[1]
|
Liu, J., Chen, Y., Zheng, Y., Lin, W., Ungur, L., Wernsdorfer, W., et al. (2013) Switching the Anisotropy Barrier of a Single-Ion Magnet by Symmetry Change from Quasi-D5h to Quasi-Oh. Chemical Science, 4, 3310-3316. https://doi.org/10.1039/c3sc50843a
|
[2]
|
Oyarzabal, I., Ruiz, J., Seco, J.M., Evangelisti, M., Camón, A., Ruiz, E., et al. (2014) Rational Electrostatic Design of Easy-Axis Magnetic Anisotropy in a ZnII-DyIII-ZnII Single-Molecule Magnet with a High Energy Barrier. Chemistry—A European Journal, 20, 14262-14269. https://doi.org/10.1002/chem.201403670
|
[3]
|
Costes, J.P., Titos-Padilla, S., Oyarzabal, I., Gupta, T., Duhayon, C., Rajaraman, G., et al. (2015) Analysis of the Role of Peripheral Ligands Coordinated to ZnII in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets. Chemistry—A European Journal, 21, 15785-15796. https://doi.org/10.1002/chem.201501500
|
[4]
|
Sun, W., Yan, P., Jiang, S., Wang, B., Zhang, Y., Li, H., et al. (2016) High Symmetry or Low Symmetry, That Is the Question—High Performance Dy(III) Single-Ion Magnets by Electrostatic Potential Design. Chemical Science, 7, 684-691. https://doi.org/10.1039/c5sc02986d
|
[5]
|
Huang, G., Ruan, Z., Zheng, J., Chen, Y., Wu, S., Liu, J., et al. (2020) Seeking Magneto-Structural Correlations in Easily Tailored Pentagonal Bipyramid Dy(III) Single-Ion Magnets. Science China Chemistry, 63, 1066-1074. https://doi.org/10.1007/s11426-020-9746-x
|
[6]
|
Xie, Q., Wu, S., Shi, W., Liu, C., Cui, A. and Kou, H. (2014) Heterodinuclear MII-LnIII Single Molecule Magnets Constructed from Exchange-Coupled Single Ion Magnets. Dalton Transactions, 43, Article 11309. https://doi.org/10.1039/c4dt00740a
|
[7]
|
Amjad, A., Madalan, A.M., Andruh, M., Caneschi, A. and Sorace, L. (2016) Slow Relaxation of Magnetization in an Isostructural Series of Zinc-Lanthanide Complexes: An Integrated EPR and AC Susceptibility Study. Chemistry—A European Journal, 22, 12849-12858. https://doi.org/10.1002/chem.201601996
|
[8]
|
Li, J., Wei, R., Pu, T., Cao, F., Yang, L., Han, Y., et al. (2017) Tuning Quantum Tunnelling of Magnetization through 3d-4f Magnetic Interactions: An Alternative Approach for Manipulating Single-Molecule Magnetism. Inorganic Chemistry Frontiers, 4, 114-122. https://doi.org/10.1039/c6qi00407e
|
[9]
|
Ke, H., Wei, W., Yang, Y., Zhang, J., Zhang, Y., Xie, G., et al. (2019) Effect of Coordination Anion Substitutions on Relaxation Dynamics of Defect Dicubane Zn2Dy2 Tetranuclear Clusters. Dalton Transactions, 48, 7844-7852. https://doi.org/10.1039/c9dt01074b
|
[10]
|
Abtab, S.M.T., Majee, M.C., Maity, M., Titiš, J., Boča, R. and Chaudhury, M. (2014) Tetranuclear Hetero-Metal [CoII2LnIII2] (Ln=Gd, Tb, Dy, Ho, La) Complexes Involving Carboxylato Bridges in a Rare Μ4-η2:η2 Mode: Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 53, 1295-1306. https://doi.org/10.1021/ic401484d
|
[11]
|
Stavgianoudaki, N., Siczek, M., Lis, T., Lorusso, G., Evangelisti, M. and Milios, C.J. (2019) A Decanuclear [DyIII6ZnII4] Cluster: A {ZnII4} Rectangle Surrounding an Octahedral {DyIII6} Single Molecule Magnet. Dalton Transactions, 48, 3566-3570. https://doi.org/10.1039/c9dt00440h
|
[12]
|
Liu, C., Zhang, D., Hao, X. and Zhu, D. (2020) Assembly of Chiral 3d-4f Wheel-Like Cluster Complexes with Achiral Ligands: Single-Molecule Magnetic Behavior and Magnetocaloric Effect. Inorganic Chemistry Frontiers, 7, 3340-3351. https://doi.org/10.1039/d0qi00632g
|
[13]
|
Burrow, C.E., Burchell, T.J., Lin, P., Habib, F., Wernsdorfer, W., Clérac, R., et al. (2009) Salen-Based [Zn2Ln3] Complexes with Fluorescence and Single-Molecule-Magnet Properties. Inorganic Chemistry, 48, 8051-8053. https://doi.org/10.1021/ic9007944
|
[14]
|
Feltham, H.L.C., Lan, Y., Klöwer, F., Ungur, L., Chibotaru, L.F., Powell, A.K., et al. (2011) A Non-Sandwiched Macrocyclic Monolanthanide Single-Molecule Magnet: The Key Role of Axiality. Chemistry—A European Journal, 17, 4362-4365. https://doi.org/10.1002/chem.201100438
|
[15]
|
Maeda, M., Hino, S., Yamashita, K., Kataoka, Y., Nakano, M., Yamamura, T., et al. (2012) Correlation between Slow Magnetic Relaxation and the Coordination Structures of a Family of Linear Trinuclear Zn(II)-Ln(III)-Zn(II) Complexes (Ln=Tb, Dy, Ho, Er, Tm and Yb). Dalton Transactions, 41, Article 13640. https://doi.org/10.1039/c2dt31399e
|
[16]
|
Yu, W., Lee, G. and Yang, E. (2013) Systematic Studies of the Structures and Magnetic Properties for a Family of Cubane Complexes with the Formula: [M2Ln2] (Ln=Dy, Gd; M=Ni, Zn) and [Ni2Y2]. Dalton Transactions, 42, Article 3941. https://doi.org/10.1039/c2dt32688d
|
[17]
|
Zhang, P., Zhang, L., Lin, S. and Tang, J. (2013) Tetranuclear [MDy]2 Compounds and Their Dinuclear [MDy] (M=Zn/Cu) Building Units: Their Assembly, Structures, and Magnetic Properties. Inorganic Chemistry, 52, 6595-6602. https://doi.org/10.1021/ic400620j
|
[18]
|
Palacios, M.A., Titos-Padilla, S., Ruiz, J., Herrera, J.M., Pope, S.J.A., Brechin, E.K., et al. (2013) Bifunctional ZnIILnIII Dinuclear Complexes Combining Field Induced SMM Behavior and Luminescence: Enhanced NIR Lanthanide Emission by 9-Anthracene Carboxylate Bridging Ligands. Inorganic Chemistry, 53, 1465-1474. https://doi.org/10.1021/ic402597s
|
[19]
|
Ruiz, J., Lorusso, G., Evangelisti, M., Brechin, E.K., Pope, S.J.A. and Colacio, E. (2014) Closely-Related ZnII2LnIII2 Complexes (LnIII=Gd, Yb) with Either Magnetic Refrigerant or Luminescent Single-Molecule Magnet Properties. Inorganic Chemistry, 53, 3586-3594. https://doi.org/10.1021/ic403097s
|
[20]
|
Upadhyay, A., Singh, S.K., Das, C., Mondol, R., Langley, S.K., Murray, K.S., et al. (2014) Enhancing the Effective Energy Barrier of a Dy(III) SMM Using a Bridged Diamagnetic Zn(II) Ion. Chemical Communications, 50, 8838-8841. https://doi.org/10.1039/c4cc02094d
|
[21]
|
Anastasiadis, N.C., Polyzou, C.D., Kostakis, G.E., Bekiari, V., Lan, Y., Perlepes, S.P., et al. (2015) Dinuclear Lanthanide(III)/Zinc(II) Complexes with Methyl 2-Pyridyl Ketone Oxime. Dalton Transactions, 44, 19791-19795. https://doi.org/10.1039/c5dt03663a
|
[22]
|
Das, S., Bejoymohandas, K.S., Dey, A., Biswas, S., Reddy, M.L.P., Morales, R., et al. (2015) Amending the Anisotropy Barrier and Luminescence Behavior of Heterometallic Trinuclear Linear [MII-LnIII-MII] (LnIII=Gd, Tb, Dy; MII=Mg/Zn) Complexes by Change from Divalent Paramagnetic to Diamagnetic Metal Ions. Chemistry—A European Journal, 21, 6449-6464. https://doi.org/10.1002/chem.201406666
|
[23]
|
Then, P.L., Takehara, C., Kataoka, Y., Nakano, M., Yamamura, T. and Kajiwara, T. (2015) Structural Switching from Paramagnetic to Single-Molecule Magnet Behaviour of Lnzn2 Trinuclear Complexes. Dalton Transactions, 44, 18038-18048. https://doi.org/10.1039/c5dt02965a
|
[24]
|
Costes, J.P., Titos-Padilla, S., Oyarzabal, I., Gupta, T., Duhayon, C., Rajaraman, G., et al. (2016) Effect of Ligand Substitution around the Dyiii on the SMM Properties of Dual-Luminescent Zn-Dy and Zn-Dy-Zn Complexes with Large Anisotropy Energy Barriers: A Combined Theoretical and Experimental Magnetostructural Study. Inorganic Chemistry, 55, 4428-4440. https://doi.org/10.1021/acs.inorgchem.6b00228
|
[25]
|
Oyarzabal, I., Artetxe, B., Rodríguez-Diéguez, A., García, J.Á., Seco, J.M. and Colacio, E. (2016) A Family of Acetato-Diphenoxo Triply Bridged Dimetallic Zniilniiicomplexes: SMM Behavior and Luminescent Properties. Dalton Transactions, 45, 9712-9726. https://doi.org/10.1039/c6dt01327a
|
[26]
|
Fondo, M., Corredoira-Vázquez, J., García-Deibe, A.M., Sanmartín-Matalobos, J., Herrera, J.M. and Colacio, E. (2017) Designing Ligands to Isolate Znln and Zn2ln Complexes: Field-Induced Single-Ion Magnet Behavior of the Zndy, Zn2Dy, and Zn2Er Analogues. Inorganic Chemistry, 56, 5646-5656. https://doi.org/10.1021/acs.inorgchem.7b00165
|
[27]
|
Griffiths, K., Mayans, J., Shipman, M.A., Tizzard, G.J., Coles, S.J., Blight, B.A., et al. (2017) Four New Families of Polynuclear Zn-Ln Coordination Clusters. Synthetic, Topological, Magnetic, and Luminescent Aspects. Crystal Growth & Design, 17, 1524-1538. https://doi.org/10.1021/acs.cgd.6b01401
|
[28]
|
Song, X., Liu, P., Wang, C., Liu, Y., Liu, W. and Zhang, M. (2017) Three Sandwich-Type Zinc(II)-Lanthanide(III) Clusters: Structures, Luminescence and Magnetic Properties. RSC Advances, 7, 22692-22698. https://doi.org/10.1039/c7ra01469d
|
[29]
|
Wen, H.R., Dong, P.P., Liu, S.J., et al. (2017) 3d-4f Heterometallic Trinuclear Complexes Derived from Amine-Phenol Tripodal Ligands Exhibiting Magnetic and Luminescent Properties. Dalton Transactions, 46, 1153-1162. https://doi.org/10.1039/C6DT04027F
|
[30]
|
Zabala-Lekuona, A., Cepeda, J., Oyarzabal, I., Rodríguez-Diéguez, A., García, J.A., Seco, J.M., et al. (2017) Rational Design of Triple-Bridged Dinuclear ZnIILnIII-Based Complexes: A Structural, Magnetic and Luminescence Study. CrystEngComm, 19, 256-264. https://doi.org/10.1039/c6ce02240e
|
[31]
|
Ghosh, S., Hari, N., Pinkowicz, D., Fitta, M. and Mohanta, S. (2018) Syntheses, Crystal Structures and Magnetic Properties of a Series of ZnII2LnIII2 Compounds (Ln = Gd, Tb, Dy, Ho and Er): Contrasting Structural and Magnetic Features. New Journal of Chemistry, 42, 15917-15929. https://doi.org/10.1039/c8nj02532k
|
[32]
|
Ke, H., Wei, W., Zhang, Y.Q., et al. ((2018) Influence of Alcoholic Solvent and Acetate Anion Coordination Mode Variations on Structures and Magnetic Properties of Heterometallic Zn2Dy2 Tetranuclear Clusters. Dalton Transactions, 47, 16616-16626. https://doi.org/10.1039/C8DT03983F
|
[33]
|
Li, M., Wu, H., Wei, Q., Ke, H., Yin, B., Zhang, S., et al. (2018) Two {ZnII2DyIII} Complexes Supported by Monophenoxido/Dicarboxylate Bridges with Multiple Relaxation Processes: Carboxylato Ancillary Ligand-Controlled Magnetic Anisotropy in Square Antiprismatic DyIII Species. Dalton Transactions, 47, 9482-9491. https://doi.org/10.1039/c8dt01842a
|
[34]
|
Liu, C., Zhang, D., Su, J., Zhang, Y. and Zhu, D. (2018) Single-Molecule Magnet Behavior of 1D Coordination Polymers Based on DyZn2(Salen)2 Units and Pyridin-n-Oxide-4-Carboxylate: Structural Divergence and Magnetic Regulation. Inorganic Chemistry, 57, 11077-11086. https://doi.org/10.1021/acs.inorgchem.8b01653
|
[35]
|
Shen, F., Li, H., Miao, H., Shao, D., Wei, X., Shi, L., et al. (2018) Heterometallic MIILnIII (M=Co/Zn; Ln=Dy/y) Complexes with Pentagonal Bipyramidal 3d Centers: Syntheses, Structures, and Magnetic Properties. Inorganic Chemistry, 57, 15526-15536. https://doi.org/10.1021/acs.inorgchem.8b02875
|
[36]
|
Yang, J., Tian, Y., Tao, J., Chen, P., Li, H., Zhang, Y., et al. (2018) Modulation of the Coordination Environment around the Magnetic Easy Axis Leads to Significant Magnetic Relaxations in a Series of 3d-4f Schiff Complexes. Inorganic Chemistry, 57, 8065-8077. https://doi.org/10.1021/acs.inorgchem.8b00056
|
[37]
|
Ge, J., Chen, Z., Qiu, Y., Huo, D., Zhang, Y., Wang, P., et al. (2019) Modulating Magnetic Property of Phthalocyanine Supported MII-DyIII (M=Ni, Zn) Heterodinuclear Complexes. Inorganic Chemistry, 58, 9387-9396. https://doi.org/10.1021/acs.inorgchem.9b01179
|
[38]
|
Xie, X., Yang, L. and Luo, F. (2019) Dual Magnetic Behavior of Dysprosium(III) Molecular Magnet and Co(II) Spin-Crossover in an Isolated [3d]-[4f] Compound. Inorganic Chemistry Communications, 105, 93-96. https://doi.org/10.1016/j.inoche.2019.04.030
|
[39]
|
Yin, C., Hu, Z., Long, Q., Wang, H., Li, J., Song, Y., et al. (2019) Single Molecule Magnet Behaviors of Zn4Ln2 (Ln=DyIII, TbIII) Complexes with Multidentate Organic Ligands Formed by Absorption of CO2 in Air through in Situ Reactions. Dalton Transactions, 48, 512-522. https://doi.org/10.1039/c8dt03849j
|
[40]
|
Fan, X., Yang, H., Li, D., Tian, H., Cao, F. and Dou, J. (2020) Three New Heterometallic ZnII-LnIII Complexes with a Windmill-Like Framework and Field-Induced SMM Behavior. New Journal of Chemistry, 44, 2555-2560. https://doi.org/10.1039/c9nj05796j
|
[41]
|
Liu, C., Hao, X. and Zhang, D. (2020) CO2-Fixation into Carbonate Anions for the Construction of 3d-4f Cluster Complexes with Salen-Type Schiff Base Ligands: From Molecular Magnetic Refrigerants to Luminescent Single-Molecule Magnets. Applied Organometallic Chemistry, 34, e5893. https://doi.org/10.1002/aoc.5893
|
[42]
|
Liu, C., Hao, X. and Zhang, D. (2020) Effects of Substituents on Bridging Ligands on the Single-Molecule Magnet Properties of Zn2Dy2 Cluster Complexes. Applied Organometallic Chemistry, 35, e6048. https://doi.org/10.1002/aoc.6048
|
[43]
|
Liu, C., Zhang, D., Hao, X. and Zhu, D. (2020) Zn2Ln2 Complexes with Carbonate Bridges Formed by the Fixation of Carbon Dioxide in the Atmosphere: Single-Molecule Magnet Behaviour and Magnetocaloric Effect. Dalton Transactions, 49, 2121-2128. https://doi.org/10.1039/c9dt04480a
|
[44]
|
Wen, H., Hu, J., Yang, K., Zhang, J., Liu, S., Liao, J., et al. (2020) Family of Chiral ZnII-LnIII (Ln=Dy and Tb) Heterometallic Complexes Derived from the Amine-Phenol Ligand Showing Multifunctional Properties. Inorganic Chemistry, 59, 2811-2824. https://doi.org/10.1021/acs.inorgchem.9b03164
|
[45]
|
Zhu, S., Hu, J., Dong, L., Wen, H., Liu, S., Lu, Y., et al. (2020) Multifunctional Zn(II)-Yb(III) Complex Enantiomers Showing Second-Harmonic Generation, Near-Infrared Luminescence, Single-Molecule Magnet Behaviour and Proton Conduction. Journal of Materials Chemistry C, 8, 16032-16041. https://doi.org/10.1039/d0tc03687k
|
[46]
|
Liu, C., Sun, R., Hao, X. and Wang, B. (2021) Chiral Co-Crystals of (s)-Or (r)-1,1′-Binaphthalene-2,2′-Diol and Zn2Dy2 Tetranuclear Complexes Behaving as Single-Molecule Magnets. Crystal Growth & Design, 21, 4346-4353. https://doi.org/10.1021/acs.cgd.1c00246
|
[47]
|
Wang, C.-M., Wu, Z., et al. (2021) The Zn2Dy2 Single-Molecule Magnet Constructed by Salen-Type Ligand and Hydroximic Acid. Journal of Molecular Structure, 1246, Article 131231. https://doi.org/10.1016/j.molstruc.2021.131231
|
[48]
|
Wang, H., Zhang, K., Wang, J., Hu, Z., Zhang, Z., Song, Y., et al. (2021) Influence of the Different Types of Auxiliary Noncarboxylate Organic Ligands on the Topologies and Magnetic Relaxation Behavior of Zn-Dy Heterometallic Single Molecule Magnets. Inorganic Chemistry, 60, 9941-9955. https://doi.org/10.1021/acs.inorgchem.1c01217
|
[49]
|
Panja, A., Jagličić, Z., Herchel, R., Brandão, P. and Jana, N.C. (2022) Influence of Bridging and Chelating Co-Ligands on the Distinct Single-Molecule Magnetic Behaviours in ZnDy Complexes. New Journal of Chemistry, 46, 18751-18763. https://doi.org/10.1039/d2nj03793a
|
[50]
|
Jing, Y., Wang, J., Kong, M., Wang, G., Zhang, Y. and Song, Y. (2023) Detailed Magnetic Properties and Theoretical Calculation in Ferromagnetic Coupling DyIII-MII 3d-4f Complexes Based on a 1,4,7,10‑tetraazacyclododecane Derivative. Inorganica Chimica Acta, 546, Article 121301. https://doi.org/10.1016/j.ica.2022.121301
|
[51]
|
Li, G., Tang, H., Gao, R., Wang, Y., Sun, X. and Zhang, K. (2023) Tuning Quantum Tunneling in Isomorphic {MII2DyIII2} “butterfly” System via 3d-4f Magnetic Interaction. Crystal Growth & Design, 23, 1575-1580. https://doi.org/10.1021/acs.cgd.2c01198
|
[52]
|
Roy, S., Du, J., Manohar, E.M., Aziz, T., Pal, T.K., Sun, L., et al. (2023) Syntheses, Structures, and Magnetic Properties of Novel [3 × 1 + 2 × 1] Pentanuclear Zinc(II)-Lanthanide(III) Cocrystal Complexes: Slow Magnetic Relaxation Behavior of the Dy(III) Analogue. Crystal Growth & Design, 23, 2218-2230. https://doi.org/10.1021/acs.cgd.2c01256
|
[53]
|
Wang, T., Yan, H., Che, Z. and Sun, W. (2023) ZnII-DyIII Single-Molecule Magnets Constructed by Salen-Type Ligand, Acetate and Β-Diketonate. Journal of Molecular Structure, 1272, Article 134179. https://doi.org/10.1016/j.molstruc.2022.134179
|
[54]
|
Ding, Y., Han, T., Zhai, Y., Reta, D., Chilton, N.F., Winpenny, R.E.P., et al. (2020) A Study of Magnetic Relaxation in Dysprosium(III) Single-Molecule Magnets. Chemistry—A European Journal, 26, 5893-5902. https://doi.org/10.1002/chem.202000646
|
[55]
|
Konieczny, P., Czernia, D. and Kajiwara, T. (2022) Rotating Magnetocaloric Effect in Highly Anisotropic TbIII and DyIII Single Molecular Magnets. Scientific Reports, 12, Article No. 16601. https://doi.org/10.1038/s41598-022-20893-2
|
[56]
|
Watanabe, A., Yamashita, A., Nakano, M., Yamamura, T. and Kajiwara, T. (2011) Multi-Path Magnetic Relaxation of Mono-Dysprosium(III) Single-Molecule Magnet with Extremely High Barrier. Chemistry—A European Journal, 17, 7428-7432. https://doi.org/10.1002/chem.201003538
|
[57]
|
Konieczny, P., Pel̷ka, R., et al. (2020) Relaxations in Mononuclear Tb3+ Single-Molecule Magnets. The Journal of Physical Chemistry C, 124, 7930-7937. https://doi.org/10.1021/acs.jpcc.9b11057
|
[58]
|
Eliseeva, S.V., Nguyen, T.N., Kampf, J.W., Trivedi, E.R., Pecoraro, V.L. and Petoud, S. (2022) Tuning the Photophysical Properties of Lanthanide(III)/Zinc(II) ‘Encapsulated Sandwich’ Metallacrowns Emitting in the Near-Infrared Range. Chemical Science, 13, 2919-2931. https://doi.org/10.1039/d1sc06769a
|