胃癌中循环肿瘤细胞及其临床意义的研究现状
Research Status of Circulating Tumor Cells in Gastric Cancer and Their Clinical Significance
DOI: 10.12677/jcpm.2024.32057, PDF, HTML, XML,   
作者: 赵延璐:青海大学临床医学院,青海 西宁;骆玉霜*:青海大学附属医院肿瘤内科,青海 西宁
关键词: 胃癌循环肿瘤细胞程序性细胞死亡受体-1人表皮生长因子受体2Gastric Cancer Circulating Tumor Cells PD-L1 HER2
摘要: 胃癌早期诊断率较低,发现时多已晚期,复发和转移成为胃癌生存率低的主要原因,循环肿瘤细胞(CTC)是从原发肿瘤处脱落并进入血液循环的癌细胞。检测胃癌患者外周血CTC表达可为肿瘤分期和预后评估提供参考,现就胃癌中循环肿瘤细胞的临床意义的研究及展望作一综述。
Abstract: The early diagnosis rate of gastric cancer is low, and it is often detected in advanced stages, leading to low survival rates due to recurrence and metastasis. Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and enter the bloodstream. Detecting the expression of CTCs in peripheral blood of gastric cancer patients can provide reference for tumor staging and prognosis assessment. This article provides a review and outlook on the clinical significance of circulating tumor cells in gastric cancer.
文章引用:赵延璐, 骆玉霜. 胃癌中循环肿瘤细胞及其临床意义的研究现状[J]. 临床个性化医学, 2024, 3(2): 387-393. https://doi.org/10.12677/jcpm.2024.32057

1. 引言

根据《2020年全球癌症统计报告》,2020年胃癌新增病例超过100万,死亡人数估计为76.9万人,在全球肿瘤中发病率排第五,死亡率排第四[1],在我国,胃癌的发病率和死亡率分别位于所有恶性肿瘤的第2位和第3位,远高于世界平均水平[2],不同分期的胃癌患者整体预后情况不同,如早期胃癌患者行根治性手术切除是最佳治疗手段,术后5年生存率超过90% [3]。晚期胃癌预后差,5年生存率低,Ⅳ期患者5年生存率往往不到10% [4]。因此监测胃癌的发生发展对患者预后十分重要,目前影像学检查无法敏锐而精确地判断肿瘤的发生、发展,如微小病灶早期影像学无法检测到;糖类抗原19-9 (CA19-9)、癌胚抗原(CEA)等血清学肿瘤指标虽有一定的预测价值,但由于其特异性较低结果也仅能作为参考[5],故寻找新的高特异度及灵敏度肿瘤标志物十分有意义。

2. 循环肿瘤细胞

循环肿瘤细胞(CTCs)是指从原发肿瘤处脱落并进入血液循环的癌细胞[6]。大部分肿瘤细胞进入外周血后,发生凋亡或被吞噬,少数能够发生逃逸并发展成为转移灶。1889年,Stephan Paget提出的“种子–土壤假说”,认为某些肿瘤细胞(种子)会转移到合适的器官(土壤)上定植生长导致转移。目前大部分观点认为,外周血中的CTCs扮演着“种子”的角色,直接参与肿瘤转移、复发等过程[7]。有研究表明CTCs进入外周血可能会经历一个上皮–间质转换(epithelial-to-mesenchymal transition, EMT)的动态过程[8],EMT在CTC存在的各个过程中发挥着重要作用。CTC上皮标志物表达在EMT过程中会发生下调、甚至消失,根据EMT标志物的表达可将CT分为上皮型、间质型、混合型[9]。与上皮型CTC比较,间质型CTC具有更强的侵袭转移能力,在肿瘤的转移过程起主要作用[10] [11]。一般影像学只能发现10 mm以上的肿瘤病灶,PET-CT只能发现大于5 mm的肿瘤病灶,而CTCs在肿瘤病灶仅为1 mm大小时即可被检出,可见检测CTCs可先于影像学发现肿瘤转移[12]。并且CTCs检测具有相对无创、可反复取材、能够实时监测的优点[13]。Cheng等[14]研究发现,接受新辅助化疗后行全胃切除术并接受辅助化疗的胃癌患者CTC数量明显低于治疗前。在Li等[15]在动态监测循环肿瘤细胞进而评价进展期胃癌的疗效的研究中发现监测CTC水平有助于评估晚期胃癌患者的治疗反应,预测其预后。同样,在Liu的研究[16]中显示只有基线CTC水平较低或化疗第一周期后CTC水平降低的患者从治疗中显著获益。刘霞等的研究[17]中,通过探究CTCs检出率与胃癌手术治疗前后和预后的关系发现,术后CTCs检出率明显低于术前,CTCs阳性者DFS和OS均低于CTCs阴性者,提示CTCs检测对胃癌疗效评估和预后监测有一定价值,因此,在胃癌的诊断、疗效评价及预后方面均具有重要的临床价值。

3. 循环肿瘤细胞与炎细胞在胃癌的相关性

炎症与肿瘤发生发展的关系近年来成为研究的热点问题。病理学家Virchow认为肿瘤源自慢性炎症,慢性炎症与免疫系统相互作用构建了肿瘤微环境,同样影响着肿瘤的局部复发与转移[18]。有研究表明,中性粒细胞、淋巴细胞、单核细胞和血小板可能在肿瘤诱导的全身炎症反应中发挥重要作用,而全身炎症反应则通过促进炎性递质和细胞因子分泌,抑制凋亡,损伤肿瘤细胞DNA等机制加速肿瘤的发生和转移[19]。目前已经报道了许多参与临床预测的炎性细胞计数的组合,如嗜中性粒细胞与淋巴细胞比率(NLR),血小板与淋巴细胞比率(PLR),单核细胞与淋巴细胞比率(MLR)和预后营养指数(PNI) [20],这些炎性细胞计数的组合已经广泛的应用到诊断胃癌及预测胃癌的临床预后价值中。Fang [21]等在一项探索全身炎症标志物在胃癌早期诊断应用价值的研究发现:NLR在GC中表现出诊断敏感性且NLR在诊断GC方面优于CEA和CA19-9,且NLR水平在胃癌早期明显高于肿瘤标志物。日本一项探索NLR能否预测胃癌术后短期预后的研究[22]显示:低NLR组和高NLR组的围手术期结局有显著性差异,包括术后并发症、术中出血量、术中输血,由此可见术前高NLR与短期预后不良相关。可见,NLR可预测恶性肿瘤相关疾病病情进展及预后,但其特异性并不高,易受外界因素(饮食、情绪、用药等)的干扰,在临床上的单独使用价值有限[23],与其他检测指标联合可能会提高在肿瘤诊断及预测预后中的特异性。循环肿瘤细胞(CTC)在血液中播散,其中大多数细胞因免疫系统的攻击而死亡。另一方面,最近的证据表明CTC与血小板、髓样细胞、巨噬细胞、中性粒细胞和其他分泌免疫抑制细胞因子的造血细胞之间存在积极的相互作用,这有助于CTC逃避免疫系统并实现转移。血小板的活化是转移进展的关键生物学机制,因为它们可以保护CTC并保护它们免受自然杀伤(NK)细胞或巨噬细胞的攻击,并促进外渗[24]。中性粒细胞通过启动血管生成开关和促进CTC的定植来协助CTC的转移并促进肿瘤的发展[25]。也有报道称,晚期癌症患者中丰富的肿瘤相关中性粒细胞(tumor-associated neutrophils, cTAN)通过抑制外周白细胞活化来促进CTC的存活[26]。此外,中性粒细胞是CTC簇形成的重要成分[27]。树突状细胞(DC)细胞在CTC簇的形成中也起着重要作用。最近研究表明,DCs与CTCs具有很强的共定位效应[28]

4. 循环肿瘤细胞与PD-L1的相关性及其临床进展

肿瘤病变中,免疫环境由肿瘤细胞、免疫细胞、细胞因子和基质细胞组成。我们将免疫细胞称为肿瘤侵袭性淋巴细胞(TIL),包括CD4 (辅助性T细胞)、CD8 (细胞毒性/抑制性T细胞)、FoxP3 (调节性T细胞)、CD68 (髓源性抑制细胞)和CD1a (朗格汉斯)细胞。较高的CD4和CD8 TIL水平与总生存期的提高相关。然而,调节性T细胞(Treg)恰恰相反,这被认为是免疫抑制的主要原因。Treg的这个主要功能通过PD-L1 (程序性细胞死亡配体-1)连接。PD-1 (程序性细胞死亡受体-1)是一种具有代表性的免疫抑制检查点,在慢性抗原暴露条件下主要在巨噬细胞、B淋巴细胞、树突状细胞(DC)、单核细胞、肿瘤特异性活化T细胞、髓样细胞和自然杀伤(NK)细胞中表达[29] [30] [31]。PD-L1是PD-1配体之一。PD-L1表达已被证明是预后和预测PD-1/PD-L1抑制剂敏感性的有价值的生物标志物。PD-L1的表达主要在许多癌症的肿瘤细胞、肿瘤浸润细胞和抗原呈递细胞(APC)中表达[32]。近年来,许多研究证实了PD-1/PD-L1抗体的临床意义及其对人类癌症的预后影响[33] [34]。免疫抑制受体PD-1 (程序性细胞死亡受体-1)及其配体PD-L1 (程序性细胞死亡配体1)在Treg细胞的免疫调节机制中起着非常重要的作用。研究表明,Treg细胞高度表达PD-1和PD-L1。这抑制了免疫突触的形成,削弱了活化T细胞中TCR和共刺激信号的激活,最后,CTC形成转移性病灶。CTCs在靶向治疗中的开发所取得的可喜成果为CTCs在免疫治疗领域的应用铺平了道路。在免疫治疗时代,治疗决策最重要的生物标志物是程序性死亡配体1 (PD-L1)表达,通过肿瘤标本中的免疫组化进行评估[35]。然而,肿瘤内和肿瘤间的异质性以及肿瘤和免疫细胞中PD-L1的表达等几个问题使肿瘤组织中PD-L1表达的准确测量变得复杂[36]。研究发现循环肿瘤细胞(circulating tumor cell, CTC)在血液循环中逃逸机体免疫存活下来,是肿瘤复发转移的关键因素[37]。人体的自身免疫功能多依赖于淋巴T细胞的活化,活化后的T细胞常表 达一种程序性死亡受体-1 (programmed cell death 1, PD-1)。CTC表面上表达的PD-L1是PD-1的配体,两者结合能使肿瘤细胞逃避T细胞免疫,PD-L1表达水平越高,肿瘤细胞逃逸机体细胞免疫能力越强,癌症患者预后越差[38]。应用针对PD-1/PD-L1免疫 检查点的抑制剂,能显著延长CTC PD-L1阳性肿瘤患者的无进展生存期和总生存期[39] [40]。通过动态监测CTC PD-L1表达状态,能够及时优化调整患者后续治疗方案,明显改善癌症患者的预后[41] [42] [43]

5. 循环肿瘤细胞与HER2的相关性及其临床进展

人表皮生长因子受体2 (HER2/ErbB2/neu)是一种185 kDa的跨膜受体酪氨酸激酶(RTK),属于表皮生长因子受体(EGFR)家族[44] [45],与细胞增殖及转移等密切相关[46]。HER2阳性GC约占所有GC病例的6%~30%。鉴于HER2在超过15%的GC中观察到过表达,并且与不良预后有关,因此HER2阳性转移性胃癌(metastatic gastric cancer, mGC)是关键的治疗靶点[47] [48]。TOGA研究证实曲妥珠单抗对HER2过表达胃癌患者有明显疗效。现阶段,GAC组织学HER2的检测方法有IHC、显色原位杂交(CISH)或FISH,但存在一些缺点:1) 标本的固定、IHC的处理及判读等;2) 转移患者需再次活检;3) 脑及纵隔转移等穿刺困难者可能无法完成,不能实时检测胃癌患者HER2状况。由于活检提供的信息有限且可能具有侵入性,因此迫切需要非侵入性技术来识别患者进行抗HER2治疗并监测治疗结果,从而改善晚期GC的治疗[49]。而CTC-HER2检测技术具有无创、能重复检查等优点,对胃癌患者的预后、疗效等有较好的提示作用,有助于根据提示调整方案。DAISUKE等[50]采用CellSearch系统检测105例转移性或复发性胃癌患者CTC中HER2的表达,结果表明,曲妥珠单抗联合化疗对组织学HER2阴性而CTC-HER2阳性患者具有潜在的临床应用价值。总之CTC是胃癌患者预后及疗效评价指标之一,有助于临床快速、实时地了解GAC的进程及转移状况,同时检测患者外周血中CTC的HER2表达实时状态,有利于靶向治疗及疗效监测,也为组织学HER2阴性的患者提供了进一步检测的依据。

6. 总结与展望

CTC的应用正在兴起,CTC检测具有无创、稳定性高、易精确定量等优点,在胃癌的辅助诊断、监测治疗效果、判定预后及检测复发等方面具有良好的应用价值。尽管CTC具有广泛的应用前景,当前CTC的研究与临床实践仍面临以下挑战。第一,血液样本收集的时间、采集后的处理需要满足质量控制的要求,以保证高质量的分子标志物检测;第二,血液中CTC含量低,反映的信息量有限,需要思考如何改进检测方法以提高CTC的检出量;第三,CTC检测技术层出不穷,保证特异性和敏感度的条件下,需要判断哪种方法和标志物是理想的CTC计数和表征方法;第四,不同检测方法得出的CTC检测结果难以比较,需要统一的、标准化的CTC验证分析步骤。尽管存在一些问题,不可否认CTC检测作为一项无创性检查,可以极大程度地减少患者痛苦,与传统的疗效监测方法相比又具有更高的准确性。需要进行大规模、多中心、多种族的临床随机干预研究,使用更高效的捕获系统,进行更灵敏的CTC检测与分析测试,验证CTC的临床有效性及临床实用性。目前对CTC释放的动态生物学机制知之甚少,可能会影响对临床结果的解释,未来期待涉及该领域的更深入研究。随着科技的进步,希望以CTC的检测与分析作为切入点,寻找特异性和灵敏度更强的分子指标,与临床评价、组织活检和其他辅助检查手段充分联合,在胃癌的诊断与分期、治疗方案选择、疗效评估及预后评价等领域发挥更高的临床应用价值,更好地实现“精准医疗”的目标。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] 国家卫生健康委员会. 胃癌诊疗规范(2018年版) [J]. 中华消化病与影像杂志(电子版), 2019, 9(3): 118-144.
[3] Suzuki, H., Oda, I., Abe, S., et al. (2016) High Rate of 5-Year Survival among Patients with Early Gastric Cancer Undergoing Curative Endoscopic Submucosal Dissection. Gastric Cancer, 19, 198-205.
https://doi.org/10.1007/s10120-015-0469-0
[4] 董彩霞, 袁瑛. 晚期胃癌治疗现状及进展[J]. 肿瘤防治研究, 2022, 49(11): 1095-1102.
[5] Sefrioui, D., Blanchard, F., Toure, E., et al. (2017) Diagnostic Value of CA19.9, Circulating Tumour DNA and Circulating Tumour Cells in Patients with Solid Pancreatic Tumours. British Journal of Cancer, 117, 1017-1025.
https://doi.org/10.1038/bjc.2017.250
[6] Lin, D., Shen, L., Luo, M., et al. (2021) Circulating Tumor Cells: Biology and Clinical Significance. Signal Transduction and Targeted Therapy, 6, Article No. 404.
https://doi.org/10.1038/s41392-021-00817-8
[7] 郭立煌, 徐克前. 循环肿瘤细胞在外周血中的存活与转移机制[J]. 生命的化学, 2023, 43(3): 375-382.
[8] Pal, M., Chen, H., Lee, B.H., et al. (2019) Epithelial-Mesenchymal Transition of Cancer Cells Using Bioengineered Hybrid Scaffold Composed of Hydrogel/3D-Fibrous Framework. Scientific Reports, 9, Article No. 8997.
https://doi.org/10.1038/s41598-019-45384-9
[9] 王刘星, 杨弘鑫, 戴礼, 等. 循环肿瘤细胞与胃癌患者临床病理特征及预后相关性分析[J]. 重庆医学, 2023, 52(3): 326-332.
[10] Kang, Y. and Pantel, K. (2013) Tumor Cell Dissemination: Emerging Biological Insights from Animal Models and Cancer Patients. Cancer Cell, 23, 573-581.
https://doi.org/10.1016/j.ccr.2013.04.017
[11] Chaffer, C.L. and Weinberg, R.A. (2011) A Perspective on Cancer Cell Metastasis. Science, 331, 1559-1564.
https://doi.org/10.1126/science.1203543
[12] Joosse, S.A., Gorges, T.M. and Pantel, K. (2015) Biology, Detection, and Clinical Implications of Circulating Tumor Cells. EMBO Molecular Medicine, 7, 1-11.
https://doi.org/10.15252/emmm.201303698
[13] 路帅, 崔庆, 赵强, 等. 胃癌患者循环肿瘤细胞检测的临床意义[J]. 中国现代普通外科进展, 2023, 26(4): 304-306.
[14] Cheng, B., Song, H., Wang, S., et al. (2014) Quantification of Rare Cancer Cells in Patients with Gastrointestinal Cancer by Nanostructured Substrate. Translational Oncology, 7, 720-725.
https://doi.org/10.1016/j.tranon.2014.10.001
[15] Li, Y., Gong, J., Zhang, Q., et al. (2016) Dynamic Monitoring of Circulating Tumour Cells to Evaluate Therapeutic Efficacy in Advanced Gastric Cancer. British Journal of Cancer, 114, 138-145.
https://doi.org/10.1038/bjc.2015.417
[16] Liu, Y., Ling, Y., Qi, Q., et al. (2017) Prognostic Value of Circulating Tumor Cells in Advanced Gastric Cancer Patients Receiving Chemotherapy. Molecular and Clinical Oncology, 6, 235-242.
https://doi.org/10.3892/mco.2017.1125
[17] 刘霞, 董丽娟, 张军鹏, 等. 循环肿瘤细胞在胃癌临床分期判断、疗效监测及预后评估中的价值[J]. 海南医学, 2020, 31(22): 2915-2918.
[18] Coussens, L.M. and Werb, Z. (2002) Inflammation and Cancer. Nature, 420, 860-867.
https://doi.org/10.1038/nature01322
[19] Cao, W., Yao, X., Cen, D., et al. (2020) The Prognostic Role of Platelet-to-Lymphocyte Ratio on Overall Survival in Gastric Cancer: A Systematic Review and Meta-Analysis. BMC Gastroenterology, 20, Article No. 16.
https://doi.org/10.1186/s12876-020-1167-x
[20] Chen, X.D., Mao, C.C., Wu, R.S., et al. (2017) Use of the Combination of the Preoperative Platelet-to-Lymphocyte Ratio and Tumor Characteristics to Predict Peritoneal Metastasis in Patients with Gastric Cancer. PLOS ONE, 12, e0175074.
https://doi.org/10.1371/journal.pone.0175074
[21] Fang, T., Wang, Y., Yin, X., et al. (2020) Diagnostic Sensitivity of NLR and PLR in Early Diagnosis of Gastric Cancer. Journal of Immunology Research, 2020, Article ID: 9146042.
https://doi.org/10.1155/2020/9146042
[22] Murakami, Y., Saito, H., Shimizu, S., et al. (2019) Neutrophil-to-Lymphocyte Ratio as a Prognostic Indicator in Patients with Unresectable Gastric Cancer. Anticancer Research, 39, 2583-2589.
https://doi.org/10.21873/anticanres.13381
[23] 马丽娟, 王蕴, 李殿明. 血清CEA、D-D、ALB、NLR与非小细胞肺癌的相关性及联合诊断价值分析[J]. 标记免疫分析与临床, 2021, 28(9): 1537-1541.
[24] Garrido-Navas, C., de Miguel-Pérez, D., Exposito-Hernandez, J., et al. (2019) Cooperative and Escaping Mechanisms between Circulating Tumor Cells and Blood Constituents. Cells, 8, Article 1382.
https://doi.org/10.3390/cells8111382
[25] Janssen, L.M.E., Ramsay, E.E., Logsdon, C.D. and Overwijk, W.W. (2017) The Immune System in Cancer Metastasis: Friend or Foe? Journal for ImmunoTherapy of Cancer, 5, Article 79.
https://doi.org/10.1186/s40425-017-0283-9
[26] Tao, L., Zhang, L., Peng, Y., Tao, M., Li, L., Xiu, D., Yuan, C., Ma, Z. and Jiang, B. (2016) Neutrophils Assist the Metastasis of Circulating Tumor Cells in Pancreatic Ductal Adenocarcinoma. Medicine, 95, e4932.
https://doi.org/10.1097/md.0000000000004932
[27] Szczerba, B.M., Castro-Giner, F., Vetter, M., Krol, I., Gkountela, S., Landin, J., et al. (2019) Neutrophils Escort Circulating Tumour Cells to Enable Cell Cycle Progression. Nature, 566, 553-557.
https://doi.org/10.1038/s41586-019-0915-y
[28] Zeng, X., Wei, D. and Wei, X. (2018). Background Modeling Method to Identify Interactions between Circulating Tumor Cells and Dendritic Cells. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, 18-21 July 2018, 806-809.
https://doi.org/10.1109/embc.2018.8512363
[29] Daud, A.I., Wolchok, J.D., Robert, C., Hwu, W., Weber, J.S., Ribas, A., et al. (2016) Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma. Journal of Clinical Oncology, 34, 4102-4109.
https://doi.org/10.1200/jco.2016.67.2477
[30] J Jalili-Nik, M., Soltani, A., Mashkani, B., Rafatpanah, H. and Hashemy, S.I. (2021) PD-1 and PD-L1 Inhibitors Foster the Progression of Adult T-Cell Leukemia/Lymphoma. International Immunopharmacology, 98, Article 107870.
https://doi.org/10.1016/j.intimp.2021.107870
[31] Nakamura, T., Sato, T., Endo, R., Sasaki, S., Takahashi, N., Sato, Y., et al. (2021) STING Agonist Loaded Lipid Nanoparticles Overcome Anti-Pd-1 Resistance in Melanoma Lung Metastasis via NK Cell Activation. Journal for ImmunoTherapy of Cancer, 9, e002852.
https://doi.org/10.1136/jitc-2021-002852
[32] Zuo, H. and Wan, Y. (2022) Inhibition of Myeloid PD-L1 Suppresses Osteoclastogenesis and Cancer Bone Metastasis. Cancer Gene Therapy, 29, 1342-1354.
https://doi.org/10.1038/s41417-022-00446-5
[33] Chen, L., Mo, D., Hu, M., Zhao, S., Yang, Q. and Huang, Z. (2022) PD-1/PD-L1 Inhibitor Monotherapy in Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck: A Meta-Analysis. American Journal of Otolaryngology, 43, Article 103324.
https://doi.org/10.1016/j.amjoto.2021.103324
[34] Luke, J.J., Rutkowski, P., Queirolo, P., Del Vecchio, M., Mackiewicz, J., Chiarion-Sileni, V., et al. (2022) Pembrolizumab versus Placebo as Adjuvant Therapy in Completely Resected Stage IIB or IIC Melanoma (KEYNOTE-716): A Randomised, Double-Blind, Phase 3 Trial. The Lancet, 399, 1718-1729.
https://doi.org/10.1016/s0140-6736(22)00562-1
[35] Zhou, Z., Liu, Y., Jiang, X., Zheng, C., Luo, W., Xiang, X., Qi, X. and Shen, J. (2023) Metformin Modified Chitosan as a Multi-Functional Adjuvant to Enhance Cisplatin-Based Tumor Chemotherapy Efficacy. International Journal of Biological Macromolecules, 224, 797-809.
https://doi.org/10.1016/j.ijbiomac.2022.10.167
[36] Ilie, M., Long-Mira, E., Bence, C., Butori, C., Lassalle, S., Bouhlel, L., et al. (2016) Comparative Study of the PD-L1 Status between Surgically Resected Specimens and Matched Biopsies of NSCLC Patients Reveal Major Discordances: A Potential Issue for Anti-Pd-L1 Therapeutic Strategies. Annals of Oncology, 27, 147-153.
https://doi.org/10.1093/annonc/mdv489
[37] Xie, N., Hu, Z., Tian, C., Xiao, H., Liu, L., Yang, X., et al. (2020) In vivo Detection of CTC and CTC Plakoglobin Status Helps Predict Prognosis in Patients with Metastatic Breast Cancer. Pathology & Oncology Research, 26, 2435-2442.
https://doi.org/10.1007/s12253-020-00847-7
[38] Qi, L., Xiang, B., Wu, F., Ye, J., Zhong, J., Wang, Y., et al. (2018) Circulating Tumor Cells Undergoing EMT Provide a Metric for Diagnosis and Prognosis of Patients with Hepatocellular Carcinoma. Cancer Research, 78, 4731-4744.
https://doi.org/10.1158/0008-5472.can-17-2459
[39] Dall’Olio, F.G., Gelsomino, F., Conci, N., Marcolin, L., De Giglio, A., Grilli, G., et al. (2021) PD-L1 Expression in Circulating Tumor Cells as a Promising Prognostic Biomarker in Advanced Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Clinical Lung Cancer, 22, 423-431.
https://doi.org/10.1016/j.cllc.2021.03.005
[40] Liu, M., Wang, R., Sun, X., Liu, Y., Wang, Z., Yan, J., et al. (2020) Prognostic Significance of PD‐L1 Expression on Cell‐Surface Vimentin‐Positive Circulating Tumor Cells in Gastric Cancer Patients. Molecular Oncology, 14, 865-881.
https://doi.org/10.1002/1878-0261.12643
[41] Satelli, A., Batth, I.S., Brownlee, Z., Rojas, C., Meng, Q.H., Kopetz, S. and Li, S. (2016) Potential Role of Nuclear PD-L1 Expression in Cell-Surface Vimentin Positive Circulating Tumor Cells as a Prognostic Marker in Cancer Patients. Scientific Reports, 6, Article No. 28910.
https://doi.org/10.1038/srep28910
[42] Chau, I. (2017) Clinical Development of PD-1/PD-L1 Immunotherapy for Gastrointestinal Cancers: Facts and Hopes. Clinical Cancer Research, 23, 6002-6011.
https://doi.org/10.1158/1078-0432.ccr-17-0020
[43] Kloten, V., Lampignano, R., Krahn, T. and Schlange, T. (2019) Circulating Tumor Cell PD-L1 Expression as Biomarker for Therapeutic Efficacy of Immune Checkpoint Inhibition in NSCLC. Cells, 8, Article 809.
https://doi.org/10.3390/cells8080809
[44] Doi, T., Shitara, K., Naito, Y., Shimomura, A., Fujiwara, Y., Yonemori, K., et al. (2017) Safety, Pharmacokinetics, and Antitumour Activity of Trastuzumab Deruxtecan (DS-8201), a HER2-targeting Antibody-Drug Conjugate, in Patients with Advanced Breast and Gastric or Gastro-Oesophageal Tumours: A Phase 1 Dose-Escalation Study. The Lancet Oncology, 18, 1512-1522.
https://doi.org/10.1016/s1470-2045(17)30604-6
[45] Seo, S., Ryu, M., Park, Y.S., Ahn, J.Y., Park, Y., Park, S.R., et al. (2018) Loss of HER2 Positivity after Anti-HER2 Chemotherapy in HER2-positive Gastric Cancer Patients: Results of the GASTric Cancer HER2 Reassessment Study 3 (GASTHER3). Gastric Cancer, 22, 527-535.
https://doi.org/10.1007/s10120-018-0891-1
[46] 孙旭凌, 申婧, 黄桂林, 等. 结直肠癌HER2及Ki-67表达的关系及预后因素分析[J]. 重庆医学, 2018, 47(12): 1610-1615.
[47] Bang, Y.J., Van Cutsem, E., Feyereislova, A., et al. (2010) Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. The Lancet, 376, 687-697.
https://doi.org/10.1016/S0140-6736(10)61121-X
[48] Tabernero, J., Hoff, P.M., Shen, L., et al. (2018) Pertuzumab Plus Trastuzumab and Chemotherapy for HER2-Positive Metastatic Gastric or Gastro-Oesophageal Junction Cancer (JACOB): Final Analysis of a Double-Blind, Randomised, Placebo-Controlled Phase 3 Study. The Lancet Oncology, 19, 1372-1384.
https://doi.org/10.1016/S1470-2045(18)30481-9
[49] Grillo, F., Fassan, M., Sarocchi, F., et al. (2016) HER2 Heterogeneity in Gastric/Gastroesophageal Cancers: From Benchside to Practice. World Journal of Gastroenterology, 22, 5879-5887.
https://doi.org/10.3748/wjg.v22.i26.5879
[50] Matsushita, D., Uenosono, Y., Arigami, T., et al. (2021) Clinical Significance of Circulating Tumor Cells in the Response to Trastuzumab for HER2-Negative Metastatic Gastric Cancer. Cancer Chemotherapy and Pharmacology, 87, 789-797.
https://doi.org/10.1007/s00280-021-04251-z