[1]
|
Wan, J., Xie, J., Mackanic, D.G., Burke, W., Bao, Z. and Cui, Y. (2018) Status, Promises, and Challenges of Nanocomposite Solid-State Electrolytes for Safe and High Performance Lithium Batteries. Materials Today Nano, 4, 1-16. https://doi.org/10.1016/j.mtnano.2018.12.003
|
[2]
|
Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M. and Wang, G. (2019) Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem, 5, 2326-2352. https://doi.org/10.1016/j.chempr.2019.05.009
|
[3]
|
Xu, K. (2014) Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews, 114, 11503-11618. https://doi.org/10.1021/cr500003w
|
[4]
|
Cho, Y., Hwang, C., Cheong, D.S., Kim, Y. and Song, H. (2018) Gel/Solid Polymer Electrolytes Characterized by in Situ Gelation or Polymerization for Electrochemical Energy Systems. Advanced Materials, 31, Article ID: 1804909. https://doi.org/10.1002/adma.201804909
|
[5]
|
Manthiram, A., Yu, X. and Wang, S. (2017) Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nature Reviews Materials, 2, Article No. 16103. https://doi.org/10.1038/natrevmats.2016.103
|
[6]
|
Zhang, S., Ueno, K., Dokko, K. and Watanabe, M. (2015) Recent Advances in Electrolytes for Lithium-Sulfur Batteries. Advanced Energy Materials, 5, Article ID: 1500117. https://doi.org/10.1002/aenm.201500117
|
[7]
|
Yi, J.X., Huo, Z.P., Abdullah, M.A., et al. (2018) Development and Application of Electrolytes in Supercapacitors. Progress in Chemistry, 30, 1624-1633.
|
[8]
|
Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L. and Zhang, J. (2015) A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chemical Society Reviews, 44, 7484-7539. https://doi.org/10.1039/c5cs00303b
|
[9]
|
Zhu, M., Wu, J., Wang, Y., Song, M., Long, L., Siyal, S.H., et al. (2019) Recent Advances in Gel Polymer Electrolyte for High-Performance Lithium Batteries. Journal of Energy Chemistry, 37, 126-142. https://doi.org/10.1016/j.jechem.2018.12.013
|
[10]
|
Wang, Z., Burra, K.G., Lei, T. and Gupta, A.K. (2021) Co-pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals—A Review. Progress in Energy and Combustion Science, 84, Article ID: 100899. https://doi.org/10.1016/j.pecs.2020.100899
|
[11]
|
Das, P., V.P., C., Mathimani, T. and Pugazhendhi, A. (2021) Recent Advances in Thermochemical Methods for the Conversion of Algal Biomass to Energy. Science of The Total Environment, 766, Article ID: 144608. https://doi.org/10.1016/j.scitotenv.2020.144608
|
[12]
|
Lin, Z., Li, S. and Huang, J. (2021) Natural Cellulose Substance Based Energy Materials. Chemistry—An Asian Journal, 16, 378-396. https://doi.org/10.1002/asia.202001358
|
[13]
|
Wang, Z., Lee, Y., Kim, S., Seo, J., Lee, S. and Nyholm, L. (2020) Why Cellulose‐based Electrochemical Energy Storage Devices? Advanced Materials, 33, Article ID: 2000892. https://doi.org/10.1002/adma.202000892
|
[14]
|
Dai, L., Cheng, T., Wang, Y., Lu, H., Nie, S., He, H., et al. (2019) Injectable All-Polysaccharide Self-Assembling Hydrogel: A Promising Scaffold for Localized Therapeutic Proteins. Cellulose, 26, 6891-6901. https://doi.org/10.1007/s10570-019-02579-7
|
[15]
|
Xu, T., Liu, K., Sheng, N., Zhang, M., Liu, W., Liu, H., et al. (2022) Biopolymer-based Hydrogel Electrolytes for Advanced Energy Storage/conversion Devices: Properties, Applications, and Perspectives. Energy Storage Materials, 48, 244-262. https://doi.org/10.1016/j.ensm.2022.03.013
|
[16]
|
Raghavan, A. and Ghosh, S. (2021) Recent Advancements on Biopolymer‐ Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect, 6, 13647-13663. https://doi.org/10.1002/slct.202103291
|
[17]
|
Cywar, R.M., Rorrer, N.A., Hoyt, C.B., Beckham, G.T. and Chen, E.Y.-. (2021) Bio-Based Polymers with Performance-Advantaged Properties. Nature Reviews Materials, 7, 83-103. https://doi.org/10.1038/s41578-021-00363-3
|
[18]
|
Xun, Z., Ni, S., Gao, Z., Zhang, Y., Gu, J. and Huo, P. (2019) Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor. Polymers, 11, Article 1895. https://doi.org/10.3390/polym11111895
|
[19]
|
Sun, Z., Qu, K., You, Y., Huang, Z., Liu, S., Li, J., et al. (2021) Overview of Cellulose-Based Flexible Materials for Supercapacitors. Journal of Materials Chemistry A, 9, 7278-7300. https://doi.org/10.1039/d0ta10504j
|
[20]
|
Li, Z., Xu, Q., Zhang, L., Wang, X., He, F., Cheng, J., et al. (2020) Synthesis of Ultrahigh-Surface-Area Nitrogen-Doped Porous Carbon Materials from Carboxymethyl Cellulose Based Protic Polyanion Ionic Liquids for High Performance Supercapacitors. Sustainable Energy & Fuels, 4, 3418-3427. https://doi.org/10.1039/d0se00188k
|
[21]
|
Liu, J., Song, H., Wang, Z., Zhang, J., Zhang, J. and Ba, X. (2019) Stretchable, Self-Healable, and Reprocessable Chemical Cross-Linked Ionogels Electrolytes Based on Gelatin for Flexible Supercapacitors. Journal of Materials Science, 55, 3991-4004. https://doi.org/10.1007/s10853-019-04271-4
|
[22]
|
Soeda, K., Yamagata, M. and Ishikawa, M. (2015) Outstanding Features of Alginate-Based Gel Electrolyte with Ionic Liquid for Electric Double Layer Capacitors. Journal of Power Sources, 280, 565-572. https://doi.org/10.1016/j.jpowsour.2015.01.144
|
[23]
|
Hadad, S., Hamrahjoo, M., Dehghani, E., Salami-Kalajahi, M., Eliseeva, S.N. and Roghani-Mamaqani, H. (2022) Semi-interpenetrated Polymer Networks Based on Modified Cellulose and Starch as Gel Polymer Electrolytes for High Performance Lithium Ion Batteries. Cellulose, 29, 3423-3437. https://doi.org/10.1007/s10570-022-04468-y
|
[24]
|
Ojanguren, A., Mittal, N., Lizundia, E. and Niederberger, M. (2021) Stable Na Electrodeposition Enabled by Agarose-Based Water-Soluble Sodium Ion Battery Separators. ACS Applied Materials & Interfaces, 13, 21250-21260. https://doi.org/10.1021/acsami.1c02135
|
[25]
|
Chang, C., Duan, B., Cai, J. and Zhang, L. (2010) Superabsorbent Hydrogels Based on Cellulose for Smart Swelling and Controllable Delivery. European Polymer Journal, 46, 92-100. https://doi.org/10.1016/j.eurpolymj.2009.04.033
|
[26]
|
Yamagata, M., Soeda, K., Ikebe, S., Yamazaki, S. and Ishikawa, M. (2013) Chitosan-based Gel Electrolyte Containing an Ionic Liquid for High-Performance Nonaqueous Supercapacitors. Electrochimica Acta, 100, 275-280. https://doi.org/10.1016/j.electacta.2012.05.073
|
[27]
|
Bi, Z., Kong, Q., Cao, Y., Sun, G., Su, F., Wei, X., et al. (2019) Biomass-Derived Porous Carbon Materials with Different Dimensions for Supercapacitor Electrodes: A Review. Journal of Materials Chemistry A, 7, 16028-16045. https://doi.org/10.1039/c9ta04436a
|
[28]
|
Muhammad, F.H. and Winie, T. (2020) Influence of 1-Methyl-3-Propylimidazolium Iodide Ionic Liquid on the Performance of Dye-Sensitized Solar Cell Using Hexanoyl Chitosan/Poly(Vinyl Chloride) Based Polymer Electrolyte. Optik, 208, Article ID: 164558. https://doi.org/10.1016/j.ijleo.2020.164558
|
[29]
|
Mo, F., Chen, Z., Liang, G., Wang, D., Zhao, Y., Li, H., et al. (2020) Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Zn‐MnO2 Batteries with Superior Rate Capabilities. Advanced Energy Materials, 10, Article ID: 2000035. https://doi.org/10.1002/aenm.202000035
|
[30]
|
Klemm, D., Heublein, B., Fink, H. and Bohn, A. (2005) Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358-3393. https://doi.org/10.1002/anie.200460587
|
[31]
|
Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews, 40, Article 3941. https://doi.org/10.1039/c0cs00108b
|
[32]
|
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., et al. (2011) Nanocelluloses: A New Family of Nature‐Based Materials. Angewandte Chemie International Edition, 50, 5438-5466. https://doi.org/10.1002/anie.201001273
|
[33]
|
Zhang, Y., Chen, Y., Li, X., Alfred, M., Li, D., Huang, F., et al. (2021) Bacterial Cellulose Hydrogel: A Promising Electrolyte for Flexible Zinc-Air Batteries. Journal of Power Sources, 482, Article ID: 228963. https://doi.org/10.1016/j.jpowsour.2020.228963
|
[34]
|
Bai, Y., Zhao, W., Bi, S., Liu, S., Huang, W. and Zhao, Q. (2021) Preparation and Application of Cellulose Gel in Flexible Supercapacitors. Journal of Energy Storage, 42, Article ID: 103058. https://doi.org/10.1016/j.est.2021.103058
|
[35]
|
Xiao, S., Wang, F., Yang, Y., Chang, Z. and Wu, Y. (2014) An Environmentally Friendly and Economic Membrane Based on Cellulose as a Gel Polymer Electrolyte for Lithium Ion Batteries. RSC Advance, 4, 76-81. https://doi.org/10.1039/c3ra46115g
|
[36]
|
Zhao, Y., Zhang, Y., Sun, H., Dong, X., Cao, J., Wang, L., et al. (2016) A Self‐healing Aqueous Lithium‐Ion Battery. Angewandte Chemie International Edition, 55, 14384-14388. https://doi.org/10.1002/anie.201607951
|
[37]
|
Kang, W., Ma, X., Zhao, H., Ju, J., Zhao, Y., Yan, J., et al. (2016) Electrospun Cellulose Acetate/Poly(Vinylidene Fluoride) Nanofibrous Membrane for Polymer Lithium-Ion Batteries. Journal of Solid State Electrochemistry, 20, 2791-2803. https://doi.org/10.1007/s10008-016-3271-y
|
[38]
|
Liao, H., Zhang, H., Hong, H., Li, Z., Qin, G., Zhu, H., et al. (2016) Novel Cellulose Aerogel Coated on Polypropylene Separators as Gel Polymer Electrolyte with High Ionic Conductivity for Lithium-Ion Batteries. Journal of Membrane Science, 514, 332-339. https://doi.org/10.1016/j.memsci.2016.05.009
|
[39]
|
Xiao, S.Y., Yang, Y.Q., Li, M.X., Wang, F.X., Chang, Z., Wu, Y.P., et al. (2014) A Composite Membrane Based on a Biocompatible Cellulose as a Host of Gel Polymer Electrolyte for Lithium Ion Batteries. Journal of Power Sources, 270, 53-58. https://doi.org/10.1016/j.jpowsour.2014.07.058
|
[40]
|
Li, M., Wang, X., Wang, Y., Chen, B., Wu, Y. and Holze, R. (2015) A Gel Polymer Electrolyte Based on Composite of Nonwoven Fabric and Methyl Cellulose with Good Performance for Lithium Ion Batteries. RSC Advances, 5, 52382-52387. https://doi.org/10.1039/c5ra07182h
|
[41]
|
Li, M.X., Wang, X.W., Yang, Y.Q., Chang, Z., Wu, Y.P. and Holze, R. (2015) A Dense Cellulose-Based Membrane as a Renewable Host for Gel Polymer Electrolyte of Lithium Ion Batteries. Journal of Membrane Science, 476, 112-118. https://doi.org/10.1016/j.memsci.2014.10.056
|
[42]
|
Zhang, L., Lu, H., Yu, J., McSporran, E., Khan, A., Fan, Y., et al. (2019) Preparation of High-Strength Sustainable Lignocellulose Gels and Their Applications for Antiultraviolet Weathering and Dye Removal. ACS Sustainable Chemistry & Engineering, 7, 2998-3009. https://doi.org/10.1021/acssuschemeng.8b04413
|
[43]
|
Ma, C., Ma, M., Li, Z. and Wang, B. (2018) Nanocellulose Composites—Properties and Applications. Paper and Biomaterials, 3, 51-63. https://doi.org/10.26599/pbm.2018.9260013
|
[44]
|
Zhang, K., Pang, Y., Chen, C., Wu, M., Liu, Y., Yu, S., et al. (2022) Stretchable and Conductive Cellulose Hydrogel Electrolytes for Flexible and Foldable Solid-State Supercapacitors. Carbohydrate Polymers, 293, Article ID: 119673. https://doi.org/10.1016/j.carbpol.2022.119673
|
[45]
|
Lin, S., Wang, C., Hsieh, P., Chen, Y., Liu, C. and Shih, S. (2009) A Novel Gel Polymer Electrolyte Based on Lithium Salt with an Ethyl Cellulose. Colloid and Polymer Science, 287, 1355-1358. https://doi.org/10.1007/s00396-009-2102-4
|
[46]
|
Cheng, D., Yang, X., He, Z.H., et al. (2016) Potential of Cellulose-Based Materials for Lithium-Ion Batteries (LIB) Separator Membranes. Journal of Bioresources and Bioproducts, 1, 18-21.
|
[47]
|
Pircher, N., Carbajal, L., Schimper, C., Bacher, M., Rennhofer, H., Nedelec, J., et al. (2016) Impact of Selected Solvent Systems on the Pore and Solid Structure of Cellulose Aerogels. Cellulose, 23, 1949-1966. https://doi.org/10.1007/s10570-016-0896-z
|
[48]
|
Du, Z., Su, Y., Qu, Y., Zhao, L., Jia, X., Mo, Y., et al. (2019) A Mechanically Robust, Biodegradable and High Performance Cellulose Gel Membrane as Gel Polymer Electrolyte of Lithium-Ion Battery. Electrochimica Acta, 299, 19-26. https://doi.org/10.1016/j.electacta.2018.12.173
|
[49]
|
Zhang, H., Wang, S., Wang, A., Li, Y., Yu, F. and Chen, Y. (2022) Polyethylene Glycol-Grafted Cellulose-Based Gel Polymer Electrolyte for Long-Life Li-Ion Batteries. Applied Surface Science, 593, Article ID: 153411. https://doi.org/10.1016/j.apsusc.2022.153411
|
[50]
|
Liu, J., Li, W., Zuo, X., Liu, S. and Li, Z. (2013) Polyethylene-supported Polyvinylidene Fluoride-Cellulose Acetate Butyrate Blended Polymer Electrolyte for Lithium Ion Battery. Journal of Power Sources, 226, 101-106. https://doi.org/10.1016/j.jpowsour.2012.10.078
|
[51]
|
Yu, F., Zhang, H., Zhao, L., Sun, Z., Li, Y., Mo, Y., et al. (2020) A Flexible Cellulose/Methylcellulose Gel Polymer Electrolyte Endowing Superior Li+ Conducting Property for Lithium Ion Battery. Carbohydrate Polymers, 246, Article ID: 116622. https://doi.org/10.1016/j.carbpol.2020.116622
|
[52]
|
Zhu, Y.S., Xiao, S.Y., Li, M.X., Chang, Z., Wang, F.X., Gao, J., et al. (2015) Natural Macromolecule Based Carboxymethyl Cellulose as a Gel Polymer Electrolyte with Adjustable Porosity for Lithium Ion Batteries. Journal of Power Sources, 288, 368-375. https://doi.org/10.1016/j.jpowsour.2015.04.117
|
[53]
|
Zhang, L., Zhang, Q., Yu, J., Ma, J., Wang, Z., Fan, Y., et al. (2019) Strengthened Cellulosic Gels by the Chemical Gelation of Cellulose via Crosslinking with Teos. Cellulose, 26, 9819-9829. https://doi.org/10.1007/s10570-019-02765-7
|
[54]
|
Wan, J., Zhang, J., Yu, J. and Zhang, J. (2017) Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 9, 24591-24599. https://doi.org/10.1021/acsami.7b06271
|
[55]
|
Lopez, J., Mackanic, D.G., Cui, Y. and Bao, Z. (2019) Designing Polymers for Advanced Battery Chemistries. Nature Reviews Materials, 4, 312-330. https://doi.org/10.1038/s41578-019-0103-6
|
[56]
|
Liu, K., Liu, M., Cheng, J., Dong, S., Wang, C., Wang, Q., et al. (2016) Novel Cellulose/Polyurethane Composite Gel Polymer Electrolyte for High Performance Lithium Batteries. Electrochimica Acta, 215, 261-266. https://doi.org/10.1016/j.electacta.2016.08.076
|
[57]
|
Mantravadi, R., Chinnam, P.R., Dikin, D.A. and Wunder, S.L. (2016) High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks. ACS Applied Materials & Interfaces, 8, 13426-13436. https://doi.org/10.1021/acsami.6b02903
|
[58]
|
Rinaudo, M. (2006) Chitin and Chitosan: Properties and Applications. Progress in Polymer Science, 31, 603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
|
[59]
|
Sudhakar, Y.N. and Selvakumar, M. (2012) Lithium Perchlorate Doped Plasticized Chitosan and Starch Blend as Biodegradable Polymer Electrolyte for Supercapacitors. Electrochimica Acta, 78, 398-405. https://doi.org/10.1016/j.electacta.2012.06.032
|
[60]
|
Kumar, M.N.V.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H. and Domb, A.J. (2004) Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 104, 6017-6084. https://doi.org/10.1021/cr030441b
|
[61]
|
Ahmadi, F., Oveisi, Z., Samani, S.M., et al. (2015) Chitosan Based Hydrogels: Characteristics and Pharmaceutical Ap-plications. Research in Pharmaceutical Sciences, 10, 1-16.
|
[62]
|
Fu, J., Yang, F. and Guo, Z. (2018) The Chitosan Hydrogels: From Structure to Function. New Journal of Chemistry, 42, 17162-17180. https://doi.org/10.1039/c8nj03482f
|
[63]
|
Xu, J., Jin, R., Ren, X. and Gao, G. (2021) A Wide Temperature-Tolerant Hydrogel Electrolyte Mediated by Phosphoric Acid towards Flexible Supercapacitors. Chemical Engineering Journal, 413, Article ID: 127446. https://doi.org/10.1016/j.cej.2020.127446
|
[64]
|
Dai, L., Arcelus, O., Sun, L., Wang, H., Carrasco, J., Zhang, H., et al. (2019) Embedded 3D Li+ Channels in a Water-In-Salt Electrolyte to Develop Flexible Supercapacitors and Lithium-Ion Batteries. Journal of Materials Chemistry A, 7, 24800-24806. https://doi.org/10.1039/c9ta08699d
|
[65]
|
Yang, H., Liu, Y., Kong, L., Kang, L. and Ran, F. (2019) Biopolymer-Based Carboxylated Chitosan Hydrogel Film Crosslinked by HCL as Gel Polymer Electrolyte for All-Solid-Sate Supercapacitors. Journal of Power Sources, 426, 47-54. https://doi.org/10.1016/j.jpowsour.2019.04.023
|
[66]
|
Lu, H., Hu, J., Wei, X., Zhang, K., Xiao, X., Zhao, J., et al. (2023) A Recyclable Biomass Electrolyte towards Green Zinc-Ion Batteries. Nature Communications, 14, Article No. 4435. https://doi.org/10.1038/s41467-023-40178-0
|
[67]
|
Huang, S., Hou, L., Li, T., Jiao, Y. and Wu, P. (2022) Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High‐Performance Zinc‐Ion Batteries. Advanced Materials, 34, Article ID: 2110140. https://doi.org/10.1002/adma.202110140
|
[68]
|
Xu, D., Jin, J., Chen, C. and Wen, Z. (2018) From Nature to Energy Storage: A Novel Sustainable 3D Cross-Linked Chitosan-PEGGE-Based Gel Polymer Electrolyte with Excellent Lithium-Ion Transport Properties for Lithium Batteries. ACS Applied Materials & Interfaces, 10, 38526-38537. https://doi.org/10.1021/acsami.8b15247
|
[69]
|
Li, Y., Yang, Y., Liu, X., Yang, Y., Wu, Y., Han, L., et al. (2022) Flexible Self-Powered Integrated Sensing System Based on a Rechargeable Zinc-Ion Battery by Using a Multifunctional Polyacrylamide/Carboxymethyl Chitosan/LICL Ionic Hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article ID: 129254. https://doi.org/10.1016/j.colsurfa.2022.129254
|
[70]
|
Zhang, L., Lu, H., Yu, J., Fan, Y., Ma, J. and Wang, Z. (2019) Contribution of Lignin to the Microstructure and Physical Performance of Three-Dimensional Lignocellulose Hydrogels. Cellulose, 26, 2375-2388. https://doi.org/10.1007/s10570-019-02251-0
|
[71]
|
Baloch, M. and Labidi, J. (2021) Lignin Biopolymer: The Material of Choice for Advanced Lithium-Based Batteries. RSC Advances, 11, 23644-23653. https://doi.org/10.1039/d1ra02611a
|
[72]
|
Gan, D., Xing, W., Jiang, L., Fang, J., Zhao, C., Ren, F., et al. (2019) Plant-inspired Adhesive and Tough Hydrogel Based on Ag-Lignin Nanoparticles-Triggered Dynamic Redox Catechol Chemistry. Nature Communications, 10, Article No. 1487. https://doi.org/10.1038/s41467-019-09351-2
|
[73]
|
Milczarek, G. and Inganäs, O. (2012) Renewable Cathode Materials from Biopolymer/conjugated Polymer Interpenetrating Networks. Science, 335, 1468-1471. https://doi.org/10.1126/science.1215159
|
[74]
|
Liedel, C. (2020) Sustainable Battery Materials from Biomass. ChemSusChem, 13, 2110-2141. https://doi.org/10.1002/cssc.201903577
|
[75]
|
Zhu, J., Yan, C., Zhang, X., Yang, C., Jiang, M. and Zhang, X. (2020) A Sustainable Platform of Lignin: From Bioresources to Materials and Their Applications in Rechargeable Batteries and Supercapacitors. Progress in Energy and Combustion Science, 76, Article ID: 100788. https://doi.org/10.1016/j.pecs.2019.100788
|
[76]
|
Liu, T., Ren, X., Zhang, J., Liu, J., Ou, R., Guo, C., et al. (2020) Highly Compressible Lignin Hydrogel Electrolytes via Double-Crosslinked Strategy for Superior Foldable Supercapacitors. Journal of Power Sources, 449, Article ID: 227532. https://doi.org/10.1016/j.jpowsour.2019.227532
|
[77]
|
Gong, S., Huang, Y., Cao, H., Lin, Y., Li, Y., Tang, S., et al. (2016) A Green and Environment-Friendly Gel Polymer Electrolyte with Higher Performances Based on the Natural Matrix of Lignin. Journal of Power Sources, 307, 624-633. https://doi.org/10.1016/j.jpowsour.2016.01.030
|
[78]
|
Park, J.H., Rana, H.H., Lee, J.Y. and Park, H.S. (2019) Renewable Flexible Supercapacitors Based on All-Lignin-Based Hydrogel Electrolytes and Nanofiber Electrodes. Journal of Materials Chemistry A, 7, 16962-16968. https://doi.org/10.1039/c9ta03519b
|
[79]
|
Song, A., Huang, Y., Zhong, X., Cao, H., Liu, B., Lin, Y., et al. (2017) Gel Polymer Electrolyte with High Performances Based on Pure Natural Polymer Matrix of Potato Starch Composite Lignocellulose. Electrochimica Acta, 245, 981-992. https://doi.org/10.1016/j.electacta.2017.05.176
|
[80]
|
Gan, D., Shuai, T., Wang, X., Huang, Z., Ren, F., Fang, L., et al. (2020) Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. Nano-Micro Letters, 12, Article No. 169. https://doi.org/10.1007/s40820-020-00507-0
|
[81]
|
Shabanov, N.S., Rabadanov, K.S., Gafurov, M.M., Isaev, A.B., Sobola, D.S., Suleimanov, S.I., et al. (2021) Lignin-based Gel Polymer Electrolyte for Cationic Conductivity. Polymers, 13, Article 2306. https://doi.org/10.3390/polym13142306
|
[82]
|
Liu, B., Huang, Y., Cao, H., Song, A., Lin, Y., Wang, M., et al. (2017) A High-Performance and Environment-Friendly Gel Polymer Electrolyte for Lithium Ion Battery Based on Composited Lignin Membrane. Journal of Solid State Electrochemistry, 22, 807-816. https://doi.org/10.1007/s10008-017-3814-x
|
[83]
|
Song, A., Huang, Y., Liu, B., Cao, H., Zhong, X., Lin, Y., et al. (2017) Gel Polymer Electrolyte Based on Polyethylene Glycol Composite Lignocellulose Matrix with Higher Comprehensive Performances. Electrochimica Acta, 247, 505-515. https://doi.org/10.1016/j.electacta.2017.07.048
|
[84]
|
Thibodeau, J. and Ignaszak, A. (2020) Flexible Electrode Based on MWCNT Embedded in a Cross-Linked Acrylamide/Alginate Blend: Conductivity vs. Stretching. Polymers, 12, Article 181. https://doi.org/10.3390/polym12010181
|
[85]
|
Han, Q., Chi, X., Liu, Y., Wang, L., Du, Y., Ren, Y., et al. (2019) An Inorganic Salt Reinforced Zn2+-Conducting Solid-State Electrolyte for Ultra-Stable Zn Metal Batteries. Journal of Materials Chemistry A, 7, 22287-22295. https://doi.org/10.1039/c9ta07218g
|
[86]
|
Jonker, A.M., Löwik, D.W.P.M. and van Hest, J.C.M. (2012) Peptide-and Protein-Based Hydrogels. Chemistry of Materials, 24, 759-773. https://doi.org/10.1021/cm202640w
|
[87]
|
Yang, J., Xie, Y. and He, W. (2011) Research Progress on Chemical Modification of Alginate: A Review. Carbohydrate Polymers, 84, 33-39. https://doi.org/10.1016/j.carbpol.2010.11.048
|
[88]
|
Lee, K.Y. and Mooney, D.J. (2012) Alginate: Properties and Biomedical Applications. Progress in Polymer Science, 37, 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003
|
[89]
|
Zhang, M. and Zhao, X. (2020) Alginate Hydrogel Dressings for Advanced Wound Management. International Journal of Biological Macromolecules, 162, 1414-1428. https://doi.org/10.1016/j.ijbiomac.2020.07.311
|
[90]
|
Liu, Z., Liang, G., Zhan, Y., Li, H., Wang, Z., Ma, L., et al. (2019) A Soft Yet Device-Level Dynamically Super-Tough Supercapacitor Enabled by an Energy-Dissipative Dual-Crosslinked Hydrogel Electrolyte. Nano Energy, 58, 732-742. https://doi.org/10.1016/j.nanoen.2019.01.087
|
[91]
|
Ji, Z., Wang, H., Chen, Z., Wang, P., Liu, J., Wang, J., et al. (2020) A Both Microscopically and Macroscopically Intrinsic Self-Healing Long Lifespan Yarn Battery. Energy Storage Materials, 28, 334-341. https://doi.org/10.1016/j.ensm.2020.03.020
|
[92]
|
Zheng, W. (2014) Proteins: From Sequence to Structure. Chinese Physics B, 23, Article ID: 078705. https://doi.org/10.1088/1674-1056/23/7/078705
|
[93]
|
Le, X.T., Rioux, L. and Turgeon, S.L. (2017) Formation and Functional Properties of Protein-Polysaccharide Electrostatic Hydrogels in Comparison to Protein or Polysaccharide Hydrogels. Advances in Colloid and Interface Science, 239, 127-135. https://doi.org/10.1016/j.cis.2016.04.006
|
[94]
|
Ma, L., Yang, Y., Yao, J., Shao, Z. and Chen, X. (2013) Robust Soy Protein Films Obtained by Slight Chemical Modification of Polypeptide Chains. Polymer Chemistry, 4, 5425-5431. https://doi.org/10.1039/c3py00557g
|
[95]
|
Zhu, M., Wang, Y., Long, L., Fu, X., Sui, G. and Yang, X. (2019) An Optimal Carbon Fiber Interlayer Integrated with Bio-Based Gel Polymer Electrolyte Enabling Trapping-Diffusion-Conversion of Polysulfides in Lithium-Sulfur Batteries. Chemical Engineering Journal, 370, 1068-1076. https://doi.org/10.1016/j.cej.2019.03.245
|
[96]
|
Zhu, M., Tan, C., Fang, Q., Gao, L., Sui, G. and Yang, X. (2016) High Performance and Biodegradable Skeleton Material Based on Soy Protein Isolate for Gel Polymer Electrolyte. ACS Sustainable Chemistry & Engineering, 4, 4498-4505. https://doi.org/10.1021/acssuschemeng.6b01218
|
[97]
|
Zhu, M., Wu, J., Zhong, W., Lan, J., Sui, G. and Yang, X. (2018) A Biobased Composite Gel Polymer Electrolyte with Functions of Lithium Dendrites Suppressing and Manganese Ions Trapping. Advanced Energy Materials, 8, Article ID: 1702561. https://doi.org/10.1002/aenm.201702561
|