|
[1]
|
Baddeley, A. (2003). Working Memory: Looking Back and Looking Forward. Nature Reviews Neuroscience, 4, 829-839.[CrossRef] [PubMed]
|
|
[2]
|
Bai, X., Liu, L., Song, J., & Guo, Z. (2016). The Role of Feature and Spatial Location in Value-Driven Attentional Capture. Acta Psychologica Sinica, 48, 1357-1369.[CrossRef]
|
|
[3]
|
Bays, P. M., & Husain, M. (2008). Dynamic Shifts of Limited Working Memory Resources in Human Vision. Science, 321, 851-854.[CrossRef] [PubMed]
|
|
[4]
|
Beck, D. M., & Kastner, S. (2005). Stimulus Context Modulates Competition in Human Extrastriate Cortex. Nature Neuroscience, 8, 1110-1116.[CrossRef] [PubMed]
|
|
[5]
|
Becker, S. I., Grubert, A., Horstmann, G., & Ansorge, U. (2023). Which Processes Dominate Visual Search: Bottom-up Feature Contrast, Top-Down Tuning or Trial History? Cognition, 236, Article 105420.[CrossRef] [PubMed]
|
|
[6]
|
Berryhill, M. E., Richmond, L. L., Shay, C. S., & Olson, I. R. (2012). Shifting Attention among Working Memory Representations: Testing Cue Type, Awareness, and Strategic Control. Quarterly Journal of Experimental Psychology, 65, 426-438.[CrossRef] [PubMed]
|
|
[7]
|
Brown, G. D. A., Preece, T., & Hulme, C. (2000). Oscillator-Based Memory for Serial Order. Psychological Review, 107, 127-181.[CrossRef] [PubMed]
|
|
[8]
|
Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of Neurons in Inferior Temporal Cortex during Memory-Guided Visual Search. Journal of Neurophysiology, 80, 2918-2940.[CrossRef] [PubMed]
|
|
[9]
|
Chelazzi, L., E to inova, J., Calletti, R., Lo Gerfo, E., Sani, I., Della Libera, C., et al. (2014). Altering Spatial Priority Maps via Reward-Based Learning. Journal of Neuroscience, 34, 8594-8604.[CrossRef] [PubMed]
|
|
[10]
|
Constant, M., & Liesefeld, H. R. (2021). Massive Effects of Saliency on Information Processing in Visual Working Memory. Psychological Science, 32, 682-691.[CrossRef] [PubMed]
|
|
[11]
|
Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18, 193-222.[CrossRef] [PubMed]
|
|
[12]
|
Endress, A. D., & Potter, M. C. (2014). Large Capacity Temporary Visual Memory. Journal of Experimental Psychology: General, 143, 548-565.[CrossRef] [PubMed]
|
|
[13]
|
Gong, M., & Li, S. (2014). Learned Reward Association Improves Visual Working Memory. Journal of Experimental Psychology: Human Perception and Performance, 40, 841-856.[CrossRef] [PubMed]
|
|
[14]
|
Hills, T. T., Todd, P. M., & Goldstone, R. L. (2010). The Central Executive as a Search Process: Priming Exploration and Exploitation across Domains. Journal of Experimental Psychology: General, 139, 590-609.[CrossRef] [PubMed]
|
|
[15]
|
Jiang, Y. V., Sha, L. Z., & Remington, R. W. (2015). Modulation of Spatial Attention by Goals, Statistical Learning, and Monetary Reward. Attention, Perception, & Psychophysics, 77, 2189-2206.[CrossRef] [PubMed]
|
|
[16]
|
Jung, K., Han, S. W., & Min, Y. (2020). Opposing Effects of Stimulus-Driven and Memory-Driven Attention in Visual Search. Psychonomic Bulletin & Review, 27, 105-113.[CrossRef] [PubMed]
|
|
[17]
|
Kelley, M. R., & Nairne, J. S. (2001). Von Restorff Revisited: Isolation, Generation, and Memory for Order. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 54-66.[CrossRef] [PubMed]
|
|
[18]
|
King, M. J., & Macnamara, B. N. (2020). Three Visual Working Memory Representations Simultaneously Control Attention. Scientific Reports, 10, Article No. 10504.[CrossRef] [PubMed]
|
|
[19]
|
Krebs, R. M., Boehler, C. N., De Belder, M., & Egner, T. (2015). Neural Conflict-Control Mechanisms Improve Memory for Target Stimuli. Cerebral Cortex, 25, 833-843.[CrossRef] [PubMed]
|
|
[20]
|
Martinez-Cedillo, A. P., Dent, K., & Foulsham, T. (2023). Social Prioritisation in Scene Viewing and the Effects of a Spatial Memory Load. Attention, Perception, & Psychophysics, 86, 1237-1347.[CrossRef] [PubMed]
|
|
[21]
|
Pougeon, J., Camos, V., Belletier, C., & Barrouillet, P. (2024). Quantifying Resource Sharing in Working Memory. Psychonomic Bulletin & Review.[CrossRef] [PubMed]
|
|
[22]
|
Ravizza, S. M., & Conn, K. M. (2022). Gotcha: Working Memory Prioritization from Automatic Attentional Biases. Psychonomic Bulletin & Review, 29, 415-429.[CrossRef] [PubMed]
|
|
[23]
|
Santangelo, V. (2015). Forced to Remember: When Memory Is Biased by Salient Information. Behavioural Brain Research, 283, 1-10.[CrossRef] [PubMed]
|
|
[24]
|
Santangelo, V., Di Francesco, S. A., Mastroberardino, S., & Macaluso, E. (2015). Parietal Cortex Integrates Contextual and Saliency Signals during the Encoding of Natural Scenes in Working Memory. Human Brain Mapping, 36, 5003-5017.[CrossRef] [PubMed]
|
|
[25]
|
Sawaki, R., & Luck, S. J. (2011). Active Suppression of Distractors That Match the Contents of Visual Working Memory. Visual Cognition, 19, 956-972.[CrossRef] [PubMed]
|
|
[26]
|
Sisk, C. A., Remington, R. W., & Jiang, Y. V. (2020). A Spatial Bias toward Highly Rewarded Locations Is Associated with Awareness. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46, 669-683.[CrossRef] [PubMed]
|
|
[27]
|
Theeuwes, J. (2018). Visual Selection: Usually Fast and Automatic; Seldom Slow and Volitional. Journal of Cognition, 1, Article 29.[CrossRef] [PubMed]
|
|
[28]
|
Uddin, L. Q. (2015). Salience Processing and Insular Cortical Function and Dysfunction. Nature Reviews Neuroscience, 16, 55-61.[CrossRef] [PubMed]
|
|
[29]
|
Umemoto, A., Scolari, M., Vogel, E. K., & Awh, E. (2010). Statistical Learning Induces Discrete Shifts in the Allocation of Working Memory Resources. Journal of Experimental Psychology: Human Perception and Performance, 36, 1419-1429.[CrossRef] [PubMed]
|
|
[30]
|
Wallis, G., Stokes, M. G., Arnold, C., & Nobre, A. C. (2015). Reward Boosts Working Memory Encoding over a Brief Temporal Window. Visual Cognition, 23, 291-312.[CrossRef]
|
|
[31]
|
Weinstein, A. M. (2023). Reward, Motivation and Brain Imaging in Human Healthy Participants—A Narrative Review. Frontiers in Behavioral Neuroscience, 17, Article 1123733.[CrossRef] [PubMed]
|
|
[32]
|
Won, B., & Leber, A. B. (2017). Spatial Constraints on Probability Learning in Visual Working Memory. Visual Cognition, 25, 34-50.[CrossRef]
|