活性氧在皮肤衰老中的作用
The Role of Reactive Oxygen Species in Skin Aging
DOI: 10.12677/acm.2024.1441153, PDF, HTML, XML, 下载: 45  浏览: 62 
作者: 陈柳廷, 刘晏伊*:重庆医科大学附属口腔医院,口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室,重庆
关键词: 皮肤衰老成纤维细胞ROSSkin Aging Fibroblasts ROS
摘要: 皮肤作为人体最大的器官,能够直观地反映机体整体的衰老水平。皮肤衰老可分为内源性衰老和外源性衰老,其细胞水平的主要表现是真皮层内成纤维细胞的老化,而其中ROS发挥着关键作用。ROS引起细胞老化的主要机制包括DNA损伤、线粒体氧化损伤、促炎细胞因子水平升高以及ECM的降解。在本综述中,将重点探讨皮肤衰老的特征、ROS的生成以及ROS导致皮肤老化的详细机制。
Abstract: As the body’s largest organ, the skin provides a visual reflection of the overall aging status of the organism. Skin aging can be categorized into intrinsic aging and extrinsic aging, with the primary cellular manifestation occurring in the aging of dermal fibroblasts. In this process, ROS play a crucial role. The major mechanisms through which ROS induces cellular aging include DNA damage, mitochondrial oxidative stress, elevated levels of pro-inflammatory cytokines, and degradation of the ECM. This review focuses on elucidating the characteristics of skin aging, the generation of ROS, and the detailed mechanisms by which ROS contributes to skin aging.
文章引用:陈柳廷, 刘晏伊. 活性氧在皮肤衰老中的作用[J]. 临床医学进展, 2024, 14(4): 1258-1262. https://doi.org/10.12677/acm.2024.1441153

1. 引言

皮肤是覆盖在人体表面的器官,作为机体的首要防线,不仅能够抵御外界病原体入侵,还承担着排泄、调节体温和感知外部刺激的重要功能 [1] 。内源性老化,即程序性衰老,是生物体自然衰老的一部分 [2] ,主要由于机体内活性氧氧化累积所致。相对而言,外源性老化则是由外部因素如紫外线、吸烟、高温和空气污染等引起,其中以紫外线导致的皮肤老化最为普遍,即光老化 [3] [4] 。在结构上,皮肤由表皮、真皮和皮下组织组成。表皮主要包括角质细胞以及少量的黑色素细胞、麦克尔细胞和朗格汉斯细胞。真皮则主要由成纤维细胞及其产生的细胞外基质(Extracellular matrix, ECM)组成,而皮下层则由脂肪细胞构成。真皮层在皮肤结构和功能中发挥着关键作用,包括免疫、吞噬、血管、神经、汗腺和淋巴管等结构,为表皮提供营养并维持正常代谢。皮肤的衰老的特征包括真皮层中成纤维细胞的老化以及细胞外基质的降解 [5] [6] ,而活性氧(Reactive oxygen species, ROS)在这一过程中扮演着关键的调控角色。本文将着重探讨与衰老相关的皮肤变化以及ROS在皮肤衰老中的机制作用。

2. 皮肤衰老的特征

随着年龄的增长,人体的皮肤结构会发生一系列变化。这些变化包括角蛋白细胞的萎缩导致表皮层的变薄,进而引发经表皮水分流失的增加,加剧皮肤的干燥 [7] 。然而,皮肤老化的核心机制在于刺激因素激活了基质金属蛋白酶(Matrix metalloproteinase, MMPs),导致真皮中支撑皮肤结构的胶原蛋白和弹性蛋白遭到过度降解 [8] [9] ,即细胞外基质的破坏。研究表明,随着年龄的增长,皮肤中的胶原蛋白总量减少,而胶原蛋白碎片随年龄增加,主要是由于老年皮肤中MMPs的上升表达。弹性蛋白是一种稳定的蛋白质,占真皮总蛋白的2%,在人体早期发育中形成,一生中不再进行合成和补充 [8] 。MMPs中的MMP-1、-3和-9能够对弹性蛋白产生有针对性的影响,导致皮肤弹性减退,表现为皱纹和下垂,这是典型的衰老表征 [10] [11] [12] 。真皮层中成纤维细胞数量的减少 [13] [14] ,加上ECM降解黏附作用减弱导致成纤维细胞形态减小,会进一步使得皮肤变薄 [15] [16] 。在衰老过程中,皮肤汗液和皮脂分泌减少,脂肪组织变薄。一部分原因是由于真皮层中的成纤维细胞无法有效转化为脂肪细胞,导致脂肪细胞分泌的抗菌肽减少,进而削弱了皮肤的屏障功能,使其更容易受到外界感染的威胁 [17] [18] 。

3. ROS的来源

ROS包括超氧化物阴离子(O2−)和过氧化氢(H2O2)等,其主要产生于细胞内的线粒体呼吸链 [19] 。在能量代谢过程中,线粒体负责将糖类、脂肪和氨基酸氧化释放能量,生成ATP和水,而活性氧则被视为线粒体呼吸过程的副产品。在有氧呼吸中,大部分电子沿着呼吸链传递至末端与分子氧结合生成水,但少量电子(2%~3%)可能会从呼吸链酶复合体I和Ⅲ处泄漏,导致超氧化物的产生 [20] [21] 。电子流动速度越慢,超氧化物阴离子O2−产生越多。氧自由基的生成不仅发生在线粒体中,还可在过氧化物酶体和内质网中产生 [22] [23] 。紫外线中,UVB主要作用于表皮细胞,而UVA具有更强的穿透力,能够达到真皮层,通过光敏反应引发超氧化物、羟基自由基和过氧化氢的产生 [24] 。外源性ROS的产生也可由抗癌的放射线介入治疗、化疗药物的毒性副作用、吸烟、饮酒等因素引发。

4. ROS导致皮肤老化的机制

ROS引起DNA损伤的类型包括碱基氧化修饰、单链断裂和双链断裂等,例如DNA氧化损伤中常用的生物标志物8-羟基脱氧鸟苷酸(8-OHdG)的形成 [25] [26] [27] 。持续的核DNA损伤激活了DNA损伤反应(DDR)通路,进而激活了衰老效应器的信号通路,包括循环依赖性激酶p53-p21,导致细胞周期不可逆转的停滞,最终诱发细胞衰老 [28] 。ROS还可以作用于蛋白质和脂质,尤其是线粒体,导致氧化损伤和线粒体功能障碍 [29] [30] ,这进一步加剧了ROS的产生,形成了负反馈循环。有丝分裂激活蛋白激酶(MAPK)家族,包括细胞外信号调节激酶(ERK)、p38和c-Jun末端激酶(JNK),可以被ROS激活。ROS通过激活MAPK信号通路,使其下游激活蛋白1 (AP-1)表达增加,从而调控了基质金属蛋白酶(MMP-1、MMP-3、MMP-9和MMP-12)的表达 [31] [32] 。另一方面,ROS激活的转录因子核因子-κB (NF-κB)也发挥关键作用。NF-κB的激活促使炎症因子IL1β、TNF-α、IL-6的表达上调,进一步加剧了MMPs的产生并导致细胞外基质的降解 [33] [34] [35] 。除此之外,ROS和NF-κB的上调还能激活NLRP3炎性小体,引发下游caspase-1的活化,切割非活性前体IL-1β和IL-18,并刺激其分泌 [36] 。这一系列反应共同参与了皮肤老化的复杂机制。

5. 结语

活性氧在皮肤衰老中扮演着重要的角色,通过引发细胞衰老、影响胶原蛋白和弹性蛋白的合成与降解,以及诱导炎症反应等机制,促使皮肤老化的发生。对ROS在皮肤衰老中的深入了解不仅有助于我们更好地理解这一复杂过程,还为制定更有效的抗衰老策略提供了理论支持。

NOTES

*通讯作者。

参考文献

[1] 徐一凤. 成纤维细胞老化分子机制与皮肤衰老的关系及研究进展[J]. 中国美容医学, 2023, 32(7): 199-202.
[2] 雷锐, 吴金峰. 皮肤衰老的特征与机制[J]. 实用老年医学, 2023, 37(10): 978-983.
[3] El-Domyati, M., Attia, S., Saleh, F., et al. (2002) Intrinsic Aging vs. Photoaging: A Comparative Histopathological, Immunohistochemical, and Ultrastructural Study of Skin. Experimental Dermatology, 11, 398-405.
https://doi.org/10.1034/j.1600-0625.2002.110502.x
[4] Emri, G., Horkay, I. and Remenyik, E. (2006) The Role of Free Radicals in the UV-Induced Skin Damage. Photo-Aging. Orvosi Hetilap, 147, 731-735.
[5] Zhang, J., Yu, H., Man, M.Q., et al. (2024) Aging in the Dermis: Fibroblast Senescence and Its Significance. Aging Cell, 23, e14054.
https://doi.org/10.1111/acel.14054
[6] Shin, J.W., Kwon, S.H., Choi, J.Y., et al. (2019) Molecular Mechanisms of Dermal Aging and Antiaging Approaches. International Journal of Molecular Sciences, 20, Article 2126.
https://doi.org/10.3390/ijms20092126
[7] Tagami, H. (2008) Functional Characteristics of the Stratum Corneum in Photoaged Skin in Comparison with Those Found in Intrinsic Aging. Archives of Dermatological Research, 300, 1-6.
https://doi.org/10.1007/s00403-007-0799-9
[8] Ritz-Timme, S., Laumeier, I. and Collins, M.J. (2003) Aspartic Acid Racemization: Evidence for Marked Longevity of Elastin in Human Skin. British Journal of Dermatology, 149, 951-959.
https://doi.org/10.1111/j.1365-2133.2003.05618.x
[9] Quan, T. and Fisher, G.J. (2015) Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review. Gerontology, 61, 427-434.
https://doi.org/10.1159/000371708
[10] Mora Huertas, A.C., Schmelzer, C.E., Hoehenwarter, W., et al. (2016) Molecular-Level Insights into Aging Processes of Skin Elastin. Biochimie, 128-129, 163-173.
https://doi.org/10.1016/j.biochi.2016.08.010
[11] Trębacz, H. and Barzycka, A. (2023) Mechanical Properties and Functions of Elastin: An Overview. Biomolecules, 13, Article 574.
https://doi.org/10.3390/biom13030574
[12] 杜克斯, 李泽巧, 张宝江, 等. 面部皮肤衰老的外观变化及形成因素[J]. 日用化学工业, 2022, 52(2): 199-206.
[13] Varani, J., Dame, M.K., Rittie, L., et al. (2006) Decreased Collagen Production in Chronologically Aged Skin: Roles of Age-Dependent Alteration in Fibroblast Function and Defective Mechanical Stimulation. The American Journal of Pathology, 168, 1861-1868.
https://doi.org/10.2353/ajpath.2006.051302
[14] Ren, R., Ocampo, A., Liu, G.H., et al. (2017) Regulation of Stem Cell Aging by Metabolism and Epigenetics. Cell Metabolism, 26, 460-474.
https://doi.org/10.1016/j.cmet.2017.07.019
[15] Quan, T., Little, E., Quan, H., et al. (2013) Elevated Matrix Metalloproteinases and Collagen Fragmentation in Photodamaged Human Skin: Impact of Altered Extracellular Matrix Microenvironment on Dermal Fibroblast Function. Journal of Investigative Dermatology, 133, 1362-1366.
https://doi.org/10.1038/jid.2012.509
[16] Fisher, G.J., Shao, Y., He, T., et al. (2016) Reduction of Fibroblast Size/Mechanical Force Down-Regulates TGF-β Type II Receptor: Implications for Human Skin Aging. Aging Cell, 15, 67-76.
https://doi.org/10.1111/acel.12410
[17] Chen, S.X., Zhang, L.J. and Gallo, R.L. (2019) Dermal White Adipose Tissue: A Newly Recognized Layer of Skin Innate Defense. Journal of Investigative Dermatology, 139, 1002-1009.
https://doi.org/10.1016/j.jid.2018.12.031
[18] Zhang, L.J., Chen, S.X., Guerrero-Juarez, C.F., et al. (2019) Age-Related Loss of Innate Immune Antimicrobial Function of Dermal Fat Is Mediated by Transforming Growth Factor Beta. Immunity, 50, 121-136. E5.
https://doi.org/10.1016/j.immuni.2018.11.003
[19] Dröse, S. and Brandt, U. (2012) Molecular Mechanisms of Superoxide Production by the Mitochondrial Respiratory Chain. In: Kadenbach, B., Ed., Mitochondrial Oxidative Phosphorylation, Springer, New York, 145-169.
https://doi.org/10.1007/978-1-4614-3573-0_6
[20] Turrens, J.F. (2003) Mitochondrial Formation of Reactive Oxygen Species. The Journal of Physiology, 552, 335-344.
https://doi.org/10.1113/jphysiol.2003.049478
[21] Han, D., Antunes, F., Canali, R., et al. (2003) Voltage-Dependent Anion Channels Control the Release of the Superoxide Anion from Mitochondria to Cytosol. Journal of Biological Chemistry, 278, 5557-5563.
https://doi.org/10.1074/jbc.M210269200
[22] Sandalio, L.M. and Romero-Puertas, M.C. (2015) Peroxisomes Sense and Respond to Environmental Cues by Regulating ROS and RNS Signalling Networks. Annals of Botany, 116, 475-485.
https://doi.org/10.1093/aob/mcv074
[23] Bae, Y.S., Oh, H., Rhee, S.G., et al. (2011) Regulation of Reactive Oxygen Species Generation in Cell Signaling. Molecular Cell, 32, 491-509.
https://doi.org/10.1007/s10059-011-0276-3
[24] Knak, A., Regensburger, J., Maisch, T., et al. (2014) Exposure of Vitamins to UVB and UVA Radiation Generates Singlet Oxygen. Photochemical & Photobiological Sciences, 13, 820-829.
https://doi.org/10.1039/c3pp50413a
[25] Caldecott, K.W. (2008) Single-Strand Break Repair and Genetic Disease. Nature Reviews Genetics, 9, 619-631.
https://doi.org/10.1038/nrg2380
[26] Tan, J., Duan, M., Yadav, T., et al. (2020) An R-Loop-Initiated CSB-RAD52-POLD3 Pathway Suppresses ROS-In-duced Telomeric DNA Breaks. Nucleic Acids Research, 48, 1285-300.
https://doi.org/10.1093/nar/gkz1114
[27] Valavanidis, A., Vlachogianni, T. and Fiotakis, C. (2009) 8-Hydroxy-2’-Deoxyguanosine (8-OHdG): A Critical Biomarker of Oxidative Stress and Carcinogenesis. Journal of Environmental Science and Health-Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 27, 120-139.
https://doi.org/10.1080/10590500902885684
[28] Beauséjour, C.M., Krtolica, A., Galimi, F., et al. (2003) Reversal of Human Cellular Senescence: Roles of the p53 and p16 Pathways. The EMBO Journal, 22, 4212-4222.
https://doi.org/10.1093/emboj/cdg417
[29] Cedikova, M., Pitule, P., Kripnerova, M., et al. (2016) Multiple Roles of Mitochondria in Aging Processes. Physiological Research, 65, S519-S531.
https://doi.org/10.33549/physiolres.933538
[30] Ademowo, O.S., Dias, H.K.I., Burton, D.G.A., et al. (2017) Lipid (per) Oxidation in Mitochondria: An Emerging Target in the Ageing Process? Biogerontology, 18, 859-879.
https://doi.org/10.1007/s10522-017-9710-z
[31] Chiang, H.M., Chen, H.C., Chiu, H.H., et al. (2013) Neonauclea reticulata (Havil.) Merr Stimulates Skin Regeneration after UVB Exposure via ROS Scavenging and Modulation of the MAPK/MMPs/Collagen Pathway. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 324864.
https://doi.org/10.1155/2013/324864
[32] Han, H.S., Shin, J.S., Myung, D.B., et al. (2019) Hydrangea serrata (Thunb.) Ser. Extract Attenuate UVB-Induced Photoaging through MAPK/AP-1 Inactivation in Human Skin Fibroblasts and Hairless Mice. Nutrients, 11, Article 533.
https://doi.org/10.3390/nu11030533
[33] Salminen, A., Kaarniranta, K. and Kauppinen, A. (2012) Inflammaging: Disturbed Interplay between Autophagy and Inflammasomes. Aging (Albany NY), 4, 166-175.
https://doi.org/10.18632/aging.100444
[34] Wiggins, K.A. and Clarke, M.C. (2019) Senescence Utilises Inflammatory Caspases to Drive SASP. Aging (Albany NY), 11, 3891-3892.
https://doi.org/10.18632/aging.102031
[35] Tilstra, J.S., Robinson, A.R., Wang, J., et al. (2012) NF-κB Inhibition Delays DNA Damage-Induced Senescence and Aging in Mice. Journal of Clinical Investigation, 122, 2601-2612.
https://doi.org/10.1172/JCI45785
[36] Abais, J.M., Xia, M., Zhang, Y., et al. (2015) Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector? Antioxidants & Redox Signaling, 22, 1111-1129.
https://doi.org/10.1089/ars.2014.5994