生物基凝聚电解质在锂电池中的研究进展
Research Advances on Bio-Based Gel Polymer Electrolytes towards Lithium Batteries
DOI: 10.12677/japc.2024.134070, PDF, HTML, XML,    科研立项经费支持
作者: 杜天恒, 赵显哲, 李同飞, 钱 涛, 周 希*:南通大学化学化工学院,江苏 南通
关键词: 生物质凝聚电解质锂电池Biomass Gel Electrolytes Lithium Batteries
摘要: 传统的锂电池液态电解质存在漏液、稳定性差、容易导致电极腐蚀和体积膨胀等安全问题,限制其应用与发展。凝胶聚合物电解质是一种兼具高离子电导率和优异机械性能的电解质材料。然而,当前凝胶聚合电解质主要以难降解、不可再生的化石产品为基材,从环境和经济因素出发,以来源广泛、可再生、可降解的生物基高分子材料取代化石材料作为电解质非常符合现代电子产业可持续发展的理念。综述了近年来生物基凝胶聚合物电解质在锂电池中的最新应用进展,总结并展望了生物基凝胶聚合物电解质在制备及功能化应用领域的不足、优势及发展方向,以期为生物基凝胶聚合物电解质的研究提供借鉴。
Abstract: The traditional liquid electrolyte of lithium battery has safety problems such as leakage, poor stability, electrode corrosion and volume expansion, which limit its application and development. Gel polymer electrolyte is an electrolyte material with high ionic conductivity and excellent mechanical properties. However, the current gel polymer electrolyte is mainly based on refractory and non-renewable fossil products, and from the perspective of environmental and economic factors, replacing fossil materials by bio-based polymer materials with a wide range of sources, renewable and degradable is in line with the concept of sustainable development of the modern electronics industry. This paper reviews the latest application progress of bio-based gel polymer electrolytes towards lithium batteries in recent years, and summarizes and looks forward to the shortcomings, advantages and development directions of bio-based gel polymer electrolytes in the preparation and functionalization of polymer electrolytes, in order to provide reference for the research of bio-based gel polymer electrolytes.
文章引用:杜天恒, 赵显哲, 李同飞, 钱涛, 周希. 生物基凝聚电解质在锂电池中的研究进展[J]. 物理化学进展, 2024, 13(4): 685-698. https://doi.org/10.12677/japc.2024.134070

1. 生物基凝聚电解质的研究意义

电解质是电池四大关键组成部分之一,在正负极之间起着输送离子,传导电流的作用[1]。传统的商用电解质以液态电解质为主,其因制备简单且离子电导率高得到广泛应用。然而,液态电解质在使用过程中存在的安全性问题,包括电极腐蚀和体积膨胀、漏液、稳定性差等极大限制了其应用与发展[2]。聚合物电解质作为液态电解质的有力替代品,是解决锂电池安全问题的有效手段之一[3]。聚合物电解质可分为两类,即固态聚合物电解质和凝胶聚合物电解质[4]。固态聚合物电解质不含任何液体成分,具有较好的柔韧性和较强的机械加工性,并能够有效抑制锂枝晶生长[5]。但是,较低的室温离子电导率(108~105 S·cm1)在现阶段可能会阻碍其应用[6]。凝胶聚合物电解质作为一种兼具液态电解质的高离子电导率和固态聚合物电解质的高机械强度的准固态电解质。它通常具有优异的可加工性和灵活性,在柔性和可穿戴电子产品领域具有非常广阔的前景[7]-[9]

凝胶聚合物电解质的柔性和可变形性源于聚合物基体的特性,聚合物基体的主要成分来自于聚环氧乙烷(PEO)、聚乙烯醇(PVA)、聚丙烯腈(PAN)、聚偏氟乙烯(PVDF)、聚(偏氟乙烯–共–六氟丙烯) (PVDF-HFP)、聚丙烯酰胺(PAM)和聚甲基丙烯酸甲酯(PMMA)等石化产品,由此所形成难降解的石油基聚合物会造成白色污染,对人类健康和环境产生不利影响[10]。随着绿色环保理念的不断发展,人们对来源广泛的、可再生的、可降解的生物基聚合物材料越来越关注,利用它们取代化石材料作为电解质非常符合现代电子产业可持续发展的理念[11]

生物基聚合物不仅具有生物降解性、储量丰富、低成本、无毒性和加工简单等优点,由其制备的凝胶还具备优异的机械性能和丰富的三维网络结构,从而提高电解质离子的储存和转运能力,大幅度降低电荷转移电阻,有利于提升电解质电导率[12]-[14]。此外,生物基聚合物结构中的活性官能团如甲氧基、羟基等还可作为反应位点,可以极大丰富离子传输路径,牢牢锁住电解液部分,在解决电解液泄漏问题的同时,保留高离子电导率[15]。众所周知,生物基凝胶聚合物电解质在锂离子电池应用研究发展迅速,其对锂离子电池电化学性能的发挥产生至关重要影响。本文简要概述并讨论了生物基凝胶聚合物电解质在锂离子电池应用中的最新进展,综合分析和研究了电极与凝胶聚合物电解质之间的相互作用,并对其未来的挑战和前景进行了展望。

生物基凝胶聚合物电解质通常是通过物理凝胶或化学交联制备而来[16]。生物基聚合物结构中丰富的官能团,如羟基、氨基、羧基和酰基,对极性溶剂具有较强的润湿性,并能优先与无机盐的阴离子相互作用,从而增强盐的溶解度和离子运输能力[17]-[19]。生物基聚合物,包括多核苷酸、多肽和多糖等,主要从可再生资源(细菌、植物、藻类、微生物等)获得[20]。多肽和多糖是制备生物质基凝胶聚合物电解质最常用的材料,如明胶[21]、海藻酸盐[22]、淀粉[23]、琼脂[24]、纤维素[25]、壳聚糖[26]等。这些聚合物高分子链中存在的大量易改性官能团,结构设计性强,人们可按照特定的需求对其修饰,使其作为高性能凝胶电解质骨架支撑[27]。此外,生物基聚合物可以与聚合物单体/共嵌段聚合混合或与其他传统聚合物结合形成互穿聚合物网络,从而提升凝胶电解质的机械性能和导电性能[28]。Mo等[29]基于纳米纤维素得到了一种具有半互穿聚合物网络结构的磺基甜菜碱/纤维素凝胶电解质,其中纳米纤维素通过物理手段与化学共价相结合作用于网络结构,极大稳定了磺基甜菜碱并提高了凝胶电解质的机械强度。因此,近来基于各种生物基聚合物材料作为凝胶电解质在锂离子电池应用的报道日益增多。

2. 纤维素基凝胶电解质

纤维素是地球上储量最丰富的生物基聚合物,可以从植物、藻类或细菌中提取得到[30]。结构上,纤维素是由多个脱水葡萄糖单元通过糖苷键连接而成的线性聚合物。纤维素的基本结构单元是脱水葡萄糖,再通过糖苷键O-4和O-6连接而成[31]。纤维素通常可分为微原纤化纤维素(MFC)、纳米原纤化纤维素(NFC)、纤维素纳米晶(CNC) [32]。除此之外,细菌纤维素(BC)是另一种化学结构与植物纤维素相似的,具有高纵横比的纳米纤维素[33]。纤维素每个重复单元均含有三个羟基官能团,可使其进行各种化学修饰[34]。目前,不同类型的纤维素及其衍生物用于制备凝胶聚合物电解质,如甲基纤维素(MC) [35]、羧甲基纤维素(CMC) [36]、纤维素醋酸纤维素(CA) [37]、三醋酸纤维素和羟乙基纤维素(HEC) [38]等。Wu等人[39]开发了一系列基于纤维素衍生物的生物基凝胶聚合物电解质用于锂离子电池。如图1(a)所示,通过溶液铸造技术他们制备了甲基纤维素基聚合物电解质,具有良好的力学性能、高离子电导率和高Li+转移数。然而,由于MC链中多余的羟基,导致MC基凝胶聚合物电解质表现出较差的倍率性能。针对上述问题,研究人员开发了PVDF/MC/PVDF夹层结构的聚合物膜作为聚合物电解质的基质。所制备的电解质具有更高的离子电导率(1.50 mS·cm1),显著提高了倍率性能。此外,他们引入非织造布(NWF)来制备MC基凝胶电解质框架(见图1(b))。通过MC和NWF的协同作用,复合凝胶电解质获得了较高的离子电导率和Li+转移数[40]。随后,他们课题组以HEC为基体制备了无孔高密度的凝胶聚合物电解质,从而避免了锂电池微短路问题,并展现出具有优异的电化学性能,包括高离子电导率和良好的循环性能[41]

纤维素基凝胶聚合物电解质的制备方法可分为两大类。一类是纤维素在聚合物骨架中充当增强剂,或以纤维素凝胶为骨架,再通过交联剂或引发剂将聚合物单体在纤维素表面聚合形成凝胶电解质[42]。比如,纤维素纳米纤维(CNF),由直径为2~20 nm的纳米纤维组成,由于其独特的结构和性能,被广泛用于电解质增强剂[43]。此外,为了提高电解液的黏度,研究者们将改性纤维素作为增稠剂,通过化学改性引入的新基团可与高分子链段形成氢键,同时也能作为支撑和保持凝胶电解质的骨架结构[44]。Lin课题组[45]以LiCIO4为锂盐配制碳酸丙烯酯电解液,适量乙基纤维素(EC)作为增稠剂加入其中制备凝胶电解质。EC一方面能够提高电解液的黏度帮助凝胶化,另一方面纤维素作为凝胶化助剂可改善电解质的电化学性能。凝胶电解质的离子电导率在一定范围内随EC含量提升而提升。因为纤维素丰富的羟基使其可通过氢键与其他聚合物分子链结合,有助于离子运输。

另一类是将纤维素溶解于含有电解质的溶剂中,使电解质固定在凝胶内部得到凝胶电解质或纤维素再生后浸泡于电解质溶液中进行吸收形成凝胶电解质[46]。纤维素再生后不但可确保电解质力学强度,还可作为丰富孔隙的骨架[47]。同时,纤维素易与环氧氯丙烷等交联剂进行化学交联形成凝胶电解质,充分发挥其网络孔隙丰富和力学性能优异的特点[48]。最近,Zhang团队[49]通过将软链聚乙二醇(PEG)化学接枝到纤维素骨架上制备了基于纤维素的凝胶电解质(见图1(c))。如图1(d)所示,PEG引入有效地增强了纤维素的韧性和电解质的润湿性,使其在室温下具有较高的离子电导率和优异的循环稳定性。但是纤维素基凝胶电解质的力学性能相对较差,抗拉强度低于30.00 MPa。Wen等[50]制备了具有内部交联网络的高强度细菌纤维素基凝胶电解质,该电解质的抗拉强度高达49.90 MPa,最大应变为56.3%。得益于这一优势,电池内部锂枝晶的垂直生长受到显著抑制,表现出较好的电化学性能。

Figure 1. PVDF/MC/PVDF gel polymer electrolyte membrane and I-t curve (a) [39]; Schematic diagram of gel electrolyte framework prepared by NWF and MC (b) [40]; Schematic of the synthesis of gel electrolyte prepared by PEG modified cellulose (c) and its electrochemical performances (d) [49]

1. PVDF/MC/PVDF凝胶聚合物电解质膜及其I-t曲线(a) [39];NWF与MC制备凝胶电解质框架示意图(b) [40];PEG改性纤维素制备凝胶电解质示意图(c)及其电化学性能曲线(d) [49]

纤维素凝胶具有大量的微孔结构,不仅对电解质的离子传输效率和离子电导率有直接关系,还为电解质提供足够的吸收空间,增强凝胶电解质的柔韧性[51]。Wu团队[52]通过改变溶剂/非溶剂混合物的比例,成功制备CMC膜基电解质。CMC膜的高孔隙率(62.5%)使电解质的吸收率高达75.9%。因此,CMC膜具有高离子电导率(0.48 mS·cm1)、高Li+转移数(0.46)和良好的热稳定性。当与LiFePO4正极材料匹配时,制备的多孔CMC基凝胶电解质表现出优异的电化学性能,包括可逆比容量、循环稳定性和倍率能力。Zhang等人[53]发现,通过化学改性使得纤维素凝胶原本无规的孔隙进行有序排列,让其内部变得更致密且有序,从而降低离子传输阻碍,进一步增强界面相容性和吸附性。Wan等人[54]提出采用纤维素气凝胶膜(CAMs)作为具有可调控纳米孔的凝胶电解质基材。研究发现,纤维素溶液的初始浓度对CAMs的形态和物理性质起着至关重要的作用。结果表明,CAM-4具有良好的机械强度(10.70 MPa)和离子电导率(2.81 mS·cm1)之间平衡,具有良好的循环稳定性和倍率性能。此外,CAMs表现出优异的热稳定性,这使得电池在120℃环境下也可以运行。纤维素还能与其他基质复合形成网络凝胶,不仅可以提高凝胶电解质的机械强度和稳定性,还能进一步调控电解质孔隙结构与电化学性能[55]。Cui等[56]报道了用溶液铸造法将聚氨酯与纤维素复合得到凝胶电解质。通过各组分的协同作用,所制备的复合凝胶电解质具有电化学窗口宽、Li+转移数高等电化学特性。Mantravadi R.等人[57]采用甲基纤维素为聚合物基体,与正丁基-n-甲基吡咯烷双(三氟甲基磺酰)亚胺(PYR14TFSI)离子液体同时溶解于溶剂N,N-二甲基甲酰胺(DMF)中,随后加热将溶剂蒸发得到纤维素–离子液体凝胶电解质。PYR14TFSI的含量可高达97 wt%,所制备的电解质在保持一定机械性能的同时,具有较高的室温离子电导率(≥103 S·cm1)和较宽的电化学窗口(5.6 V)。

3. 壳聚糖基凝胶电解质

甲壳素是地球上最常见的天然聚合物之一,从甲壳类动物(虾、蟹和龙虾)的外骨骼中分离提取得到[58]。甲壳素具有高度结晶化结构和丰富的乙酰化基团,使其在水或有机体系中的溶解度较低。在碱性条件下,甲壳素经部分去乙酰化反应转化为壳聚糖,显著提高其在酸性水介质中的溶解度,当去乙酰化程度达到约50%,壳聚糖可溶于酸性水介质中[59]。壳聚糖是甲壳素的部分去乙酰化产物,是由d-氨基葡萄糖(去乙酰化单元)和n-乙酰-d-氨基葡萄糖(乙酰化单元)通过糖苷键连接而成的天然线型多糖。壳聚糖是甲壳素最重要的衍生物,其储量仅次于纤维素。壳聚糖具有氨基和羟基等极性基团,不仅可以改性制备功能聚合物,还能作为电子给体并与无机盐相互作用[60]。此外,其优异的成膜特性使其也可作为聚合物电解质基材。因此,壳聚糖是凝胶电解质中研究最广泛的生物聚合物之一[61]

壳聚糖凝胶可以通过分子链的物理交联或化学交联制备,其分子间作用力主要包括氢键、疏水键作用、离子键作用和分子交联等[62]。物理交联凝胶通过二次相互作用形成的,包括静电作用、氢键作用、疏水键作用和离子键相互作用[63]。壳聚糖凝胶最常见的可逆交联方法是离子交联,获得非永久性的网状结构[64]。Yang等[65]采用可降解的羧化壳聚糖为基体材料,通过相分离手段得到了一种柔性、透明环保的凝胶聚合物电解质。该方法将氨基质子化与其自身的羧基形成离子键作用而建立物理交联。该工艺简单、快速无污染,所制备的壳聚糖凝胶膜具有优异的柔韧性和离子电导率(8.69 × 102 S·cm1)。壳聚糖基化学凝胶有四种形成状态:壳聚糖交联体系、杂化聚合物网络、互穿聚合物网络和半互穿聚合物网络[59]。与物理凝胶相比,壳聚糖基化学凝胶的机械强度和交联网络结构更容易精确控制,它是通过与交联剂不可逆的共价键形成,交联剂主要与氨基相互作用形成共价键[66]。然而,如何对壳聚糖凝胶的网络结构和化学性质进行调控需要进一步探究[67]。Wen及同事[68]制备了一种基于壳聚糖–聚乙二醇二缩水甘油醚的3D交联大分子网络的新型聚合物电解质,显著改善了其机械强度和热稳定性。此外,聚合物链上醚基和氨基为Li+提供了大量的转移通道,促进Li的均匀沉积(见图2)。此外,壳聚糖基聚合物凝胶电解质与其他高分子材料结合,可以有效增强其机械强度,能够有效应用于电池体系[69]

Figure 2. Flow diagram of the preparation processes of soluble chitosan powder (a); Schematic of the synthesis of chitosan based gel electrolyte (b) [68]

2. 可溶性壳聚糖粉末制备工艺流程图(a);壳聚糖基凝胶电解质制备示意图(b) [68]

4. 木质素基凝胶电解质

木质素属于植物纤维成分中的另一大类,是一种具有支链结构的天然芳香聚合物,主要结构单体有芥子醇、松柏醇和对香豆醇三种[70]。木质素在自然界中储量极为巨大,但作为制浆造纸工业副产物,木质素的利用率远低于纤维素。全球工业木质素产量约7000万吨/年,仅5%能够得到有效利用[71]。然而,木质素结构富含甲氧基、酚羟基等活性基团,以及特有的电化学活性、氧化还原性能使其成为凝胶的理想原料[72]。另外,木质素及其衍生物结构中含有大量的苯酚基团,它们能转化为具备电子和质子储存能力的醌/对苯二酚结构且氧化还原活性强。同时,利用木质素结构变化使电极与电解质之间完成氧化还原反应从而达到能量储存和电荷转移的目的[73]。研究人员们正是利用这一原理,持续推动木质素在凝胶电解质领域的应用,为木质素的高值化利用提供有效途径[74]

木质素是由苯基丙烷单元组成并具有网络结构的高分子材料。木质素因其特殊结构不仅能够作为凝胶电解质的基体组分,也可在凝胶电解质制备中起到交联剂或增孔剂的作用[75]。木质素自身芳环刚性结构能够改善凝胶的力学性能,还可通过其调控凝胶的孔隙结构,有助于提高凝胶电解质基体机械性能[76]。Gong等人[77]通过将木质素分散液干燥制备不透明膜,再将其浸入碳酸乙烯酯/碳酸二乙酯/碳酸二甲酯混合溶液中得到凝胶电解质,所制备以木质素为基质的凝胶电解质具有优良的离子电导率(3.73 mS·cm1),其液态组分在电流传导时稳定性良好,在电池中可充当电解质基质及黏结剂的角色。Park团队[78]将木质素溶液加入到聚乙二醇二缩水甘油醚中聚合,通过开环聚合和化学交联得到木质素凝胶电解质。该凝胶电解质具有高离子电导率(10.35 mS·cm1),木质素分子的存在有助于抑制凝胶内其他大分子聚合物的滑动,调控凝胶内部的孔隙结构,从而使其拥有了更高的抗压性能和优异的机械稳定性。Huang课题组[79]以木质素和马铃薯淀粉为原料制备了新型凝胶电解质,当后者含量为5 wt%时,凝胶电解质综合性能优异。木质素与马铃薯淀粉的官能团(羟基、羧基等)之间存在大量分子间氢键,使其力学性能突出(见图3)。随后,该团队将木质素膜在双三氟甲烷磺酰亚胺锂(LiTFSI)溶液中浸泡2小时,制备凝胶电解质。所制备电解质抗拉性能得到显著提高(最高可提升5倍)。当溶解时间为20分钟时,电解质具有较强的液体电解质吸附能力(吸附率可达144%)和良好的热稳定性。Li离子迁移数也达到了0.74,离子电导率为2.42 mS·cm1,明显高于目前商用电解质指标,可为环保绿色电池的开发提供借鉴。

Figure 3. Lignin source and plant fiber composition [79]

3. 木质素的来源及植物纤维组成[79]

Figure 4. Schematic illustration for the synthesis process of lignin-PVP (a); The photographs of lignin and lignin-PVP membranes (b); The strain-stress curves of lignin composite membranes with different PVP content and changes in mechanical properties of lignin composite membranes with different PVP content (c); Typical charge-discharge curves at 0.1 C and rate behavior at various rates of a Li/GPE/LiFePO4 cell (d) [82]

4. PVP修饰木质素膜制备示意图(a);木质素和木质素-PVP膜照片(b);不同PVP含量木质素复合膜的应变–应力曲线及不同PVP含量木质素复合膜的力学性能变化(c);Li/GPE/LiFePO4电池在0.1 C下充放电曲线和不同倍率下性能表现(d) [82]

在实际应用过程中,由于木质素的来源与分离方法的差异致使木质素结构和性能不均一,从而导致其在常用溶剂中的分散性和相容性较差的问题[80]。因此,研究者们通常利用改性手段改善木质素与聚合物基体的相容性或使木质素自身携带电荷,提高其在溶液中的分散性,从而提升木质素凝胶电解质的应用范围和电化学性能[81]。Huang等[82]提出了一种聚乙烯吡咯烷酮(PVP)改性木质素的聚合物复合膜制备方法。如图4所示,经PVP改性后,复合膜的机械强度和热稳定性均高于木质素膜,应用于锂电池凝胶电解质具有优异的倍率性能和循环性能。改性木质素能调控木质素的活性基团和微观结构,使得凝胶内部结构均一、体积电阻降低,制备出孔道结构丰富和特殊形貌的复合凝胶电解质,增强力学性能和电荷储存功能。Song团队[83]利用PEG与木质素复合成膜,再将制备的复合膜置于电解液中溶胀形成凝胶。PEG的软链段充分与木质素组分紧密结合,形成特殊的三维网状结构。这种多孔结构使液体电解质易于进入基质中,大幅提升电解质的力学性能,同时还能限制PEG自由移动,极大提升电解质的热稳定性,从而制备了具有优越的热力学性能和高离子电导率及电化学稳定性的凝胶电解质。

5. 其他生物基凝胶电解质

Figure 5. A schematic diagram for the fabrication process of bio-based gel polymer electrolyte (a); The SEM images of SPI/PVA nanofiber membranes (b), polydopamine sphere (PDS) layer (c), and carbonized polydopamine sphere (CPDS) layer (d); TEM images of SPI/PVA nanofiber (e), PDSs (f), and CPDSs (g); A schematic diagram of a normal battery (h) with separator and (i) with c-GPE; Schematics showing the mechanismfor the Li dendrites suppressing (j) and for the dissolution of Mn ions (k), as well as for the Mn ions trapping (l) [97]

5. 生物基凝胶聚合物电解质的制备工艺示意图(a);SPI/PVA纳米纤维膜(b)、聚多巴胺球(PDS)层(c)和碳化聚多巴胺球(CPDS)层(d)SEM图像,SPI/PVA纳米纤维(e)、聚多巴胺球(f)和碳化聚多巴胺球(CPDS)层(g)TEM图像;普通隔膜电池(h)和c-GPE隔膜电池(i)示意图;电池抑制Li枝晶生长的原理(j);Mn离子溶解(k)和捕获(l)机制[97]

此外,其他一些生物高分子材料,如海藻酸盐[84]、明胶[85]、大豆分离蛋白[86]等,也被设计为凝胶电解质。海藻酸盐是一种天然多糖,从海藻中提取得到。作为一种线性阴离子聚合物,海藻酸盐通过与Ca2+、Ba2+等阳离子相互作用,使聚合物链离子交联形成强凝胶[87]。海藻酸盐在聚合物链上含有丰富的羟基和羧基,有利于盐的吸收/解离和离子的运输。海藻酸盐基凝胶的性能取决于其结构、分子量、来源和交联方式[88]。交联方式包括自组装、分子间作用、氢键、离子相互作用、静电作用、客体与宿主反应、共价交联等[89]。这些方法有利于开发新型凝胶电解质,通过与其他高分子材料结合,海藻酸盐基凝胶具有更好的力学性能,因此,海藻酸盐凝胶可应用于非水基锂电池[90]。Ji等人[91]报道了采用聚丙烯酸钠和海藻酸钠通过钙离子交联原位聚合制备了凝胶电解质(PANa-Ca-SA)。PANa-Ca-SA具有优异的力学性能和自愈特性。此外,所组装的锂电池具有117.0 mAh·g1的高比容量和卓越的循环稳定性,在5000次循环中容量保持率为70%,可应用于柔性和可穿戴锂电池。除了多糖外,蛋白质是另一类重要的天然生物聚合物,它含有丰富的官能团(包括氨基、羧基、羟基、巯基和酚基等),蛋白质基凝胶在锂电池领域的应用具有广阔的前景[92]。基于蛋白质的凝胶可以通过物理(冷却、加热、高压)、化学或酶交联制备,交联方法包括非共价交联或共价交联[93]。物理处理制备的凝胶具有较弱的机械结构,而化学或酶交联可以增加结构强度[94]。大豆分离蛋白(SPI)是从豆制品中提取的最丰富的可再生资源之一,被广泛用作吸附、水凝胶和抗菌材料。SPI的分子结构包含多种官能团,有助于多种离子转运[95]。Sui团队[96]开发了一种基于SPI/PVA的可生物降解复合纳米纤维膜作为电解质骨架,所制备的电解质具有高达89%的高孔隙率和700%的电解质吸收率。基于SPI/PVA的电池比具有普通商用隔膜的电池(103.9 mAh·g1)具有更高的比容量(118.2 mAh/g)。此外,由于优异的热稳定性和对液体电解质的亲和力,SPI可以有效抑制Li枝晶生长,也被成功应用于锂金属电池。Sui等[97]采用SPI/PVA纳米纤维膜作为骨架,制备了一种新型复合凝胶电解质,用于解决Mn2+在LiMn2O4(LMO)正极中的扩散和迁移问题。图5结果表明:Li枝晶在SPI/PVA凝胶电解质受到显著抑制,采用该复合凝胶电解质的锂金属电池,其循环性能和倍率性能均优于采用商用隔膜的电池。

6. 总结与展望

综上所述,本文概述了生物基凝胶电解质在锂电池中的最新进展和潜在的创新应用。生物聚合物作为生物基凝胶电解质的载体因其低成本、功能性和丰度而受到广泛关注,同时也赋予了电解质高离子电导率、热稳定性、机械柔韧性、生物降解性、生物相容性和可回收性。使用天然聚合物作为锂电池的电解质成分需要平衡协调聚合物分子之间相互作用。为此,通过与合成聚合物共混或化学功能化定制功能特性都是很好的选择,从而提高凝胶聚合物的综合性能。为了进一步提升生物基凝胶电解质性能,以便更快地被产业化应用,未来对其研究还可以从以下5个方面进行考虑:

1) 室温下生物基凝胶电解质的离子电导率相对较低。改善生物基高分子材料组分本身的离子电导率或实现导电物质在其上的高接枝率、高负载等,使其在制备凝胶电解质后不降低电化学性能是开发室温应用的凝胶电解质的一种选择。

2) 最大限度地提高生物基凝胶电解质的力学性能以满足电解质实际应用要求。结合其他聚合物或增强填料开发凝胶电解质在不牺牲离子电导率的情况下提高其力学性能是一种实用方法。此外,迫切需要开发形变过程中的理论模型方法,以完善不同组分的应变分布。

3) 由于温度、湿度和形变等因素的影响,生物基凝胶电解质的电化学稳定性和热力学稳定性有待提高。合理选择聚合物基质、电解盐、无机填料和分散/溶解体系,进一步提高热稳定性,扩大实际电化学窗口。

4) 开发低成本、规模化、环保的生物聚合物提取和生产工艺是生物基聚合物商业化应用的迫切需要。将生物基聚合物转化为功能性电解质的过程,包括真空辅助过滤、浇铸干燥、湿纺和电纺、冷冻干燥等,生产流程繁多导致产品成本过高。原位制备方法有待进一步发展。

5) 开发具有新颖功能(如可拉伸性、温敏、自修复、色变)的智能设备,以进一步扩大其在下一代智能电子设备和植入式生物医学设备中的应用。同时,融入3D打印技术,减少实际生产中需要投入的昂贵的模具成本,实现电解质外形的精密控制,增加电解质的应用场景。然而,附加功能可重复性和耐久性仍然受到限制。因此,充分利用生物基聚合物的化学结构和性质的优势,深入研究生物基聚合物的构效关系至关重要。

基金项目

全国石油和化工行业下一代高比能电池核心技术与关键材料重点实验室资助项目(编号SDHY2241),南通大学大型仪器开放基金(编号KFJN2404)。

NOTES

*通讯作者。

参考文献

[1] Wan, J., Xie, J., Mackanic, D.G., Burke, W., Bao, Z. and Cui, Y. (2018) Status, Promises, and Challenges of Nanocomposite Solid-State Electrolytes for Safe and High Performance Lithium Batteries. Materials Today Nano, 4, 1-16.
https://doi.org/10.1016/j.mtnano.2018.12.003
[2] Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M. and Wang, G. (2019) Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem, 5, 2326-2352.
https://doi.org/10.1016/j.chempr.2019.05.009
[3] Xu, K. (2014) Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews, 114, 11503-11618.
https://doi.org/10.1021/cr500003w
[4] Cho, Y., Hwang, C., Cheong, D.S., Kim, Y. and Song, H. (2018) Gel/Solid Polymer Electrolytes Characterized by in Situ Gelation or Polymerization for Electrochemical Energy Systems. Advanced Materials, 31, Article ID: 1804909.
https://doi.org/10.1002/adma.201804909
[5] Manthiram, A., Yu, X. and Wang, S. (2017) Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nature Reviews Materials, 2, Article No. 16103.
https://doi.org/10.1038/natrevmats.2016.103
[6] Zhang, S., Ueno, K., Dokko, K. and Watanabe, M. (2015) Recent Advances in Electrolytes for Lithium-Sulfur Batteries. Advanced Energy Materials, 5, Article ID: 1500117.
https://doi.org/10.1002/aenm.201500117
[7] Yi, J.X., Huo, Z.P., Abdullah, M.A., et al. (2018) Development and Application of Electrolytes in Supercapacitors. Progress in Chemistry, 30, 1624-1633.
[8] Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L. and Zhang, J. (2015) A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chemical Society Reviews, 44, 7484-7539.
https://doi.org/10.1039/c5cs00303b
[9] Zhu, M., Wu, J., Wang, Y., Song, M., Long, L., Siyal, S.H., et al. (2019) Recent Advances in Gel Polymer Electrolyte for High-Performance Lithium Batteries. Journal of Energy Chemistry, 37, 126-142.
https://doi.org/10.1016/j.jechem.2018.12.013
[10] Wang, Z., Burra, K.G., Lei, T. and Gupta, A.K. (2021) Co-pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals—A Review. Progress in Energy and Combustion Science, 84, Article ID: 100899.
https://doi.org/10.1016/j.pecs.2020.100899
[11] Das, P., V.P., C., Mathimani, T. and Pugazhendhi, A. (2021) Recent Advances in Thermochemical Methods for the Conversion of Algal Biomass to Energy. Science of The Total Environment, 766, Article ID: 144608.
https://doi.org/10.1016/j.scitotenv.2020.144608
[12] Lin, Z., Li, S. and Huang, J. (2021) Natural Cellulose Substance Based Energy Materials. ChemistryAn Asian Journal, 16, 378-396.
https://doi.org/10.1002/asia.202001358
[13] Wang, Z., Lee, Y., Kim, S., Seo, J., Lee, S. and Nyholm, L. (2020) Why Cellulose‐based Electrochemical Energy Storage Devices? Advanced Materials, 33, Article ID: 2000892.
https://doi.org/10.1002/adma.202000892
[14] Dai, L., Cheng, T., Wang, Y., Lu, H., Nie, S., He, H., et al. (2019) Injectable All-Polysaccharide Self-Assembling Hydrogel: A Promising Scaffold for Localized Therapeutic Proteins. Cellulose, 26, 6891-6901.
https://doi.org/10.1007/s10570-019-02579-7
[15] Xu, T., Liu, K., Sheng, N., Zhang, M., Liu, W., Liu, H., et al. (2022) Biopolymer-based Hydrogel Electrolytes for Advanced Energy Storage/conversion Devices: Properties, Applications, and Perspectives. Energy Storage Materials, 48, 244-262.
https://doi.org/10.1016/j.ensm.2022.03.013
[16] Raghavan, A. and Ghosh, S. (2021) Recent Advancements on Biopolymer‐ Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect, 6, 13647-13663.
https://doi.org/10.1002/slct.202103291
[17] Cywar, R.M., Rorrer, N.A., Hoyt, C.B., Beckham, G.T. and Chen, E.Y.-. (2021) Bio-Based Polymers with Performance-Advantaged Properties. Nature Reviews Materials, 7, 83-103.
https://doi.org/10.1038/s41578-021-00363-3
[18] Xun, Z., Ni, S., Gao, Z., Zhang, Y., Gu, J. and Huo, P. (2019) Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor. Polymers, 11, Article 1895.
https://doi.org/10.3390/polym11111895
[19] Sun, Z., Qu, K., You, Y., Huang, Z., Liu, S., Li, J., et al. (2021) Overview of Cellulose-Based Flexible Materials for Supercapacitors. Journal of Materials Chemistry A, 9, 7278-7300.
https://doi.org/10.1039/d0ta10504j
[20] Li, Z., Xu, Q., Zhang, L., Wang, X., He, F., Cheng, J., et al. (2020) Synthesis of Ultrahigh-Surface-Area Nitrogen-Doped Porous Carbon Materials from Carboxymethyl Cellulose Based Protic Polyanion Ionic Liquids for High Performance Supercapacitors. Sustainable Energy & Fuels, 4, 3418-3427.
https://doi.org/10.1039/d0se00188k
[21] Liu, J., Song, H., Wang, Z., Zhang, J., Zhang, J. and Ba, X. (2019) Stretchable, Self-Healable, and Reprocessable Chemical Cross-Linked Ionogels Electrolytes Based on Gelatin for Flexible Supercapacitors. Journal of Materials Science, 55, 3991-4004.
https://doi.org/10.1007/s10853-019-04271-4
[22] Soeda, K., Yamagata, M. and Ishikawa, M. (2015) Outstanding Features of Alginate-Based Gel Electrolyte with Ionic Liquid for Electric Double Layer Capacitors. Journal of Power Sources, 280, 565-572.
https://doi.org/10.1016/j.jpowsour.2015.01.144
[23] Hadad, S., Hamrahjoo, M., Dehghani, E., Salami-Kalajahi, M., Eliseeva, S.N. and Roghani-Mamaqani, H. (2022) Semi-interpenetrated Polymer Networks Based on Modified Cellulose and Starch as Gel Polymer Electrolytes for High Performance Lithium Ion Batteries. Cellulose, 29, 3423-3437.
https://doi.org/10.1007/s10570-022-04468-y
[24] Ojanguren, A., Mittal, N., Lizundia, E. and Niederberger, M. (2021) Stable Na Electrodeposition Enabled by Agarose-Based Water-Soluble Sodium Ion Battery Separators. ACS Applied Materials & Interfaces, 13, 21250-21260.
https://doi.org/10.1021/acsami.1c02135
[25] Chang, C., Duan, B., Cai, J. and Zhang, L. (2010) Superabsorbent Hydrogels Based on Cellulose for Smart Swelling and Controllable Delivery. European Polymer Journal, 46, 92-100.
https://doi.org/10.1016/j.eurpolymj.2009.04.033
[26] Yamagata, M., Soeda, K., Ikebe, S., Yamazaki, S. and Ishikawa, M. (2013) Chitosan-based Gel Electrolyte Containing an Ionic Liquid for High-Performance Nonaqueous Supercapacitors. Electrochimica Acta, 100, 275-280.
https://doi.org/10.1016/j.electacta.2012.05.073
[27] Bi, Z., Kong, Q., Cao, Y., Sun, G., Su, F., Wei, X., et al. (2019) Biomass-Derived Porous Carbon Materials with Different Dimensions for Supercapacitor Electrodes: A Review. Journal of Materials Chemistry A, 7, 16028-16045.
https://doi.org/10.1039/c9ta04436a
[28] Muhammad, F.H. and Winie, T. (2020) Influence of 1-Methyl-3-Propylimidazolium Iodide Ionic Liquid on the Performance of Dye-Sensitized Solar Cell Using Hexanoyl Chitosan/Poly(Vinyl Chloride) Based Polymer Electrolyte. Optik, 208, Article ID: 164558.
https://doi.org/10.1016/j.ijleo.2020.164558
[29] Mo, F., Chen, Z., Liang, G., Wang, D., Zhao, Y., Li, H., et al. (2020) Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Zn‐MnO2 Batteries with Superior Rate Capabilities. Advanced Energy Materials, 10, Article ID: 2000035.
https://doi.org/10.1002/aenm.202000035
[30] Klemm, D., Heublein, B., Fink, H. and Bohn, A. (2005) Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358-3393.
https://doi.org/10.1002/anie.200460587
[31] Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews, 40, Article 3941.
https://doi.org/10.1039/c0cs00108b
[32] Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., et al. (2011) Nanocelluloses: A New Family of Nature‐Based Materials. Angewandte Chemie International Edition, 50, 5438-5466.
https://doi.org/10.1002/anie.201001273
[33] Zhang, Y., Chen, Y., Li, X., Alfred, M., Li, D., Huang, F., et al. (2021) Bacterial Cellulose Hydrogel: A Promising Electrolyte for Flexible Zinc-Air Batteries. Journal of Power Sources, 482, Article ID: 228963.
https://doi.org/10.1016/j.jpowsour.2020.228963
[34] Bai, Y., Zhao, W., Bi, S., Liu, S., Huang, W. and Zhao, Q. (2021) Preparation and Application of Cellulose Gel in Flexible Supercapacitors. Journal of Energy Storage, 42, Article ID: 103058.
https://doi.org/10.1016/j.est.2021.103058
[35] Xiao, S., Wang, F., Yang, Y., Chang, Z. and Wu, Y. (2014) An Environmentally Friendly and Economic Membrane Based on Cellulose as a Gel Polymer Electrolyte for Lithium Ion Batteries. RSC Advance, 4, 76-81.
https://doi.org/10.1039/c3ra46115g
[36] Zhao, Y., Zhang, Y., Sun, H., Dong, X., Cao, J., Wang, L., et al. (2016) A Self‐healing Aqueous Lithium‐Ion Battery. Angewandte Chemie International Edition, 55, 14384-14388.
https://doi.org/10.1002/anie.201607951
[37] Kang, W., Ma, X., Zhao, H., Ju, J., Zhao, Y., Yan, J., et al. (2016) Electrospun Cellulose Acetate/Poly(Vinylidene Fluoride) Nanofibrous Membrane for Polymer Lithium-Ion Batteries. Journal of Solid State Electrochemistry, 20, 2791-2803.
https://doi.org/10.1007/s10008-016-3271-y
[38] Liao, H., Zhang, H., Hong, H., Li, Z., Qin, G., Zhu, H., et al. (2016) Novel Cellulose Aerogel Coated on Polypropylene Separators as Gel Polymer Electrolyte with High Ionic Conductivity for Lithium-Ion Batteries. Journal of Membrane Science, 514, 332-339.
https://doi.org/10.1016/j.memsci.2016.05.009
[39] Xiao, S.Y., Yang, Y.Q., Li, M.X., Wang, F.X., Chang, Z., Wu, Y.P., et al. (2014) A Composite Membrane Based on a Biocompatible Cellulose as a Host of Gel Polymer Electrolyte for Lithium Ion Batteries. Journal of Power Sources, 270, 53-58.
https://doi.org/10.1016/j.jpowsour.2014.07.058
[40] Li, M., Wang, X., Wang, Y., Chen, B., Wu, Y. and Holze, R. (2015) A Gel Polymer Electrolyte Based on Composite of Nonwoven Fabric and Methyl Cellulose with Good Performance for Lithium Ion Batteries. RSC Advances, 5, 52382-52387.
https://doi.org/10.1039/c5ra07182h
[41] Li, M.X., Wang, X.W., Yang, Y.Q., Chang, Z., Wu, Y.P. and Holze, R. (2015) A Dense Cellulose-Based Membrane as a Renewable Host for Gel Polymer Electrolyte of Lithium Ion Batteries. Journal of Membrane Science, 476, 112-118.
https://doi.org/10.1016/j.memsci.2014.10.056
[42] Zhang, L., Lu, H., Yu, J., McSporran, E., Khan, A., Fan, Y., et al. (2019) Preparation of High-Strength Sustainable Lignocellulose Gels and Their Applications for Antiultraviolet Weathering and Dye Removal. ACS Sustainable Chemistry & Engineering, 7, 2998-3009.
https://doi.org/10.1021/acssuschemeng.8b04413
[43] Ma, C., Ma, M., Li, Z. and Wang, B. (2018) Nanocellulose Composites—Properties and Applications. Paper and Biomaterials, 3, 51-63.
https://doi.org/10.26599/pbm.2018.9260013
[44] Zhang, K., Pang, Y., Chen, C., Wu, M., Liu, Y., Yu, S., et al. (2022) Stretchable and Conductive Cellulose Hydrogel Electrolytes for Flexible and Foldable Solid-State Supercapacitors. Carbohydrate Polymers, 293, Article ID: 119673.
https://doi.org/10.1016/j.carbpol.2022.119673
[45] Lin, S., Wang, C., Hsieh, P., Chen, Y., Liu, C. and Shih, S. (2009) A Novel Gel Polymer Electrolyte Based on Lithium Salt with an Ethyl Cellulose. Colloid and Polymer Science, 287, 1355-1358.
https://doi.org/10.1007/s00396-009-2102-4
[46] Cheng, D., Yang, X., He, Z.H., et al. (2016) Potential of Cellulose-Based Materials for Lithium-Ion Batteries (LIB) Separator Membranes. Journal of Bioresources and Bioproducts, 1, 18-21.
[47] Pircher, N., Carbajal, L., Schimper, C., Bacher, M., Rennhofer, H., Nedelec, J., et al. (2016) Impact of Selected Solvent Systems on the Pore and Solid Structure of Cellulose Aerogels. Cellulose, 23, 1949-1966.
https://doi.org/10.1007/s10570-016-0896-z
[48] Du, Z., Su, Y., Qu, Y., Zhao, L., Jia, X., Mo, Y., et al. (2019) A Mechanically Robust, Biodegradable and High Performance Cellulose Gel Membrane as Gel Polymer Electrolyte of Lithium-Ion Battery. Electrochimica Acta, 299, 19-26.
https://doi.org/10.1016/j.electacta.2018.12.173
[49] Zhang, H., Wang, S., Wang, A., Li, Y., Yu, F. and Chen, Y. (2022) Polyethylene Glycol-Grafted Cellulose-Based Gel Polymer Electrolyte for Long-Life Li-Ion Batteries. Applied Surface Science, 593, Article ID: 153411.
https://doi.org/10.1016/j.apsusc.2022.153411
[50] Liu, J., Li, W., Zuo, X., Liu, S. and Li, Z. (2013) Polyethylene-supported Polyvinylidene Fluoride-Cellulose Acetate Butyrate Blended Polymer Electrolyte for Lithium Ion Battery. Journal of Power Sources, 226, 101-106.
https://doi.org/10.1016/j.jpowsour.2012.10.078
[51] Yu, F., Zhang, H., Zhao, L., Sun, Z., Li, Y., Mo, Y., et al. (2020) A Flexible Cellulose/Methylcellulose Gel Polymer Electrolyte Endowing Superior Li+ Conducting Property for Lithium Ion Battery. Carbohydrate Polymers, 246, Article ID: 116622.
https://doi.org/10.1016/j.carbpol.2020.116622
[52] Zhu, Y.S., Xiao, S.Y., Li, M.X., Chang, Z., Wang, F.X., Gao, J., et al. (2015) Natural Macromolecule Based Carboxymethyl Cellulose as a Gel Polymer Electrolyte with Adjustable Porosity for Lithium Ion Batteries. Journal of Power Sources, 288, 368-375.
https://doi.org/10.1016/j.jpowsour.2015.04.117
[53] Zhang, L., Zhang, Q., Yu, J., Ma, J., Wang, Z., Fan, Y., et al. (2019) Strengthened Cellulosic Gels by the Chemical Gelation of Cellulose via Crosslinking with Teos. Cellulose, 26, 9819-9829.
https://doi.org/10.1007/s10570-019-02765-7
[54] Wan, J., Zhang, J., Yu, J. and Zhang, J. (2017) Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 9, 24591-24599.
https://doi.org/10.1021/acsami.7b06271
[55] Lopez, J., Mackanic, D.G., Cui, Y. and Bao, Z. (2019) Designing Polymers for Advanced Battery Chemistries. Nature Reviews Materials, 4, 312-330.
https://doi.org/10.1038/s41578-019-0103-6
[56] Liu, K., Liu, M., Cheng, J., Dong, S., Wang, C., Wang, Q., et al. (2016) Novel Cellulose/Polyurethane Composite Gel Polymer Electrolyte for High Performance Lithium Batteries. Electrochimica Acta, 215, 261-266.
https://doi.org/10.1016/j.electacta.2016.08.076
[57] Mantravadi, R., Chinnam, P.R., Dikin, D.A. and Wunder, S.L. (2016) High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks. ACS Applied Materials & Interfaces, 8, 13426-13436.
https://doi.org/10.1021/acsami.6b02903
[58] Rinaudo, M. (2006) Chitin and Chitosan: Properties and Applications. Progress in Polymer Science, 31, 603-632.
https://doi.org/10.1016/j.progpolymsci.2006.06.001
[59] Sudhakar, Y.N. and Selvakumar, M. (2012) Lithium Perchlorate Doped Plasticized Chitosan and Starch Blend as Biodegradable Polymer Electrolyte for Supercapacitors. Electrochimica Acta, 78, 398-405.
https://doi.org/10.1016/j.electacta.2012.06.032
[60] Kumar, M.N.V.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H. and Domb, A.J. (2004) Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 104, 6017-6084.
https://doi.org/10.1021/cr030441b
[61] Ahmadi, F., Oveisi, Z., Samani, S.M., et al. (2015) Chitosan Based Hydrogels: Characteristics and Pharmaceutical Ap-plications. Research in Pharmaceutical Sciences, 10, 1-16.
[62] Fu, J., Yang, F. and Guo, Z. (2018) The Chitosan Hydrogels: From Structure to Function. New Journal of Chemistry, 42, 17162-17180.
https://doi.org/10.1039/c8nj03482f
[63] Xu, J., Jin, R., Ren, X. and Gao, G. (2021) A Wide Temperature-Tolerant Hydrogel Electrolyte Mediated by Phosphoric Acid towards Flexible Supercapacitors. Chemical Engineering Journal, 413, Article ID: 127446.
https://doi.org/10.1016/j.cej.2020.127446
[64] Dai, L., Arcelus, O., Sun, L., Wang, H., Carrasco, J., Zhang, H., et al. (2019) Embedded 3D Li+ Channels in a Water-In-Salt Electrolyte to Develop Flexible Supercapacitors and Lithium-Ion Batteries. Journal of Materials Chemistry A, 7, 24800-24806.
https://doi.org/10.1039/c9ta08699d
[65] Yang, H., Liu, Y., Kong, L., Kang, L. and Ran, F. (2019) Biopolymer-Based Carboxylated Chitosan Hydrogel Film Crosslinked by HCL as Gel Polymer Electrolyte for All-Solid-Sate Supercapacitors. Journal of Power Sources, 426, 47-54.
https://doi.org/10.1016/j.jpowsour.2019.04.023
[66] Lu, H., Hu, J., Wei, X., Zhang, K., Xiao, X., Zhao, J., et al. (2023) A Recyclable Biomass Electrolyte towards Green Zinc-Ion Batteries. Nature Communications, 14, Article No. 4435.
https://doi.org/10.1038/s41467-023-40178-0
[67] Huang, S., Hou, L., Li, T., Jiao, Y. and Wu, P. (2022) Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High‐Performance Zinc‐Ion Batteries. Advanced Materials, 34, Article ID: 2110140.
https://doi.org/10.1002/adma.202110140
[68] Xu, D., Jin, J., Chen, C. and Wen, Z. (2018) From Nature to Energy Storage: A Novel Sustainable 3D Cross-Linked Chitosan-PEGGE-Based Gel Polymer Electrolyte with Excellent Lithium-Ion Transport Properties for Lithium Batteries. ACS Applied Materials & Interfaces, 10, 38526-38537.
https://doi.org/10.1021/acsami.8b15247
[69] Li, Y., Yang, Y., Liu, X., Yang, Y., Wu, Y., Han, L., et al. (2022) Flexible Self-Powered Integrated Sensing System Based on a Rechargeable Zinc-Ion Battery by Using a Multifunctional Polyacrylamide/Carboxymethyl Chitosan/LICL Ionic Hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article ID: 129254.
https://doi.org/10.1016/j.colsurfa.2022.129254
[70] Zhang, L., Lu, H., Yu, J., Fan, Y., Ma, J. and Wang, Z. (2019) Contribution of Lignin to the Microstructure and Physical Performance of Three-Dimensional Lignocellulose Hydrogels. Cellulose, 26, 2375-2388.
https://doi.org/10.1007/s10570-019-02251-0
[71] Baloch, M. and Labidi, J. (2021) Lignin Biopolymer: The Material of Choice for Advanced Lithium-Based Batteries. RSC Advances, 11, 23644-23653.
https://doi.org/10.1039/d1ra02611a
[72] Gan, D., Xing, W., Jiang, L., Fang, J., Zhao, C., Ren, F., et al. (2019) Plant-inspired Adhesive and Tough Hydrogel Based on Ag-Lignin Nanoparticles-Triggered Dynamic Redox Catechol Chemistry. Nature Communications, 10, Article No. 1487.
https://doi.org/10.1038/s41467-019-09351-2
[73] Milczarek, G. and Inganäs, O. (2012) Renewable Cathode Materials from Biopolymer/conjugated Polymer Interpenetrating Networks. Science, 335, 1468-1471.
https://doi.org/10.1126/science.1215159
[74] Liedel, C. (2020) Sustainable Battery Materials from Biomass. ChemSusChem, 13, 2110-2141.
https://doi.org/10.1002/cssc.201903577
[75] Zhu, J., Yan, C., Zhang, X., Yang, C., Jiang, M. and Zhang, X. (2020) A Sustainable Platform of Lignin: From Bioresources to Materials and Their Applications in Rechargeable Batteries and Supercapacitors. Progress in Energy and Combustion Science, 76, Article ID: 100788.
https://doi.org/10.1016/j.pecs.2019.100788
[76] Liu, T., Ren, X., Zhang, J., Liu, J., Ou, R., Guo, C., et al. (2020) Highly Compressible Lignin Hydrogel Electrolytes via Double-Crosslinked Strategy for Superior Foldable Supercapacitors. Journal of Power Sources, 449, Article ID: 227532.
https://doi.org/10.1016/j.jpowsour.2019.227532
[77] Gong, S., Huang, Y., Cao, H., Lin, Y., Li, Y., Tang, S., et al. (2016) A Green and Environment-Friendly Gel Polymer Electrolyte with Higher Performances Based on the Natural Matrix of Lignin. Journal of Power Sources, 307, 624-633.
https://doi.org/10.1016/j.jpowsour.2016.01.030
[78] Park, J.H., Rana, H.H., Lee, J.Y. and Park, H.S. (2019) Renewable Flexible Supercapacitors Based on All-Lignin-Based Hydrogel Electrolytes and Nanofiber Electrodes. Journal of Materials Chemistry A, 7, 16962-16968.
https://doi.org/10.1039/c9ta03519b
[79] Song, A., Huang, Y., Zhong, X., Cao, H., Liu, B., Lin, Y., et al. (2017) Gel Polymer Electrolyte with High Performances Based on Pure Natural Polymer Matrix of Potato Starch Composite Lignocellulose. Electrochimica Acta, 245, 981-992.
https://doi.org/10.1016/j.electacta.2017.05.176
[80] Gan, D., Shuai, T., Wang, X., Huang, Z., Ren, F., Fang, L., et al. (2020) Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. Nano-Micro Letters, 12, Article No. 169.
https://doi.org/10.1007/s40820-020-00507-0
[81] Shabanov, N.S., Rabadanov, K.S., Gafurov, M.M., Isaev, A.B., Sobola, D.S., Suleimanov, S.I., et al. (2021) Lignin-based Gel Polymer Electrolyte for Cationic Conductivity. Polymers, 13, Article 2306.
https://doi.org/10.3390/polym13142306
[82] Liu, B., Huang, Y., Cao, H., Song, A., Lin, Y., Wang, M., et al. (2017) A High-Performance and Environment-Friendly Gel Polymer Electrolyte for Lithium Ion Battery Based on Composited Lignin Membrane. Journal of Solid State Electrochemistry, 22, 807-816.
https://doi.org/10.1007/s10008-017-3814-x
[83] Song, A., Huang, Y., Liu, B., Cao, H., Zhong, X., Lin, Y., et al. (2017) Gel Polymer Electrolyte Based on Polyethylene Glycol Composite Lignocellulose Matrix with Higher Comprehensive Performances. Electrochimica Acta, 247, 505-515.
https://doi.org/10.1016/j.electacta.2017.07.048
[84] Thibodeau, J. and Ignaszak, A. (2020) Flexible Electrode Based on MWCNT Embedded in a Cross-Linked Acrylamide/Alginate Blend: Conductivity vs. Stretching. Polymers, 12, Article 181.
https://doi.org/10.3390/polym12010181
[85] Han, Q., Chi, X., Liu, Y., Wang, L., Du, Y., Ren, Y., et al. (2019) An Inorganic Salt Reinforced Zn2+-Conducting Solid-State Electrolyte for Ultra-Stable Zn Metal Batteries. Journal of Materials Chemistry A, 7, 22287-22295.
https://doi.org/10.1039/c9ta07218g
[86] Jonker, A.M., Löwik, D.W.P.M. and van Hest, J.C.M. (2012) Peptide-and Protein-Based Hydrogels. Chemistry of Materials, 24, 759-773.
https://doi.org/10.1021/cm202640w
[87] Yang, J., Xie, Y. and He, W. (2011) Research Progress on Chemical Modification of Alginate: A Review. Carbohydrate Polymers, 84, 33-39.
https://doi.org/10.1016/j.carbpol.2010.11.048
[88] Lee, K.Y. and Mooney, D.J. (2012) Alginate: Properties and Biomedical Applications. Progress in Polymer Science, 37, 106-126.
https://doi.org/10.1016/j.progpolymsci.2011.06.003
[89] Zhang, M. and Zhao, X. (2020) Alginate Hydrogel Dressings for Advanced Wound Management. International Journal of Biological Macromolecules, 162, 1414-1428.
https://doi.org/10.1016/j.ijbiomac.2020.07.311
[90] Liu, Z., Liang, G., Zhan, Y., Li, H., Wang, Z., Ma, L., et al. (2019) A Soft Yet Device-Level Dynamically Super-Tough Supercapacitor Enabled by an Energy-Dissipative Dual-Crosslinked Hydrogel Electrolyte. Nano Energy, 58, 732-742.
https://doi.org/10.1016/j.nanoen.2019.01.087
[91] Ji, Z., Wang, H., Chen, Z., Wang, P., Liu, J., Wang, J., et al. (2020) A Both Microscopically and Macroscopically Intrinsic Self-Healing Long Lifespan Yarn Battery. Energy Storage Materials, 28, 334-341.
https://doi.org/10.1016/j.ensm.2020.03.020
[92] Zheng, W. (2014) Proteins: From Sequence to Structure. Chinese Physics B, 23, Article ID: 078705.
https://doi.org/10.1088/1674-1056/23/7/078705
[93] Le, X.T., Rioux, L. and Turgeon, S.L. (2017) Formation and Functional Properties of Protein-Polysaccharide Electrostatic Hydrogels in Comparison to Protein or Polysaccharide Hydrogels. Advances in Colloid and Interface Science, 239, 127-135.
https://doi.org/10.1016/j.cis.2016.04.006
[94] Ma, L., Yang, Y., Yao, J., Shao, Z. and Chen, X. (2013) Robust Soy Protein Films Obtained by Slight Chemical Modification of Polypeptide Chains. Polymer Chemistry, 4, 5425-5431.
https://doi.org/10.1039/c3py00557g
[95] Zhu, M., Wang, Y., Long, L., Fu, X., Sui, G. and Yang, X. (2019) An Optimal Carbon Fiber Interlayer Integrated with Bio-Based Gel Polymer Electrolyte Enabling Trapping-Diffusion-Conversion of Polysulfides in Lithium-Sulfur Batteries. Chemical Engineering Journal, 370, 1068-1076.
https://doi.org/10.1016/j.cej.2019.03.245
[96] Zhu, M., Tan, C., Fang, Q., Gao, L., Sui, G. and Yang, X. (2016) High Performance and Biodegradable Skeleton Material Based on Soy Protein Isolate for Gel Polymer Electrolyte. ACS Sustainable Chemistry & Engineering, 4, 4498-4505.
https://doi.org/10.1021/acssuschemeng.6b01218
[97] Zhu, M., Wu, J., Zhong, W., Lan, J., Sui, G. and Yang, X. (2018) A Biobased Composite Gel Polymer Electrolyte with Functions of Lithium Dendrites Suppressing and Manganese Ions Trapping. Advanced Energy Materials, 8, Article ID: 1702561.
https://doi.org/10.1002/aenm.201702561