736(20)32656-8
[3] Ballering, A.V., Van Zon, S.K.R., Olde Hartman, T.C., et al. (2022) Persistence of Somatic Symptoms after COVID-19 in the Netherlands: An Observational Cohort Study. The Lancet, 400, 452-461.
https://doi.org/10.1016/S0140-6736(22)01214-4
[4] Taquet, M., Geddes, J.R., Husain, M., et al. (2021) 6-Month Neurological and Psychiatric Outcomes in 236739 Survivors of COVID-19: A Retrospective Cohort Study Using Electronic Health Records. The Lancet Psychiatry, 8, 416-427.
https://doi.org/10.1016/S2215-0366(21)00084-5
[5] Janiri, D., Carfi, A., Kotzalidis, G.D., et al. (2021) Posttraumatic Stress Disorder in Patients after Severe COVID-19 Infection. JAMA Psychiatry, 78, 567-569.
https://doi.org/10.1001/jamapsychiatry.2021.0109
[6] Nicholson, K., Rodrigues, R., Anderson, K.K., et al. (2020) Sleep Behaviours and Multimorbidity Occurrence in Middle-Aged and Older Adults: Findings from the Canadian Longitudinal Study on Aging (CLSA). Sleep Medicine, 75, 156-162.
https://doi.org/10.1016/j.sleep.2020.07.002
[7] Sabia, S., Dugravot, A., Léger, D., et al. (2022) Association of Sleep Duration at Age 50, 60, and 70 Years with Risk of Multimorbidity in the UK: 25-Year Follow-Up of the Whitehall II Cohort Study. PLOS MEDICINE, 19, e1004109.
https://doi.org/10.1371/journal.pmed.1004109
[8] Fan, M., Sun, D., Zhou, T., et al. (2020) Sleep Patterns, Genetic Susceptibility, and Incident Cardiovascular Disease: A Prospective Study of 385 292 UK Biobank Participants. European Heart Journal, 41, 1182-1189.
https://doi.org/10.1093/eurheartj/ehz849
[9] 李雪丽, 张斌. 睡眠障碍与焦虑抑郁障碍的联系[J]. 中国临床医生杂志, 2018, 46(2): 131-133.
[10] Kalamara, E., et al. (2022) Persistent Sleep Quality Deterioration among Post-COVID-19 Patients: Results from a 6-Month Follow-Up Study. Journal of Personalized Medicine, 12, Article 1909.
https://doi.org/10.3390/jpm12111909
[11] Xie, Y., Xu, E. and Al-Aly, Z. (2022) Risks of Mental Health Outcomes in People with COVID-19: A Cohort Study. BMJ, 376, e068993.
https://doi.org/10.1136/bmj-2021-068993
[12] Zawilska, J.B. and Kuczyńska, K. (2022) Psychiatric and Neurological Complications of Long COVID. Journal of Psychiatric Research, 156, 349-360.
https://doi.org/10.1016/j.jpsychires.2022.10.045
[13] Riemann, D., Spiegelhalder, K., Feige, B., et al. (2010) The Hyperarousal Model of Insomnia: A Review of the Concept and Its Evidence. Sleep Medicine Reviews, 14, 19-31.
https://doi.org/10.1016/j.smrv.2009.04.002
[14] Ribeiro, A., Gabriel, R., Garcia, B., et al. (2022) Temporal Relations between Peripheral and Central Arousals in Good and Poor Sleepers. Proceedings of the National Academy of Sciences, 119, e2201143119.
https://doi.org/10.1073/pnas.2201143119
[15] Kang, L.J., Li, Y., Hu, S.H., et al. (2020) The Mental Health of Medical Workers in Wuhan, China Dealing with the 2019 Novel Coronavirus. The Lancet Psychiatry, 7, E14.
https://doi.org/10.1016/S2215-0366(20)30047-X
[16] 刘慧, 孙龙, 刘婷婷, 等. 综合医院医务人员的自杀意念及其相关因素[J]. 中国心理卫生杂志, 2021, 35(5): 389-394.
[17] Luciano, F., Cenacchi, V., Vegro, V. and Pavei, G. (2021) COVID-19 Lockdown: Physical Activity, Sedentary Behaviour and Sleep in Italian Medicine Students. European Journal of Sport Science, 21, 1459-1468.
https://doi.org/10.1080/17461391.2020.1842910
[18] Zhao, J., Liu, C., Zhang, F., et al. (2022) A Paraventricular Thalamus to Central Amygdala Neural Circuit Modulates Acute Stress-Induced Heightened Wakefulness. Cell Reports, 41, Article 111824.
https://doi.org/10.1016/j.celrep.2022.111824
[19] Wright, C.D., Tiani, A.G., Billingsley, A.L., et al. (2019) A Framework for Understanding the Role of Psychological Processes in Disease Development, Maintenance, and Treatment: The 3P-Disease Model. Frontiers in Psychology, 10, Article 2498.
https://doi.org/10.3389/fpsyg.2019.02498
[20] Chiu, H.F., Leung, T., Lam, L.C., et al. (1999) Sleep Problems in Chinese Elderly in Hong Kong. Sleep, 22, 717-726.
https://doi.org/10.1093/sleep/22.6.717
[21] Zhang, B. and Wing, Y.-K. (2006) Sex Differences in Insomnia: A Meta-Analysis. Sleep, 29, 85-93.
https://doi.org/10.1093/sleep/29.1.85
[22] Schutte-Rodin, S., Broch, L., Buysse, D., et al. (2008) Clinical Guideline for the Evaluation and Management of Chronic Insomnia in Adults. Journal of Clinical Sleep Medicine, 4, 487-504.
https://doi.org/10.5664/jcsm.27286
[23] Morin, C.M., Leblanc, M., Ivers, H., et al. (2014) Monthly Fluctuations of Insomnia Symptoms in a Population-Based Sample. Sleep, 37, 319-326.
https://doi.org/10.5665/sleep.3406
[24] Poluektov, M.G. and Pchelina, P.V. (2015) Chronic Insomnia: Treatment Methods Based on the Current “3p” Model of Insomnia. Journal of Neurology and Psychiatry, 12, 141-147.
https://doi.org/10.17116/jnevro2015115112141-147
[25] Hashimoto, Y. and Campbell, M. (2020) Tight Junction Modulation at the Blood-Brain Barrier: Current and Future Perspectives. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1862, Article 183298.
https://doi.org/10.1016/j.bbamem.2020.183298
[26] Rhea, E.M., Logsdon, A.F., Hansen, K.M., et al. (2021) The S1 Protein of SARS-CoV-2 Crosses the Blood-Brain Barrier in Mice. Nature Neuroscience, 24, 368-378.
https://doi.org/10.1038/s41593-020-00771-8
[27] Huang, C., Wang, Y., Li, X., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 395, 497-506.
https://doi.org/10.1016/S0140-6736(20)30183-5
[28] Wrapp, D., Wang, N., Corbett, K.S., et al. (2020) Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science, 367, 1260-1263.
https://doi.org/10.1126/science.abb2507
[29] Alenina, N. and Bader, M. (2019) ACE2 in Brain Physiology and Pathophysiology: Evidence from Transgenic Animal Models. Neurochemical Research, 44, 1323-1329.
https://doi.org/10.1007/s11064-018-2679-4
[30] Siahaan, Y.M.T., Puspitasari, V. and Pangestu, A.R. (2020) COVID-19-Associated Encephalitis: Systematic Review of Case Reports Findings on Cytokine-Immune-Mediated Inflammation as an Underlying Mechanism. Research Square.
https://doi.org/10.21203/rs.3.rs-65579/v1
[31] Baig, A.M., Khaleeq, A., Ali, U. and Syeda, H. (2020) Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chemical Neuroscience, 11, 995-998.
https://doi.org/10.1021/acschemneuro.0c00122
[32] Maury, A., Lyoubi, A., Peiffer-Smadja, N., et al. (2021) Neurological Manifestations Associated with SARS-CoV-2 and Other Coronaviruses: A Narrative Review for Clinicians. Revue Neurologique, 177, 51-64.
https://doi.org/10.1016/j.neurol.2020.10.001
[33] Jiang, F., Deng, L., Zhang, L., et al. (2020) Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). Journal of General Internal Medicine, 35, 1545-1549.
https://doi.org/10.1007/s11606-020-05762-w
[34] Douaud, G., Lee, S., Alfaro-Almagro, F., et al. (2022) SARS-CoV-2 Is Associated with Changes in Brain Structure in UK Biobank. Nature, 604, 697-707.
https://doi.org/10.1038/s41586-022-04569-5
[35] Sydney, R.S., Sabrina, C.R., Alison, G., et al. (2022) SARS-CoV-2 Infection and Persistence in the Human Body and Brain at Autopsy. Nature, 612, 758-763.
https://doi.org/10.1038/s41586-022-05542-y
[36] Ramakrishnan, R.K., Kashour, T., Hamid, Q., et al. (2021) Unraveling the Mystery Surrounding Post-Acute Sequelae of COVID-19. Frontiers in Immunology, 12, Article 686029.
https://doi.org/10.3389/fimmu.2021.686029
[37] Zhang, L., Richards, A., Barrasa, M.I., et al. (2021) Reverse-Transcribed SARS-CoV-2 RNA Can Integrate into the Genome of Cultured Human Cells and Can Be Expressed in Patient-Derived Tissues. Proceedings of the National Academy of Sciences, 118, e2105968118.
https://doi.org/10.1073/pnas.2105968118
[38] Mehta, P., Mcauley, D.F., Brown, M., et al. (2020) COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. The Lancet, 395, 1033-1034.
https://doi.org/10.1016/S0140-6736(20)30628-0
[39] Wan, S., Yi, Q., Fan, S., et al. (2020) Relationships among Lymphocyte Subsets, Cytokines, and the Pulmonary Inflammation Index in Coronavirus (COVID-19) Infected Patients. British Journal of Haematology, 189, 428-437.
https://doi.org/10.1111/bjh.16659
[40] Klironomos, S., Tzortzakakis, A., Kits, A., et al. (2020) Nervous System Involvement in Coronavirus Disease 2019: Results from a Retrospective Consecutive Neuroimaging Cohort. Radiology, 297, E324-E334.
https://doi.org/10.1148/radiol.2020202791