[1]
|
Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., et al. (2013) The Global Nitrogen Cycle in the Twenty-First Century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, Article 20130164. https://doi.org/10.1098/rstb.2013.0164
|
[2]
|
Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., et al. (2004) Nitrogen Cycles: Past, Present, and Future. Biogeochemistry, 70, 153-226. https://doi.org/10.1007/s10533-004-0370-0
|
[3]
|
Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D.G., et al. (2008) Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean. Science, 320, 893-897. https://doi.org/10.1126/science.1150369
|
[4]
|
Liu, L. and Greaver, T.L. (2009) A Review of Nitrogen Enrichment Effects on Three Biogenic GHGs: The CO2 Sink May Be Largely Offset by Stimulated N2O and CH4 Emission. Ecology Letters, 12, 1103-1117. https://doi.org/10.1111/j.1461-0248.2009.01351.x
|
[5]
|
Zaehle, S., Ciais, P., Friend, A.D. and Prieur, V. (2011) Carbon Benefits of Anthropogenic Reactive Nitrogen Offset by Nitrous Oxide Emissions. Nature Geoscience, 4, 601-605. https://doi.org/10.1038/ngeo1207
|
[6]
|
Bouwman, A.F., Van Vuuren, D.P., Derwent, R.G. and Posch, M. (2002) A Global Analysis of Acidification and Eutrophication of Terrestrial Ecosystems. Water, Air, and Soil Pollution, 141, 349-382. https://doi.org/10.1023/a:1021398008726
|
[7]
|
Stevens, C.J., Dise, N.B., Mountford, J.O. and Gowing, D.J. (2004) Impact of Nitrogen Deposition on the Species Richness of Grasslands. Science, 303, 1876-1879. https://doi.org/10.1126/science.1094678
|
[8]
|
Bowman, W.D., Cleveland, C.C., Halada, Ĺ., Hreško, J. and Baron, J.S. (2008) Negative Impact of Nitrogen Deposition on Soil Buffering Capacity. Nature Geoscience, 1, 767-770. https://doi.org/10.1038/ngeo339
|
[9]
|
Clark, C.M. and Tilman, D. (2008) Loss of Plant Species after Chronic Low-Level Nitrogen Deposition to Prairie Grasslands. Nature, 451, 712-715. https://doi.org/10.1038/nature06503
|
[10]
|
Richter, A., Burrows, J.P., Nüß, H., Granier, C. and Niemeier, U. (2005) Increase in Tropospheric Nitrogen Dioxide over China Observed from Space. Nature, 437, 129-132. https://doi.org/10.1038/nature04092
|
[11]
|
Dentener, F., Drevet, J., Lamarque, J.F., Bey, I., Eickhout, B., Fiore, A.M., et al. (2006) Nitrogen and Sulfur Deposition on Regional and global scales: A Multimodel Evaluation. Global Biogeochemical Cycles, 20, 1-21. https://doi.org/10.1029/2005gb002672
|
[12]
|
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., et al. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320, 889-892. https://doi.org/10.1126/science.1136674
|
[13]
|
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., et al. (2013) Enhanced Nitrogen Deposition over China. Nature, 494, 459-462. https://doi.org/10.1038/nature11917
|
[14]
|
Vet, R., Artz, R.S., Carou, S., Shaw, M., Ro, C., Aas, W., et al. (2014) A Global Assessment of Precipitation Chemistry and Deposition of Sulfur, Nitrogen, Sea Salt, Base Cations, Organic Acids, Acidity and pH, and Phosphorus. Atmospheric Environment, 93, 3-100. https://doi.org/10.1016/j.atmosenv.2013.10.060
|
[15]
|
Liu, L., Xu, W., Lu, X., Zhong, B., Guo, Y., Lu, X., et al. (2022) Exploring Global Changes in Agricultural Ammonia Emissions and Their Contribution to Nitrogen Deposition since 1980. Proceedings of the National Academy of Sciences, 119, e2121998119. https://doi.org/10.1073/pnas.2121998119
|
[16]
|
Liu, L., Zhang, X., Xu, W., Liu, X., Zhang, Y., Li, Y., et al. (2020) Fall of Oxidized While Rise of Reduced Reactive Nitrogen Deposition in China. Journal of Cleaner Production, 272, Article 122875. https://doi.org/10.1016/j.jclepro.2020.122875
|
[17]
|
Xu, M., Qin, Z. and Zhang, S. (2021) Integrated Assessment of Cleaning Air Policy in China: A Case Study for Beijing-Tianjin-Hebei Region. Journal of Cleaner Production, 296, Article 126596. https://doi.org/10.1016/j.jclepro.2021.126596
|
[18]
|
Zhang, X., Wu, Y., Liu, X., Reis, S., Jin, J., Dragosits, U., et al. (2017) Ammonia Emissions May Be Substantially Underestimated in China. Environmental Science & Technology, 51, 12089-12096. https://doi.org/10.1021/acs.est.7b02171
|
[19]
|
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., et al. (2018) Trends in China’s Anthropogenic Emissions since 2010 as the Consequence of Clean Air Actions. Atmospheric Chemistry and Physics, 18, 14095-14111. https://doi.org/10.5194/acp-18-14095-2018
|
[20]
|
黄静文, 刘磊, 颜晓元, 等. 我国自然生态系统氮沉降临界负荷评估[J]. 环境科学, 2023, 44(6): 3321-3328.
|
[21]
|
Zhao, Y., Zhang, L., Pan, Y., Wang, Y., Paulot, F. and Henze, D.K. (2015) Atmospheric Nitrogen Deposition to the Northwestern Pacific: Seasonal Variation and Source Attribution. Atmospheric Chemistry and Physics, 15, 10905-10924. https://doi.org/10.5194/acp-15-10905-2015
|
[22]
|
Wen, Z., Xu, W., Li, Q., Han, M., Tang, A., Zhang, Y., et al. (2020) Changes of Nitrogen Deposition in China from 1980 to 2018. Environment International, 144, Article 106022. https://doi.org/10.1016/j.envint.2020.106022
|
[23]
|
Wang, Q., Zou, J., Liu, Y., Li, J., Liu, X., Zhang, H., et al. (2024) Impacts of Farming Activities on Nitrogen Degradability under a Temperate Continental Monsoon Climate. Agronomy, 14, Article 1094. https://doi.org/10.3390/agronomy14061094
|
[24]
|
Zhang, J., Zhang, G.S., Bi, Y.F. and Liu, S.M. (2011) Nitrogen Species in Rainwater and Aerosols of the Yellow and East China Seas: Effects of the East Asian Monsoon and Anthropogenic Emissions and Relevance for the NW Pacific Ocean. Global Biogeochemical Cycles, 25, 1-14. https://doi.org/10.1029/2010gb003896
|
[25]
|
Cui, J., Zhou, J., Peng, Y., He, Y., Yang, H. and Mao, J. (2014) Atmospheric Wet Deposition of Nitrogen and Sulfur to a Typical Red Soil Agroecosystem in Southeast China during the Ten-Year Monsoon Seasons (2003-2012). Atmospheric Environment, 82, 121-129. https://doi.org/10.1016/j.atmosenv.2013.10.023
|
[26]
|
The GEOS-Chem Website. http://geos-chem.org
|
[27]
|
Zhao, Y., Zhang, L., Chen, Y., Liu, X., Xu, W., Pan, Y., et al. (2017) Atmospheric Nitrogen Deposition to China: A Model Analysis on Nitrogen Budget and Critical Load Exceedance. Atmospheric Environment, 153, 32-40. https://doi.org/10.1016/j.atmosenv.2017.01.018
|
[28]
|
Zhang, L., Jacob, D.J., Knipping, E.M., Kumar, N., Munger, J.W., Carouge, C.C., et al. (2012) Nitrogen Deposition to the United States: Distribution, Sources, and Processes. Atmospheric Chemistry and Physics, 12, 4539-4554. https://doi.org/10.5194/acp-12-4539-2012
|
[29]
|
Zhao, Y., Zhang, L., Tai, A.P.K., Chen, Y. and Pan, Y. (2017) Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition in the Northern Hemisphere. Atmospheric Chemistry and Physics, 17, 9781-9796. https://doi.org/10.5194/acp-17-9781-2017
|
[30]
|
Index of /ExtData/GEOS_0.5x0.625_AS/MERRA2. http://geoschemdata.wustl.edu/ExtData/GEOS_0.5x0.625_AS/MERRA2/
|
[31]
|
Park, R.J., Jacob, D.J., Field, B.D., Yantosca, R.M. and Chin, M. (2004) Natural and Transboundary Pollution Influences on Sulfate-Nitrate-Ammonium Aerosols in the United States: Implications for Policy. Journal of Geophysical Research: Atmospheres, 109, D15204. https://doi.org/10.1029/2003jd004473
|
[32]
|
Mao, J., Jacob, D.J., Evans, M.J., Olson, J.R., Ren, X., Brune, W.H., et al. (2010) Chemistry of Hydrogen Oxide Radicals (hox) in the Arctic Troposphere in Spring. Atmospheric Chemistry and Physics, 10, 5823-5838. https://doi.org/10.5194/acp-10-5823-2010
|
[33]
|
Fountoukis, C. and Nenes, A. (2007) ISORROPIA II: A Computationally Efficient Thermodynamic Equilibrium Model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2O Aerosols. Atmospheric Chemistry and Physics, 7, 4639-4659. https://doi.org/10.5194/acp-7-4639-2007
|
[34]
|
Liu, H., Jacob, D.J., Bey, I. and Yantosca, R.M. (2001) Constraints from 210Pb and 7Be on Wet Deposition and Transport in a Global Three-Dimensional Chemical Tracer Model Driven by Assimilated Meteorological Fields. Journal of Geophysical Research: Atmospheres, 106, 12109-12128. https://doi.org/10.1029/2000jd900839
|
[35]
|
Mari, C., Jacob, D.J. and Bechtold, P. (2000) Transport and Scavenging of Soluble Gases in a Deep Convective Cloud. Journal of Geophysical Research: Atmospheres, 105, 22255-22267. https://doi.org/10.1029/2000jd900211
|
[36]
|
Amos, H.M., Jacob, D.J., Holmes, C.D., Fisher, J.A., Wang, Q., Yantosca, R.M., et al. (2012) Gas-Particle Partitioning of Atmospheric Hg (II) and Its Effect on Global Mercury Deposition. Atmospheric Chemistry and Physics, 12, 591-603. https://doi.org/10.5194/acp-12-591-2012
|
[37]
|
Wesely, M.L. (1989) Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models. Atmospheric Environment, 23, 1293-1304. https://doi.org/10.1016/0004-6981(89)90153-4
|
[38]
|
Zhang, L. (2001) A Size-Segregated Particle Dry Deposition Scheme for an Atmospheric Aerosol Module. Atmospheric Environment, 35, 549-560. https://doi.org/10.1016/s1352-2310(00)00326-5
|
[39]
|
ESGF MetaGrid. https://esgf-node.llnl.gov/search/input4mips/
|
[40]
|
MEICModel. http://meicmodel.org
|
[41]
|
Hoesly, R.M., Smith, S.J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., et al. (2018) Historical (1750–2014) Anthropogenic Emissions of Reactive Gases and Aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 11, 369-408. https://doi.org/10.5194/gmd-11-369-2018
|
[42]
|
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., et al. (2017) Anthropogenic Emission Inventories in China: A Review. National Science Review, 4, 834-866. https://doi.org/10.1093/nsr/nwx150
|
[43]
|
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Josep, C., et al. (2014) Carbon and Other Biogeochemical Cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
|
[44]
|
Zhao, Y., Xi, M., Zhang, Q., Dong, Z., Ma, M., Zhou, K., et al. (2022) Decline in Bulk Deposition of Air Pollutants in China Lags behind Reductions in Emissions. Nature Geoscience, 15, 190-195. https://doi.org/10.1038/s41561-022-00899-1
|